JP3722145B2 - ハイブリッド電気自動車の冷却システム - Google Patents

ハイブリッド電気自動車の冷却システム Download PDF

Info

Publication number
JP3722145B2
JP3722145B2 JP2004146236A JP2004146236A JP3722145B2 JP 3722145 B2 JP3722145 B2 JP 3722145B2 JP 2004146236 A JP2004146236 A JP 2004146236A JP 2004146236 A JP2004146236 A JP 2004146236A JP 3722145 B2 JP3722145 B2 JP 3722145B2
Authority
JP
Japan
Prior art keywords
engine
radiator
motor
cooling
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004146236A
Other languages
English (en)
Other versions
JP2004332744A (ja
Inventor
均 下野園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004146236A priority Critical patent/JP3722145B2/ja
Publication of JP2004332744A publication Critical patent/JP2004332744A/ja
Application granted granted Critical
Publication of JP3722145B2 publication Critical patent/JP3722145B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

この発明は、電動モータにより走行を可能な車両であって、エンジンにより駆動される発電機と、発電された電気を蓄えるバッテリとを備えており、電動モータを冷却するモータ用冷却システムと、エンジンを冷却するエンジン用冷却システムとを備えているハイブリッド電気自動車の冷却システムにおいて、冷却ファン等の冷却系の消費電力を低減させると共に、熱交換器のサイズを小さくして重量軽減を図り、燃費を改善する技術に関する。
従来から排気エミッションを改善するため、エンジンと電動モータを組み合わせたハイブリッド電気自動車が知られている。
このようなハイブリッド電気自動車では、エンジンにより駆動される発電機と、発電された電気を蓄えるバッテリとを備えて、電動モータにより走行が可能であるが、そのエンジンの冷却系と電動モータの冷却系とは制御温度が大きく異なっており、通常は電動モータの定格等からモータの冷却系が低めの設定となっている。したがって、両者の冷却系統を共有することは単純にはできず、それぞれ個別のラジエータ、送風手段を必要としている。そのため、これら複数の熱交換器への通水をうまく切換えることによって、共有化することが重要となっている。
図15は冷却システムの例を示すもので、エンジン50の水冷システムとエンジンの吸気を冷却するインタークーラ51の水冷システムとを組み合わせたものである。この例では、エンジン冷却用のラジエータ52とインタークーラ用のラジエータ53に加えて、切換弁54により各水冷システムと選択的に連通される第3のラジエータ55とを備え、エンジン50の冷却能力が必要なときは、第3のラジエータ55をエンジン冷却系統と連通させ、インタークーラ51の冷却能力が必要なときは、第3のラジエータ55をインタークーラ冷却系統と連通させることにより、エンジン用ラジエータの余剰冷却能力を、他の水冷システムの放熱に利用し、冷却水放熱システムを小型化させている(例えば、特許文献1)。
特開平6ー81648号
しかしながら、このような冷却システムにあっては、一方の冷却系の水温によって第3のラジエータを切換えるようになっていたため、両冷却系の水温差が大きいときに、水温ハンチングが発生する心配があり、また前記ハイブリッド電気自動車のエンジンおよび電動モータの冷却系に適用した場合、運転条件に合った効率の良い冷却を行えない。また、各熱交換器のレイアウト自由度が無く、冷却系がエンジンルームからの熱気の影響を受ける。
この発明は、ハイブリッド電気自動車のエンジンおよび電動モータの冷却系に最適な冷却システムを提供することを目的としている。
本発明は、電動モータにより走行可能な車両であって、エンジンを冷却するエンジン用冷却系のエンジン用ラジエータを前記エンジンを備えるエンジンルームから離れた部位に設置し、前記エンジン用ラジエータのファンの回転によってバッテリを冷却する
本発明によれば、エンジン用冷却系のラジエータの冷却と共にバッテリの冷却を同一のファンで行える。また、停車時に充電のため作動する可能性があるエンジン用冷却系のラジエータをエンジンルームから離れた部位に配置することにより、できるだけ車両後方の低温気流を吸引させて、そのエンジン用冷却系のラジエータの良好な放熱性能を確保できる
以下、本発明の実施の形態を図面に基づいて説明する。
図1において、1はエンジン、2はエンジン1により駆動される発電機、3は発電機2により発電された電気およびバッテリの電力により駆動される走行用に用いられる電動モータ、4はエンジン用冷却システム、5はモータ用冷却システムである。
エンジン用冷却システム4において、冷却水はエンジン1を冷却することによって受熱後、エンジン出口配管6、サーモスタット7、ラジエータ入口配管8を通り、エンジン用のラジエータ9に流入して放熱する。その後、ラジエータ出口配管10およびエンジン入口配管11を経由して、エンジン1により駆動されるメカニカルポンプとしてのウォータポンプ12に吸引され、エンジン1へ還流する。この場合、エンジン冷却水温がある所定値以下のときは、サーモスタット7がエンジン用のラジエータ9への通水を遮断し、エンジン出口配管6の冷却水はバイパス経路13を通って直ちにウォータポンプ12へ還流する。
モータ用冷却システム5において、冷却系路14の冷却水は電動ポンプ(電動ウォータポンプ)15により電動モータ3、発電機2に送られ、これらを冷却すると共に、モータ用のラジエータ16を通り、放熱する。
そして、このエンジン用のラジエータ9のラジエータ出口配管10とモータ用のラジエータ16の冷却水入口部17とが循環用配管としての連通配管18により連通され、その連通配管18の途中にアシスト電動ポンプ(アシスト電動ウォータポンプ)19が設置される。また、モータ用のラジエータ16の冷却水出口部20とエンジン用のラジエータ9のラジエータ入口配管8とが循環用配管としての戻り配管21により連通される。
電動ポンプ15およびアシスト電動ポンプ19には、例えばギアポンプのように停止時には通水を遮断する容積型のポンプが用いられる。
一方、エンジン用のラジエータ9内の冷却水温を検出するためのセンサ22およびモータ用のラジエータ16内の冷却水温を検出するためのセンサ23が設けられ、これらの検出信号は後述するセンサ37の検出信号と共にコントロールユニット26に入力される。
コントロールユニット26により、センサ22,23の検出信号に基づき、電動ポンプ15、アシスト電動ポンプ19の駆動が制御される。また、それぞれエンジン用のラジエータ9、モータ用のラジエータ16に冷却風を強制通風させる冷却ファン(電動ファン)24,25の駆動もコントロールユニット26により、制御される。
図2は本システムの配置構成を示すもので、車両を床下から見た図である。エンジン1、発電機2、電動モータ3は、車両30の前側のエンジンルーム31に配置される。モータ用のラジエータ16はエンジンルーム31の前端にエアコンコンデンサ32と並んで配置される。
バッテリ33はエンジンルーム31から離れた車両30の床下中央部に配置され、側方(車両30の横方向)を筐体34により取り囲まれる。エンジン用のラジエータ9はその筐体34の車両30前方側に設置され、筐体34の車両30後方側には通風口35が形成される。
冷却ファン24により、エンジン用のラジエータ9の冷却と共に、バッテリ33の冷却も行われる。筐体34内のバッテリ33の雰囲気温度を検出するためのセンサ37が設けられ、コントロールユニット26により、そのセンサ37の検出信号によっても、冷却ファン24の駆動が制御される。
なお、冷却ファン24は2連式のもので、図中38はエアコンコンデンサ32の冷却ファンを示す。また、39はエンジン1の排気管、40は車輪である。
次に、コントロールユニット26による制御内容を図3の制御マップ、図4〜図9のフローチャートに基づいて説明する。
前述した通り、エンジン冷却系とモータ冷却系とでは目標制御水温が異なる。この目標制御水温は、エンジンやモータの種類により異なるが、ここでは説明のため、エンジンの最高目標水温を110℃、モータの最高目標水温を60℃と仮おきして説明する。図3はモータ水温とエンジン水温の制御マップを示す。ここに示す(a)〜(g)までの領域それぞれにおいて、図1に示した通水系を切換えて行う。
図4のステップ1ではバッテリ33の雰囲気温度が50℃以上かどうかを判定し,50℃以上であれば、後述のルーチンにかかわらず、ステップ2でエンジン用ラジエータ9の冷却ファン24をオンする。
ステップ3ではモータ水温(センサ22の検出水温)が50℃以上かどうかを判定し、50℃未満であれば、ステップ4でエンジン水温(センサ23の検出水温)が80℃以上かどうかを判定し、80℃未満であれば、A(図5)のフローに進み、80℃以上であれば、D(図8)のフローに進む。
ステップ3でモータ水温が50℃以上であれば、ステップ5でエンジン水温が80℃以上かどうかを判定し、80℃以上であれば、E(図9)のフローに進み、また80℃未満であれば、ステップ6でエンジン水温が55℃以下かつモータ水温が55℃以上かどうかを判定し、Noであれば、B(図6)のフローに進み、Yesであれば、C(図7)のフローに進む。
図5(図3の(a)の領域の制御)のステップ11では、電動ポンプ15、アシスト電動ポンプ19をオフし、エンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフする。
図6(図3の(b)の領域の制御)のステップ21では、電動ポンプ15をオン、アシスト電動ポンプ19をオフする。ステップ22ではモータ水温が58℃以上かどうかを判定し、58℃未満であれば、ステップ23でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフし、58℃以上であれば、ステップ24でエンジン用ラジエータ9の冷却ファン24をオフし、モータ用ラジエータ16の冷却ファン25をオンする。
図7(図3の(c)の領域の制御)のステップ31では、電動ポンプ15、アシスト電動ポンプ19をオンする。ステップ32ではモータ水温が58℃以上かどうかを判定し、58℃未満であれば、ステップ33でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフし、58℃以上であれば、ステップ34でエンジン用ラジエータ9の冷却ファン24をオフし、モータ用ラジエータ16の冷却ファン25をオンする。
図8(図3の(d)の領域の制御)のステップ41では、電動ポンプ15をオン、アシスト電動ポンプ19をオフする。ステップ42ではエンジン水温が95℃以上かどうかを判定し、95℃未満であれば、ステップ43でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフし、95℃以上であれば、ステップ44でエンジン用ラジエータ9の冷却ファン24をオンし、モータ用ラジエータ16の冷却ファン25をオフする。
図9(図3の(e)の領域の制御)のステップ51では、電動ポンプ15をオン、アシスト電動ポンプ19をオフする。
ステップ52ではエンジン水温が95℃以上かどうかを判定し、95℃未満であれば、ステップ53でモータ水温が58℃以上かどうかを判定し、58℃未満であれば、ステップ54でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオフし、58℃以上であれば、ステップ55でエンジン用ラジエータ9の冷却ファン24をオフし、モータ用ラジエータ16の冷却ファン25をオンする。
ステップ52でエンジン水温が95℃以上であれば、ステップ56でモータ水温が58℃以上かどうかを判定し、58℃未満であれば、ステップ57でエンジン用ラジエータ9の冷却ファン24をオンし、モータ用ラジエータ16の冷却ファン25をオフし、58℃以上であれば、ステップ58でエンジン用ラジエータ9、モータ用ラジエータ16の冷却ファン24,25を共にオンする。
次に、各領域つまり図3の(a)〜(g)の領域の動作状態を説明する。
(a)の領域:[モータ水温もエンジン水温も十分低い]
この場合の通水状況を図10に示す。サーモスタット7はバイパス経路13側へ開となっており、エンジン用ラジエータ9へは通水しない。また、電動ポンプ15およびアシスト電動ポンプ19は作動せず、モータ用ラジエータ16へも通水しない。
(b)の領域:[エンジン水温は低いが、モータ水温が上昇した場合]
この場合の通水状況を図11に示す。モータ3で走行し、エンジン1はほとんど作動していない状況である。サーモスタット7はバイパス経路13側へ開となっており、エンジン用ラジエータ9へは通水しない。電動ポンプ15は作動し、モータ3および発電機2を冷却してモータ用ラジエータ16で放熱する。アシスト電動ポンプ19は作動させず、エンジン用冷却系とモータ用冷却系との冷却水のやり取りは行わない。
(c)の領域:[モータ水温が上昇し、エンジン水温がモータ水温よりも低い場合]
この場合の通水状況を図12に示す。エンジン水温が低いため、サーモスタット7はバイパス経路13側へ開となっており、エンジン用冷却系の冷却水はエンジン用ラジエータ9へは通水しない。電動ポンプ15は作動し、モータ3および発電機2を冷却してモータ用ラジエータ16で放熱する。ここで、アシスト電動ポンプ19を作動させ、エンジン用ラジエータ9で放熱済みの低温冷却水をモータ用ラジエータ16の冷却水入口部17へ流入させる。ここでモータ用冷却系内の高温冷却水と混合することにより、モータ水温を低下させる。流入させた冷却水はモータ用ラジエータ16で放熱後、戻り配管21によりエンジン用ラジエータ9のラジエータ入口配管8へ流入し、エンジン用ラジエータ9で更に放熱して低温となった後、連通配管18を通って再びモータ用冷却系へ流入する。すなわち、エンジン用ラジエータ9もモータ3の放熱に寄与していることになる。
(d)の領域:[モータ水温は低いが、エンジン水温が上昇した場合]
この場合の通水状況を図13に示す。エンジン水温が高いので、サーモスタット7はエンジン用ラジエータ9側へ開となる。一方、電動ポンプ15は作動せず、モータ用冷却系内の高温冷却水モータ3および発電機2へは通水しない。ここで、アシスト電動ポンプ19が作動し、エンジン用冷却系内の高温冷却水をモータ用冷却系内へ流入させ、モータ用ラジエータ16で放熱して、戻り配管21により再びエンジン用ラジエータ9のラジエータ入口配管8へ還流させ、ここでエンジン用冷却系内の冷却水と混合することにより、熱交換を行う。すなわち、モータ用ラジエータ16をエンジン冷却用に使用することになる。
(e)の領域:[モータ水温もエンジン水温も上昇した場合]
この場合の通水状況を図14に示す。エンジン水温が高いので、サーモスタット7はエンジン用ラジエータ9側へ開となる。電動ポンプ15は作動し、モータ3および発電機2を冷却してモータ用ラジエータ16で放熱する。ここで、アシスト電動ポンプ19は作動せず、エンジン用冷却系とモータ用冷却系はそれぞれ独立して冷却を行うことになる。
一方、冷却ファン24,25は、放熱がどうしても不足する場合(限界水温に近くなった場合)に作動させて、強制空冷を行って放熱量を確保する。冷却系で消費する電力の低減が目的であり、冷却ファン24,25はできるだけ作動させず、そのために電動ポンプ15、アシスト電動ポンプ19の制御により熱交換器面積の有効利用を果し、走行風や自然対流での放熱により賄うことを優先している。すなわち、エンジン用ラジエータ9の冷却ファン24は、エンジン水温が95℃を越えた場合、モータ用ラジエータ16の冷却ファン25は、モータ水温が58℃を越えた場合に、それぞれ作動する。
このように、エンジン用冷却系とモータ用冷却系との間で冷却水のやり取りを可能にすると共に、エンジン水温とモータ水温とをモニタしながらその冷却水のやり取りを制御するので、モータ3の冷却性能が要求される領域ではエンジン用ラジエータ9をモータ冷却に使用して、またエンジン1の冷却性能が要求される領域ではモータ用ラジエータ16をエンジン冷却に使用して、高い冷却性能を確保することができ、例えばエンジン冷却を優先したためにモータ水温が規定値をオーバーしてしまうようなことはなく、各冷却系での水温制御をきめ細かく行え、運転状態に合った効率の良い冷却を行える。
また、水温が異なるエンジン用冷却系とモータ用冷却系との間での冷却水のやり取りを各水温差に応じて制御できるので、そのやり取りを切換えたときの水温ハンチングを少なくすることができる。
また、バッテリ33をエンジンルーム31から離れた車両30の床下中央部に配置すると共に、エンジン用ラジエータ9をそのバッテリ33を取り囲む筐体34の車両30前方側に設置したので、エンジン用ラジエータ9の冷却と共にバッテリ33の冷却を同一のファン24で行えることと合わせて、次の利点がある。
すなわち、走行中は走行風が期待できるため、車両の前端に熱交換器を置くことが最も有効である。そのため、走行中に主に使用するモータ3用のラジエータ16をエンジンルーム31の前端部に配置している。一方、停車時にはエンジンルーム31内の熱気が回り込んで熱交換器に吸引されるいわゆる吹き返し現象が存在するため、熱交換器はエンジンルーム31からできるだけ離した方が良い。そこで、停車時に充電のため作動する可能性があるエンジン1用のラジエータ9をエンジンルーム31から離れた車両30の床下中央部に配置することにより、できるだけ車両後方の低温気流を吸引させて、そのエンジン用ラジエータ9の性能を確保するのである。これにより、エンジン用ラジエータ9、モータ用ラジエータ16の良好な放熱性能を確保でき、また前述の制御により、冷却性能が要求される条件において車両前方と床下中央部の条件でラジエータを作動させることができるため、あらゆる条件でエンジン用ラジエータ9、モータ用ラジエータ16の高い放熱性能を確保することができる。
このように各ラジエータ9,16の伝熱面積を有効に利用でき、冷却ファン24,25の消費電力を低減でき、したがってエンジン1およびモータ3の信頼性が向上すると共に、熱交換器面積、重量等の低減を達成でき、冷却系の消費電力を少なくできる結果、燃費を向上できる。
システムの構成図である。 実施の形態の配置構成図である。 制御マップを示す特性図である。 制御内容を示すフローチャートである。 制御内容を示すフローチャートである。 制御内容を示すフローチャートである。 制御内容を示すフローチャートである。 制御内容を示すフローチャートである。 制御内容を示すフローチャートである。 通水状況の説明図である。 通水状況の説明図である。 通水状況の説明図である。 通水状況の説明図である。 通水状況の説明図である。 従来例の構成図である。
符号の説明
1 エンジン
2 発電機
3 電動モータ
4 エンジン用冷却システム
5 モータ用冷却システム
6 エンジン出口配管6
7 サーモスタット
8 ラジエータ入口配管
9 ラジエータ
10 ラジエータ出口配管
11 エンジン入口配管
12 ウォータポンプ
13 バイパス経路
14 冷却系路
15 電動ポンプ
16 ラジエータ
17 冷却水入口部
18 連通配管
19 アシスト電動ポンプ
20 冷却水出口部
21 戻り配管
22,23 センサ
24,25 冷却ファン
26 コントロールユニット
30 車両
31 エンジンルーム
33 バッテリ
34 筐体
35 通風口
37 センサ

Claims (3)

  1. 電動モータにより走行可能な車両であって、
    エンジンを冷却するエンジン用冷却系のエンジン用ラジエータを前記エンジンを備えるエンジンルームから離れた部位に設置し、
    前記エンジン用ラジエータのファンの回転によってバッテリを冷却することを特徴とするハイブリッド電気自動車の冷却システム。
  2. 前記エンジンルームを車両前方に配置し、
    前記エンジン用ラジエータを前記エンジンルームより車両後方側に配置することを特徴とする請求項1に記載のハイブリッド電気自動車の冷却システム。
  3. 前記電動モータを冷却するモータ用冷却系のモータ用ラジエータを車両前端に設置することを特徴とする請求項1または2に記載のハイブリッド電気自動車の冷却システム。
JP2004146236A 2004-05-17 2004-05-17 ハイブリッド電気自動車の冷却システム Expired - Fee Related JP3722145B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146236A JP3722145B2 (ja) 2004-05-17 2004-05-17 ハイブリッド電気自動車の冷却システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146236A JP3722145B2 (ja) 2004-05-17 2004-05-17 ハイブリッド電気自動車の冷却システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17443997A Division JP3817842B2 (ja) 1997-06-30 1997-06-30 ハイブリッド電気自動車の冷却システム

Publications (2)

Publication Number Publication Date
JP2004332744A JP2004332744A (ja) 2004-11-25
JP3722145B2 true JP3722145B2 (ja) 2005-11-30

Family

ID=33509251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146236A Expired - Fee Related JP3722145B2 (ja) 2004-05-17 2004-05-17 ハイブリッド電気自動車の冷却システム

Country Status (1)

Country Link
JP (1) JP3722145B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005003881A1 (de) * 2005-01-24 2006-07-27 Volkswagen Ag Verfahren zur Kühlung einer elektrischen Maschine und/oder dieser zugeordneten elektronischen Bauelementen in einem Kraftfahrzeug, insbesondere Hybridfahrzeug
JP4631652B2 (ja) * 2005-10-25 2011-02-16 トヨタ自動車株式会社 冷却システムおよびその制御方法並びに自動車
DE102007005391A1 (de) * 2007-02-03 2008-08-07 Behr Gmbh & Co. Kg Kühleranordnung für einen Antriebsstrang eines Kraftfahrzeugs
RU2430840C1 (ru) 2007-08-24 2011-10-10 Тойота Дзидося Кабусики Кайся Транспортное средство
JP5229101B2 (ja) * 2009-05-14 2013-07-03 トヨタ自動車株式会社 冷却装置
FR2954405B1 (fr) * 2009-12-22 2012-01-13 Renault Sa Dispositif de refroidissement pour vehicule automobile
JP5338787B2 (ja) * 2010-11-05 2013-11-13 三菱自動車工業株式会社 冷却装置
CN102029887B (zh) * 2010-11-24 2014-04-02 奇瑞汽车股份有限公司 混合动力车动力系统、混合动力车及其冷却方法
JP5978954B2 (ja) * 2012-11-26 2016-08-24 三菱自動車工業株式会社 回転電機装置
CN104859427A (zh) * 2014-02-20 2015-08-26 光阳工业股份有限公司 车辆的双动力冷却系统
JP6662031B2 (ja) * 2015-12-24 2020-03-11 三菱自動車工業株式会社 冷却システム
JP6640035B2 (ja) * 2016-06-21 2020-02-05 株式会社クボタ 作業機
JP6483654B2 (ja) * 2016-12-14 2019-03-13 本田技研工業株式会社 車両の冷却装置
JP2020011676A (ja) * 2018-07-20 2020-01-23 トヨタ自動車株式会社 車両駆動システムの冷却装置
CN109578126B (zh) * 2018-10-30 2021-05-28 中国北方发动机研究所(天津) 用于混合动力车辆的高低温双循环冷却系统
CN109681310A (zh) * 2019-01-07 2019-04-26 南京协众汽车空调集团有限公司 一种混动汽车用高效散热器
CN217769775U (zh) * 2019-11-08 2022-11-08 米沃奇电动工具公司 用于电池供电的独立马达单元

Also Published As

Publication number Publication date
JP2004332744A (ja) 2004-11-25

Similar Documents

Publication Publication Date Title
JP3817842B2 (ja) ハイブリッド電気自動車の冷却システム
JP4384066B2 (ja) 車両冷却システム
JP3722145B2 (ja) ハイブリッド電気自動車の冷却システム
EP4015272A1 (en) Thermal management system for vehicle, and thermal management method based on thermal management system
US8677772B2 (en) Air conditioning system for a vehicle
JP5436673B2 (ja) 燃料電池システムを冷却するための少なくとも1つの冷却回路を備える車両
CN108054459B (zh) 一种车辆电池包的热管理系统及热管理方法
WO2011077782A1 (ja) 電動車両の冷却システム
CN109849616A (zh) 电动汽车热管理系统
PL209334B1 (pl) Klimatyzator
KR102474341B1 (ko) 차량용 히트 펌프 시스템
JP2010119282A (ja) 熱マネージメントシステム
JP2008308080A (ja) 自動車の吸放熱システムおよびその制御方法
JP2002352867A (ja) 電気自動車のバッテリ温度制御装置
JP2010284045A (ja) 熱供給装置
JP4285292B2 (ja) 車両用冷却システム
US11541725B2 (en) Thermal management system and integrated thermal management module for vehicle
US20120125593A1 (en) Cooling system for vehicle
KR101575254B1 (ko) 차량 엔진 냉각 시스템
JP2020100189A (ja) 電気自動車における温調制御システム
WO2014087645A1 (ja) 車両用ヒートポンプ装置および車両用空調装置
WO2011062551A1 (en) Cooling arrangement for at least one battery in a vehicle
US7000685B2 (en) Cooling system for vehicle
JP2006241991A (ja) 冷却装置
JPH11200858A (ja) ハイブリッド電気自動車の冷却装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees