JP3722050B2 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
JP3722050B2
JP3722050B2 JP2001357660A JP2001357660A JP3722050B2 JP 3722050 B2 JP3722050 B2 JP 3722050B2 JP 2001357660 A JP2001357660 A JP 2001357660A JP 2001357660 A JP2001357660 A JP 2001357660A JP 3722050 B2 JP3722050 B2 JP 3722050B2
Authority
JP
Japan
Prior art keywords
drive
drive signal
driving
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357660A
Other languages
Japanese (ja)
Other versions
JP2003164173A (en
Inventor
賢次 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2001357660A priority Critical patent/JP3722050B2/en
Publication of JP2003164173A publication Critical patent/JP2003164173A/en
Application granted granted Critical
Publication of JP3722050B2 publication Critical patent/JP3722050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、駆動装置に関し、特にはXY移動ステージ、カメラの撮影レンズ、オーバヘッドプロジェクタの投影レンズ、双眼鏡のレンズ等の駆動に適した駆動装置に関する。
【0002】
【従来の技術】
従来、撮影レンズ等が取り付けられた係合部材を棒状の駆動部材に所定の摩擦力を有するように結合させると共に、その駆動部材の一方端に圧電素子を固着して構成されたインパクト型圧電アクチュエータからなる駆動装置が知られている。例えば、図10は、カメラの撮影レンズ位置を調節するための駆動装置の概略構成を示す図である。
【0003】
この図10における駆動装置100は、電気機械変換素子である圧電素子101と、圧電素子101により駆動される棒状の駆動部材102と、駆動部材102に所定の摩擦力で結合された係合部材103と、圧電素子101に駆動電圧を印加する駆動回路104とを備えている。
【0004】
圧電素子101は、駆動回路104から印加される駆動電圧に応じて伸縮するものであり、その伸縮方向における一方端が支持部材105に固着されると共に、その他方端が駆動部材102の軸方向における一方端に固着されたものである。係合部材103は、所定箇所に駆動対象物である撮影レンズLが固着され、駆動部材102上を軸方向に沿って移動可能とされている。
【0005】
駆動回路104は、図11に示すように、波形発生器107とパワーアンプ108とで構成される。波形発生器107は、例えば0〜5Vの矩形波からなる駆動電圧を生成してパワーアンプ108に入力し、パワーアンプ108は、波形発生器107から供給される駆動電圧を例えば0〜10Vの矩形波からなる駆動電圧に増幅して圧電素子101に印加する。
【0006】
このように構成された駆動装置100では、駆動回路104から、例えばデューティ比D(D=B/A)が0.25である図12(a)に示すような矩形波形の駆動電圧が圧電素子101に印加される。この駆動電圧を用いた駆動方法は、インパクト型圧電アクチュエータを構成する圧電素子101に結合された駆動部材102の機械共振特性による振幅伝達特性と位相伝達特性とを利用している。
【0007】
図13(a)は振幅伝達特性を示す図であり、縦軸は駆動部材102の振幅を表し、横軸は駆動部材102の機械共振周波数frに対する駆動周波数fdの比(fd/fr)を表す。図13(b)は位相伝達特性を示す図であり、縦軸は位相を表し、横軸は駆動部材102の機械共振周波数frに対する駆動周波数fdの比(fd/fr)を表す。複数の共振のなかで最も低い機械共振周波数fr1の前後に駆動電圧に含まれる基本波信号の周波数fd1(図12(b)参照)と第2高調波の周波数fd2(図12(c)参照)とをfd1<fr1<fd2となるように設定することによって第3高調波の周波数fd3以上の高調波信号成分に対する駆動軸の機械応答を低下させる。そして、機械共振のただ一つのモードを有する分布を表す単峰特性を利用して基本波信号と第2高調波信号とに対する適当な機械変位の応答を得て、さらに基本波と第2高調波との位相関係を変化させることで最終的に駆動軸の機械変位が図12(d)に示すような鋸波形となるように駆動電圧の振幅、デューティ比D、駆動周波数fd、振幅伝達特性及び位相伝達特性を設定することによって所望のインパクト型圧電アクチュエータの機械負荷速度を得ている。
【0008】
また、駆動装置100の動作としては、駆動電圧が圧電素子101に繰り返し印加されると、圧電素子101の伸縮により係合部材103は繰出方向(圧電素子101から離反する方向)である矢印a方向に移動する(図10参照)。すなわち、図12(d)に示す機械変位の緩慢な立ち上がり部Cでは駆動部材102が緩やかに伸長することになるため、係合部材103と駆動部材102との摩擦係数が大きくなり、係合部材103は駆動部材102と共に繰出方向に移動する一方、急峻な立ち下がり部Dでは駆動部材102が急激に縮小することになるため、係合部材103と駆動部材102との摩擦係数が小さくなり、駆動部材102が戻り方向(矢印aとは逆方向)に移動しても係合部材103は駆動部材102上をスリップして略同位置に留まることになる。このため、図12(a)に示すような波形の駆動電圧が圧電素子101に繰り返し印加されると、係合部材103は矢印a方向に間欠的に移動する。
【0009】
また、係合部材103を戻り方向に移動させる場合は、駆動電圧のデューティ比Dを変化させることで図12(d)に示す立ち上がり部Cを急峻な立ち上がりとなるようにし、立ち下り部Dを緩慢な立ち下りとなるようにする。これにより、機械変位の急峻な立ち上がり部Cでは駆動部材102が繰出方向に急激に伸長することになるため、係合部材103と駆動部材102との摩擦係数が小さくなり、係合部材103は駆動部材102上をスリップして略同位置に留まる一方、緩慢な立ち下がり部Dでは駆動部材102が緩やかに縮小することになるため、係合部材103と駆動部材102との摩擦係数が大きくなり、係合部材103は駆動部材102と共に戻り方向(矢印aとは逆方向)に移動することになる。このため、係合部材103は矢印aの逆方向に間欠的に移動することになる。
【0010】
【発明が解決しようとする課題】
しかしながら,上記の従来の駆動装置において、振幅伝達特性や位相伝達特性はインパクト型圧電アクチュエータの機械設計によって達成される特性であるため、低コスト化及び小型化等の制約で自由に設計できるものではない。また、駆動信号としては、その振幅とデューティ比Dは操作可能であり、基本波と第2高調波との振幅の合成比は変えることができるが、デューティ比Dを変えても位相は同相のままで変わらないため位相関係を操作することは困難である。そのため、インパクト型圧電アクチュエータの機械設計で位相関係を設定する必要があるが、この場合も低コスト化及び小型化等の制約で自由に設計できるものではない。
【0011】
本発明は、上記の問題を解決するためになされたもので、振幅や合成比の他に位相関係も操作可能である駆動信号の印加方法によって、機械共振特性の有する位相伝達特性に頼ることなく、最適な機械変位の応答が得られる駆動装置を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
請求項1に記載の発明は、駆動信号が印加されることにより伸縮する電気機械変換素子と、前記電気機械変換素子の伸縮方向における一方端に固着された支持部材と、前記電気機械変換素子の伸縮方向における他方端に固着された駆動部材と、前記駆動部材に所定の摩擦力で係合された係合部材と、前記電気機械変換素子を駆動する駆動回路とから構成され、前記電気機械変換素子を異なる速度で伸縮させることで前記支持部材と前記係合部材とを相対移動させる駆動装置において、前記駆動回路は、所定の周波数の第1の駆動信号を生成する第1の駆動手段と、前記第1の駆動信号とは異なる所定の周波数の第2の駆動信号を生成する第2の駆動手段とを備え、前記第1の駆動信号と前記第2の駆動信号とを加算して前記電気機械変換素子に印加することで当該電気機械変換素子を駆動させ、前記第1の駆動信号の周波数と前記第2の駆動信号の周波数との比が整数比であることを特徴とする。
【0013】
この構成によれば、第1の駆動手段によって生成された所定の周波数の第1の駆動信号と、第2の駆動手段によって生成された第1の駆動信号とは異なる所定の周波数の第2の駆動信号とを加算して電気機械変換素子に印加することで当該電気機械変換素子が駆動される。このため、第1の駆動信号と第2の駆動信号の位相関係を操作することによって電気機械変換素子の機械共振特性の有する位相伝達特性に頼ることなく、最適な機械変位の応答が得られる駆動装置が実現される。
【0015】
また、第1の駆動信号の周波数と第2の駆動信号の周波数との比が整数比であるため、第1の駆動信号の周波数と第2の駆動信号の周波数との比が整数比である駆動装置に適用することができる。
【0016】
請求項に記載の発明は、前記整数比は1:2であることを特徴とする。この構成によれば、第1の駆動信号の周波数と第2の駆動信号の周波数との比が1:2である駆動装置に適用することができる。
【0017】
請求項に記載の発明は、第1の駆動信号と第2の駆動信号との位相関係を変化させて前記電気機械変換素子の伸縮方向における駆動速度を変化させることを特徴とする。この構成によれば、第1の駆動信号と第2の駆動信号との位相関係を変化させることで電気機械変換素子の伸縮方向における駆動速度を変化させるため、例えば、鋸波形の最適状態の機械変位を得ている状態から第1の駆動信号と第2の駆動信号との位相関係を変化させることで当該変化量に応じた滑らかな速度変化を得ることができる。
【0018】
請求項に記載の発明は、前記電気機械変換素子の最も低い機械共振周波数frに基づいて第1の駆動信号及び第2の駆動信号の周波数を設定することを特徴とする。この構成によれば、第1の駆動信号及び第2の駆動信号の周波数が電気機械変換素子の最も低い機械共振周波数frに基づいて設定されるため、例えば、第1の駆動信号の駆動周波数fd1と第2の駆動信号の駆動周波数fd2とをfd1<fr<fd2となるように設定することや、fr<fd1<fd2となるように設定することや、fd1<fd2<frとなるように設定することができ、設定の自由度が増すこととなる。
【0019】
請求項に記載の発明は、第1の駆動信号と第2の駆動信号とは互いに周波数が同じであり、第1の駆動信号のデューティ比D1と第2の駆動信号のデューティ比D2とは、D1+D2=1の関係にないことを特徴とする。この構成によれば、第1の駆動信号と第2の駆動信号とが互いに周波数が同じであり、第1の駆動信号のデューティ比D1と第2の駆動信号のデューティ比D2とが、D1+D2=1の関係にない場合にも適用することができ、設定の自由度が増すこととなる。
【0020】
【発明の実施の形態】
図1は、本発明の一実施形態に係るインパクト型圧電アクチュエータからなる駆動装置の基本構成を概略的に示すブロック図である。この図において、駆動装置10は、駆動部12と、駆動部12を駆動する駆動回路14と、駆動部12に取り付けられている係合部材30の位置を検出する部材センサ16と、駆動部12の基端に配設された基端センサ18と、駆動部12の先端に配設された先端センサ20と、全体の動作を制御する制御部22とを備えている。
【0021】
図2は、駆動部12の構成例を示す斜視図である。この図において、駆動部12は、素子固定式構造のものであり、支持部材24、電気機械変換素子である圧電素子26、駆動部材28及び係合部材30から構成されている。
【0022】
支持部材24は、圧電素子26及び駆動部材28を保持するものであり、円柱体の軸方向両端部241,242と略中央に位置する仕切壁243とを残して内部を刳り貫くことにより形成された第1の収容空間244及び第2の収容空間245を有している。この第1の収容空間244には、圧電素子26がその分極方向である伸縮方向を支持部材24の軸方向と一致させた状態で収容されている。また、第2の収容空間245には、駆動部材28と係合部材30の一部とが収容されている。
【0023】
圧電素子26は、例えば、所定の厚みを有する複数枚の圧電基板を各圧電基板間に電極を介して積層することにより構成したものであって、その伸縮方向(積層方向)である長手方向の一方端面が第1の収容空間244の一方端部241側端面に固着されている。支持部材24の他方端部242及び仕切壁243には中心位置に丸孔が穿設されると共に、この両丸孔を貫通して断面円形状の棒状の駆動部材28が第2収容空間245に軸方向に沿って移動可能に収容されている。
【0024】
駆動部材28の第1の収容空間244内に突出した端部は圧電素子26の他方端面に固着され、駆動部材28の第2の収容空間245の外部に突出した端部は板ばね32により所定のばね圧で圧電素子26側に付勢されている。この板ばね32による駆動部材28への付勢は、圧電素子26の伸縮動作に基づく駆動部材28の軸方向変位を安定化させるためである。
【0025】
係合部材30は、駆動部材28の軸方向の両側に取付部301を有する基部302と、両取付部301の間に装着される挟込み部材303とを備えており、基部302が駆動部材28に遊嵌されると共に、挟込み部材303が両取付部301に取り付けられた板ばね304により下方に押圧されて駆動部材28に接触することで係合部材30が所定の摩擦力で駆動部材28に結合され、係合部材30に対してその摩擦力よりも大きな駆動力が作用したときに駆動部材28の軸方向に沿って移動可能とされている。なお、係合部材30には駆動対象物である撮影レンズL(図1)が取り付けられる。
【0026】
図3は、駆動回路14の構成例を示す図である。図3に示す駆動回路14は、ブリッジ回路で構成され、第1の駆動手段である第1の駆動回路151と第2の駆動手段である第2の駆動回路152とから構成される。第1の駆動回路151は、エンハンスメント型のMOS(Metal Oxide Semiconductor)型FET(Field Effect Transistor)であるスイッチ素子Tr1からなる第1スイッチ回路141、同じくエンハンスメント型のMOS型FETであるスイッチ素子Tr2からなる第2スイッチ回路142、図略の駆動電源からの直流電源電圧V1及び波形発生器145で構成される。第2の駆動回路152は、エンハンスメント型のMOS型FETであるスイッチ素子Tr3からなる第3スイッチ回路143、同じくエンハンスメント型のMOS型FETであるスイッチ素子Tr4からなる第4スイッチ回路144、図略の駆動電源からの直流電源電圧V2及び波形発生器146で構成される。
【0027】
第1の駆動回路151は、図略の駆動電源からの直流電源電圧V1がスイッチ素子Tr1のソート電極に供給され、接地される接続点aとの間に第1スイッチ回路141及び第2スイッチ回路142の直列回路が接続される。第2の駆動回路152は、図略の駆動電源からの直流電源電圧V2がスイッチ素子Tr3のソート電極に供給され、接地される接続点aとの間に第3スイッチ回路143及び第4スイッチ回路144の直列回路が接続される。
【0028】
第1スイッチ回路141を構成するスイッチ素子Tr1及び第3スイッチ回路143を構成するスイッチ素子Tr3はPチャンネルFETであり、第2スイッチ回路142を構成するスイッチ素子Tr2及び第4スイッチ回路144を構成するスイッチ素子Tr4はNチャンネルFETである。PチャンネルFETであるスイッチ素子Tr1,Tr3は駆動制御信号がローレベルのときにオンになり、NチャンネルFETであるスイッチ素子Tr2,Tr4は駆動制御信号がハイレベルのときにオンになる。なお、第1スイッチ回路141及び第2スイッチ回路142の接続点cと、第3スイッチ回路143及び第4スイッチ回路144の接続点dとの間に圧電素子26が接続されてブリッジ回路が構成される。
【0029】
波形発生器145からの第1の駆動信号Sd1はスイッチ素子Tr1及びスイッチ素子Tr2のゲート電極に印加され、波形発生器146からの第2の駆動信号Sd2はスイッチ素子Tr3及びスイッチ素子Tr4のゲート電極に印加される。第1の駆動信号Sd1及び第2の駆動信号Sd2は周波数比が整数比の駆動信号であり、本実施の形態においてこの整数比は1:2である。第1の駆動信号Sd1は振幅がV3でデューティ比D1(D1=B1/A1)が0.5の矩形波形であり、第2の駆動信号Sd2は振幅がV4でデューティ比D2(D2=B2/A2)が0.5の矩形波形である。なお、第1の駆動信号Sd1のデューティ比D1と第2の駆動信号Sd2のデューティ比D2とは、D1+D2=1の関係にある。
【0030】
直流電源電圧V1及びV2は、圧電素子26に印加される矩形波駆動電圧の大きさを決める値であり、直流電源電圧V1は第1の駆動信号Sd1に対応する第1の駆動電圧Vd1、直流電源電圧V2は第2の駆動信号Sd2に対応する第2の駆動電圧Vd2となる。第1の駆動電圧Vd1及び第2の駆動電圧Vd2は第1の駆動信号Sd1及び第2の駆動信号Sd2とは逆位相の電圧で、それぞれ圧電素子26に印加される。
【0031】
なお、直流電源電圧V1及びV2をV1=V2として電源系統を統一してもよい。この場合、回路構成が簡素化されることとなり、駆動回路の低コスト化及び小型化をさらに実現することができる。
【0032】
図1に戻り、部材センサ16は、係合部材30の移動可能範囲内に配設されたものであり、MRE(Magneto Resistive Effect)素子やPSD(Position Sensitive Device)素子等の適宜のセンサにより構成されている。また、基端センサ18及び先端センサ20は、フォトインタラプタ等の適宜のセンサにより構成されている。これにより、係合部材30の位置が部材センサ16により検出されることで係合部材30の所定位置への移動制御が可能となる一方、係合部材30の位置が基端センサ18及び先端センサ20により検出されることで係合部材30のそれ以上の移動が禁止される。
【0033】
また、制御部22は、演算処理を行うCPU(Central Processing Unit)、処理プログラム及びデータが記憶されたROM(Read Only Memory)及びデータを一時的に記憶するRAM(Random Access Memory)等から構成されており、部材センサ16、基端センサ18及び先端センサ20から入力される信号に基づいて駆動回路14を駆動制御する。すなわち、制御部22は、第1の駆動回路151において生成される第1の駆動信号Sd1及び駆動電源からの直流電源電圧V1と、第2の駆動回路152において生成される第2の駆動信号Sd2及び駆動電源からの直流電源電圧V2とを制御する。
【0034】
次に、図4及び図5を参照して駆動回路14の原理的な動作説明を行う。図4は、駆動回路14の原理的な動作を説明するための駆動電圧のパルス波形等を示す図である。図4(a)は、波形発生器145から出力される第1の駆動信号Sd1を表す矩形波であり、矩形波の振幅はV3であり、デューティ比D1は0.5である。図4(d)は、波形発生器146から出力される第2の駆動信号Sd2を表す矩形波であり、矩形波の振幅はV4であり、デューティ比D2は0.5である。また、第1の駆動信号Sd1と第2の駆動信号Sd2との周波数の比は1:2であり、デューティ比D1とデューティ比D2との関係はD1+D2=1である。
【0035】
図4(b)は、圧電素子26に印加される第1の駆動電圧Vd1を表す矩形波であり、図4(e)は、圧電素子26に印加される第2の駆動電圧Vd2を表す矩形波である。図4(c)は圧電素子26に印加される第1の駆動周波数fd1の正弦波電圧Vd1cを表す波形であり、図4(f)は圧電素子26に印加される第2の駆動周波数fd2の正弦波電圧Vd2cを表す波形である。図4(g)は第1の駆動電圧Vd1と第2の駆動電圧Vd2との差に相当する駆動電圧Vdを表す図である。この駆動電圧Vdが圧電素子26の一方側の電極である電極Aと他方側の電極である電極Bとから印加される(図3参照)。
【0036】
図5は、駆動装置10を構成する支持部材24及び駆動部材28が固着された状態での圧電素子26の機械共振特性を示す特性図である。図5(a)は振幅伝達特性を示す図であり、縦軸は駆動部材28の振幅を表し、横軸は駆動部材28の機械共振周波数frに対する駆動周波数fdの比(fd/fr)を表す。図5(b)は位相伝達特性を示す図であり、縦軸は位相を表し、横軸は駆動部材28の機械共振周波数frに対する駆動周波数fdの比(fd/fr)を表す。なお、共振特性の鋭さを表す量であるQの値は、駆動部材に機械負荷が実装されている状態での実効Q値で10としている。
【0037】
支持部材24及び駆動部材28が固着された状態での圧電素子26の機械共振周波数frの最も低い機械共振周波数fr1付近に、駆動周波数fd1及び駆動周波数fd2を各々設定することによって共振特性の有する振幅伝達特性を利用し、第1の駆動電圧Vd1及び第2の駆動電圧Vd2の高調波成分(デューティ比D1及びD2が0.5なので奇数次の高調波を各々有する)に対する機械変位応答をなくし、基本波成分に相当する応答が得られる。すなわち、駆動周波数fd1の正弦波電圧Vd1cと駆動周波数fd2の正弦波電圧Vd2cとが圧電素子26に印加される。そのため、駆動周波数fd1,fd2の設定はfr1を基準にして以下の3種類がある。
【0038】
fd1<fd2<fr1・・・・▲1▼
fd1<fr1<fd2・・・・▲2▼
fr1<fd1<fd2・・・・▲3▼
【0039】
これらの設定は、従来のデューティ矩形波駆動では圧電素子26の振幅伝達特性と位相伝達特性との両立のため、fd1<fr1<fd2(▲2▼)の設定しかできなかった。しかしながら、第1の駆動信号Sd1及び第2の駆動信号Sd2の周波数が電気機械変換素子である圧電素子26の最も低い機械共振周波数fr1に基づいて設定されるため、例えば、第1の駆動信号Sd1の駆動周波数fd1と第2の駆動信号Sd2の駆動周波数fd2とをfd1<fr1<fd2(▲2▼)となるように設定することや、fr1<fd1<fd2(▲3▼)となるように設定することや、fd1<fd2<fr1(▲1▼)となるように設定することができ、設定の自由度が増すこととなる。
【0040】
なお、支持部材24及び駆動部材28が固着された状態での圧電素子26の機械共振周波数frは、次の数式により求めたものである。
【0041】
【数1】

Figure 0003722050
【0042】
この数1におけるfroは圧電素子26の両電極間におけるフリー共振周波数(圧電素子26自体の電極間方向における機械共振周波数)、mpは圧電素子26の質量、mfは駆動部材28の質量をそれぞれ表わしている。なお、支持部材24の質量は、共振系における圧電素子26の機械共振周波数frに関係するが、支持部材24の質量は圧電素子26及び駆動部材28の各質量mp,mfを加算したものに比べて十分大きな値を有しており、機械共振周波数frに与える影響は小さいので演算パラメータとして考慮する必要はない。また、係合部材30は、圧電素子26の共振時には駆動部材28に対して滑りを生じて実質的に共振系の要素として考慮する必要はないので、上記数1の演算パラメータとしては含まれていない。
【0043】
図6(a)は、図5(a),(b)のfd1<fr1<fd2(▲2▼)の場合における振幅伝達特性を示す特性図であり、縦軸は駆動部材28の振幅を表し、横軸は駆動部材28の機械共振周波数frに対する駆動周波数fdの比(fd/fr)を表す。図6(b)は、図5(a),(b)のfd1<fr1<fd2(▲2▼)の場合における位相伝達特性を示す特性図であり、縦軸は位相を表し、横軸は駆動部材28の機械共振周波数frに対する駆動周波数fdの比(fd/fr)を表す。また、図7は、本発明に係る駆動装置10に適用される駆動回路14の具体的な動作を説明するための図である。
【0044】
例えば、駆動周波数fd1が支持部材24及び駆動部材28が固着された状態での圧電素子26の共振周波数frの最も低い機械共振周波数fr1の0.75倍(fd1=0.75×fr1)となるように設定する。なお、説明の便宜上、直流電源電圧V1,V2をV1=V2とする。すなわち、第1の駆動電圧Vd1及び第2の駆動電圧Vd2はVd1=Vd2となる。この場合、第1の駆動電圧Vd1は図7(a)に示すような矩形波となり、第2の駆動電圧Vd2は図7(b)に示すような矩形波となる。圧電素子26の両電極A,Bには、第1の駆動電圧Vd1と第2の駆動電圧Vd2との差に相当する駆動電圧Vd(Vd=Vd1−Vd2)が印加される。振幅伝達特性によって、第1の駆動電圧Vd1及び第2の駆動電圧Vd2に対する変位の高調波成分は各々除去され、残った変位の基本波成分は各々振幅と位相の変化を受ける。振幅伝達特性による振幅変化は、図6(a)に示すようにr1:r2=2.25:0.794となる。また、位相伝達特性による位相の変化は、図6(b)に示すようにθ1:θ2=−9.7°:−173.2°となる。支持部材24及び駆動部材28が固着された状態での圧電素子26の機械変位xは、第1の正弦波電圧Vd1cによる機械変位x1と第2の正弦波電圧Vd2cによる機械変位x2との合成変位(x=x1+x2)となる(図7(d))。また、支持部材24及び駆動部材28が固着された状態での圧電素子26の速度vは、上記機械変位x1を微分した速度v1と機械変位x2を微分した速度v2との合成速度(v=v1+v2)となる(図7(e))。
【0045】
ここで、図7(d)に示す合成変位xの波形を見てみると、立ち上がり部Eで大きなふくらみが発生しており、鋸波形とはなっておらず、支持部材24及び駆動部材28が固着された状態での圧電素子26の所望する機械変位xを得ることができない。また、支持部材24及び駆動部材28が固着された状態での圧電素子26の速度v1,v2が略同相の場合に、合成速度vの波形は略台形形状になるが、図7(e)に示す合成速度vの波形は略台形形状になっておらず、支持部材24及び駆動部材28が固着された状態での圧電素子26の所望する速度を得ることはできない。そのため、支持部材24及び駆動部材28が固着された状態での圧電素子26の所望する鋸波形の機械変位を得るためには第1の正弦波電圧Vd1c、第2の正弦波電圧Vd2cの振幅と位相関係を操作する必要がある。この操作は機械共振周波数fr1の特性の変更は困難であるため、振幅の操作に関しては直流電源電圧V1又はV2の可変によって行い、位相の操作に関しては第1の駆動信号Sd1、第2の駆動信号Sd2の位相関係の可変によって行う。
【0046】
そこで、直流電源電圧V1,V2を例えばV1:V2=1:0.7に設定し、第2の駆動信号Sd2の位相を第1の駆動信号Sd1の位相に対して例えば65°進ませる。これによって図7(f)に示すような第2の駆動電圧Vd2''が得られる。このときの第2の正弦波電圧Vd2''による機械変位x2''は図7(g)に示す波形となる。機械変位x1と機械変位x2''との合成変位x''は図7(g)に示すような鋸波形となり、所望の機械変位を得ることができるようになる。また、このときの機械速度v2''は図7(g)に示す波形となる。機械速度v1と機械速度v2''との合成速度v''は図7(g)に示すような略台形波形となり、所望の機械速度を得ることができるようになる。
【0047】
このように、第1の駆動回路151によって生成された所定の周波数の第1の駆動信号Sd1と、第2の駆動回路152によって生成された第1の駆動信号Sd1とは異なる所定の周波数の第2の駆動信号Sd2とを加算して電気機械変換素子である圧電素子26に印加することで当該圧電素子26が駆動される。このため、第1の駆動信号Sd1と第2の駆動信号Sd2の位相関係を操作することによって圧電素子26の機械共振特性の有する位相伝達特性に頼ることなく、最適な機械変位の応答が得られる駆動装置が実現される。
【0048】
また、第1の駆動信号Sd1と第2の駆動信号Sd2との位相関係を変化させることで電気機械変換素子である圧電素子26の伸縮方向における駆動速度を変化させるため、例えば、鋸波形の最適状態の機械変位を得ている状態から第1の駆動信号Sd1と第2の駆動信号Sd2との位相関係を変化させることで当該変化量に応じた滑らかな速度変化を得ることができる。
【0049】
図8は、駆動回路14の別の構成例を示す図である。この図において、駆動回路14'はブリッジ回路で構成され、第1の駆動回路151'と第2の駆動回路152'とから構成される。第1の駆動回路151'は、エンハンスメント型のMOS(Metal Oxide Semiconductor)型FET(Field Effect Transistor)であるスイッチ素子Tr1からなる第1スイッチ回路141、同じくエンハンスメント型のMOS型FETであるスイッチ素子Tr2からなる第2スイッチ回路142、図略の駆動電源からの直流電源電圧V1、波形発生器145'、コンデンサC1、入力抵抗R1及び帰還抵抗R2で構成される。第2の駆動回路152'は、エンハンスメント型のMOS型FETであるスイッチ素子Tr3からなる第3スイッチ回路143、同じくエンハンスメント型のMOS型FETであるスイッチ素子Tr4からなる第4スイッチ回路144、図略の駆動電源からの直流電源電圧V2、波形発生器146'、コンデンサC2、入力抵抗R3及び帰還抵抗R4で構成される。このように、第1の駆動回路151'に入力抵抗R1及び帰還抵抗R2を配置することによって、ゲインG1がG1=R2/R1である増幅回路となり、同様に、第2の駆動回路152'に入力抵抗R3及び帰還抵抗R4を配置することによって、ゲインG2がG2=R4/R3である増幅回路となる。ただし、ゲインG1,G2は充分大きいとする。
【0050】
第1の駆動回路151'は、図略の駆動電源からの直流電源電圧V1がスイッチ素子Tr1のソート電極に供給され、接地される接続点aとの間に第1スイッチ回路141及び第2スイッチ回路142の直列回路が接続される。第2の駆動回路152'は、図略の駆動電源からの直流電源電圧V2がスイッチ素子Tr3のソート電極に供給され、接地される接続点aとの間に第3スイッチ回路143及び第4スイッチ回路144の直列回路が接続される。
【0051】
第1スイッチ回路141を構成するスイッチ素子Tr1及び第3スイッチ回路143を構成するスイッチ素子Tr3はPチャンネルFETであり、第2スイッチ回路142を構成するスイッチ素子Tr2及び第4スイッチ回路144を構成するスイッチ素子Tr4はNチャンネルFETである。PチャンネルFETであるスイッチ素子Tr1,Tr3は駆動制御信号がローレベルのときにオンになり、NチャンネルFETであるスイッチ素子Tr2,Tr4は駆動制御信号がハイレベルのときにオンになる。なお、第1スイッチ回路141及び第2スイッチ回路142の接続点cと、第3スイッチ回路143及び第4スイッチ回路144の接続点dとの間に圧電素子26が接続されてブリッジ回路が構成される。
【0052】
第1の駆動信号Sd1'は直流阻止用のコンデンサC1を通じて入力抵抗R1に印加され、第1の駆動電圧Vd1'は第1の駆動信号Sd1'をゲインG1倍した電圧となる。同様に、第2の駆動信号Sd2'は直流阻止用のコンデンサC2を通じて入力抵抗R3に印加され、第2の駆動電圧Vd2'は第2の駆動信号Sd2'をゲインG2倍した電圧となる。
【0053】
図9は、駆動回路14'の原理的な動作を説明するための駆動電圧のパルス波形等を示す図である。図9(a)は、波形発生器145'から出力される第1の駆動信号Sd1'を表す正弦波であり、正弦波の振幅はV3である。図9(d)は、波形発生器146'から出力される第2の駆動信号Sd2'を表す正弦波であり、正弦波の振幅はV4である。また、第1の駆動信号Sd1'と第2の駆動信号Sd2'との周波数の比は整数比であり、本実施の形態においてこの整数比は1:2である。
【0054】
図9(b)は、圧電素子26に印加される第1の駆動電圧Vd1'を表す正弦波であり、図9(e)は、圧電素子26に印加される第2の駆動電圧Vd2'を表す正弦波である。図9(c)は圧電素子26に印加される駆動周波数fd1'の正弦波電圧Vd1c'を表す波形であり、図9(f)は圧電素子26に印加される駆動周波数fd2'の正弦波電圧Vd2c'を表す波形である。図9(g)は第1の駆動電圧Vd1'と第2の駆動電圧Vd2'との差に相当する駆動電圧Vd'を表す図である。この駆動電圧Vd'が圧電素子26の一方側の電極である電極Aと他方側の電極である電極Bとから印加される。
【0055】
このように、第1の駆動信号Sd1'及び第2の駆動信号Sd2'を正弦波とすることで、振幅伝達特性による高調波除去に留意しなくてもよくなるという利点がある。
【0056】
また、第1の駆動回路151'によって生成された所定の周波数の正弦波である第1の駆動信号Sd1'と、第2の駆動回路152'によって生成された第1の駆動信号Sd1'とは異なる所定の周波数の正弦波である第2の駆動信号Sd2'とを加算して電気機械変換素子である圧電素子26に印加することで当該圧電素子26が駆動される。このため、第1の駆動信号Sd1'と第2の駆動信号Sd2'の位相関係を操作することによって圧電素子26の機械共振特性の有する位相伝達特性に頼ることなく、最適な機械変位の応答が得られる駆動装置が実現される。
【0057】
なお、本実施の形態では、第1の駆動信号及び第2の駆動信号としていずれも矩形波または正弦波を用いたが、本発明は特にこれに限定されず、いずれか一方が矩形波で他方が正弦波でもよい。この場合、駆動回路14は、矩形波を発生させる第1の駆動回路151と正弦波を発生させる第2の駆動回路152'とで構成されるか、正弦波を発生させる第1の駆動回路151'と矩形波を発生させる第2の駆動回路152とで構成される。このように、第1の駆動信号及び第2の駆動信号として生成される波形は、いずれも矩形波またはいずれも正弦波またはいずれか一方が矩形波で他方が正弦波であるため、第1の駆動信号及び第2の駆動信号の波形に応じた駆動信号を得ることができる。
【0058】
また、本実施の形態では、第1の駆動電圧Vd1のデューティ比D1あるいは第2の駆動電圧Vd2のデューティ比D2のうちの一方、または第1の駆動電圧Vd1のデューティ比D1及び第2の駆動電圧Vd2のデューティ比D2の両方が0.5であり、D1+D2=1の関係にある矩形波を用いたが、本発明は特にこれに限定されず、デューティ比D1,D2が0.5以外で、D1+D2=1の関係でない矩形波を用いてもよい。この場合、例えば図5(a)に示すfd1<fd2<fr1(▲1▼)の関係にある駆動周波数の設定方法を選択したとすると第1の駆動電圧Vd1の第3高調波が機械共振周波数fr1の近傍に存在する可能性が高くなる。そのため、共振特性によって支持部材24及び駆動部材28が固着された状態での圧電素子26の駆動周波数の第3高調波に対する機械変位の応答に悪影響を及ぼす(鋸波形とならない)可能性がある。そこで、第2の駆動電圧Vd2のデューティ比D2は0.5のままで、第1の駆動電圧Vd1にデューティ比D1が0.33または0.67の矩形波電圧を用いることで第1の駆動電圧Vd1には第3高調波成分が含まれなくなり、上記問題は解決される。このように、第1の駆動信号Sd1と第2の駆動信号Sd2とが互いに周波数が同じであり、第1の駆動信号Sd1のデューティ比D1と第2の駆動信号Sd2のデューティ比D2とが、D1+D2=1の関係にない場合にも適用することができ、設定の自由度が増すこととなる。
【0059】
また、本発明に係る駆動装置の圧電素子の機械負荷の速度を変化させる場合や反転させる場合は、図7(g)に示す鋸波形の機械変位を得ている状態から、第1の駆動信号Sd1と第2の駆動信号Sd2との位相関係を変化させることで、当該変化量に応じて鋸波形の機械変位は最適状態から外れていくため速度は徐々に低下する。そして、変化量をさらに増加させることで停止に至り、ついには反転した鋸波形が得られるため、変化量に応じた滑らかな速度変化を得ることができる。つまり、駆動装置の機械負荷の速度制御を第1の駆動信号Sd1と第2の駆動信号Sd2との位相差で行うことが可能となる。
【0060】
また、圧電素子26には、図4(g)に示す駆動電圧Vdによると1周期について3回の充放電が存在している。この放電時には、原理的に一旦0ボルトになる期間が存在する(図4(g)のE1,E2,E3)。これは、駆動回路14のトランジスタ(スイッチ素子Td1,Tr2,Tr3,Tr4)による圧電素子26の短絡放電動作である。従来のデューティ矩形波駆動は、駆動電圧の1周期について1回の充放電が存在し、放電時は短絡放電動作ではなく直流電源を通じての放電動作となるので、放電電流が駆動電源に流れて当該駆動電源での消費電力が加算され、その結果駆動時の消費電力が大きくなっている。従来のデューティ矩形波駆動での消費電力P1は下記の(1)式で表される。
【0061】
P1=C×(2V)2×fd=4×C×V2×fd・・・・(1)
ただし、従来のデューティ矩形波駆動での消費電力をP1とし、圧電素子の静電容量をCとし、直流電源電圧をVとし、駆動周波数をfdとする。
【0062】
しかしながら、本発明に係る駆動回路では、消費電力P2は下記の(2)式で表される。
P2=3×C×V2×fd・・・・(2)
【0063】
このように、本発明に係る駆動回路の消費電力P2は従来の駆動回路の消費電力P1の0.75倍となり、消費電力が向上されることとなる。
【0064】
なお、本実施の形態ではカメラの撮影レンズに関する駆動装置で説明したが、本発明は特にこれに限定されず、XY移動ステージ、オーバーヘッドプロジェクタの投影レンズ及び双眼鏡のレンズ等の駆動に適した駆動装置にも適用可能である。
【0065】
【発明の効果】
請求項1に記載の発明によれば、第1の駆動手段によって生成された所定の周波数の第1の駆動信号と、第2の駆動手段によって生成された第1の駆動信号とは異なる所定の周波数の第2の駆動信号とを加算して電気機械変換素子に印加することで当該電気機械変換素子が駆動される。このため、第1の駆動信号と第2の駆動信号の位相関係を操作することによって電気機械変換素子の機械共振特性の有する位相伝達特性に頼ることなく、最適な機械変位の応答を得ることができる。
【0067】
また、第1の駆動信号の周波数と第2の駆動信号の周波数との比が整数比である駆動装置に適用することができる。
【0068】
請求項に記載の発明によれば、第1の駆動信号の周波数と第2の駆動信号の周波数との比が1:2である駆動装置に適用することができる。
【0069】
請求項に記載の発明によれば、第1の駆動信号と第2の駆動信号との位相関係を変化させることで電気機械変換素子の伸縮方向における駆動速度を変化させるため、例えば、鋸波形の最適状態の機械変位を得ている状態から第1の駆動信号と第2の駆動信号との位相関係を変化させることで当該変化量に応じた滑らかな速度変化を得ることができる。
【0070】
請求項に記載の発明によれば、第1の駆動信号及び第2の駆動信号の周波数が電気機械変換素子の最も低い機械共振周波数frに基づいて設定されるため、例えば、第1の駆動信号の駆動周波数fd1と第2の駆動信号の駆動周波数fd2とをfd1<fr<fd2となるように設定することや、fr<fd1<fd2となるように設定することや、fd1<fd2<frとなるように設定することができ、設定の自由度が増すこととなる。
【0071】
請求項に記載の発明によれば、第1の駆動信号と第2の駆動信号とが互いに周波数が同じであり、第1の駆動信号のデューティ比D1と第2の駆動信号のデューティ比D2とが、D1+D2=1の関係にない場合にも適用することができ、設定の自由度が増すこととなる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係るインパクト型圧電アクチュエータからなる駆動装置の基本構成を概略的に示すブロック図である。
【図2】 駆動部の構成例を示す斜視図である。
【図3】 駆動回路の構成例を示す図である。
【図4】 駆動回路の原理的な動作を説明するための駆動電圧のパルス波形等を示す図である。
【図5】 駆動装置を構成する支持部材及び駆動部材が固着された状態での圧電素子の機械共振特性を示す特性図である。
【図6】 本発明に係る駆動装置の振幅伝達特性及び位相伝達特性を示す特性図である。
【図7】 本発明に係る駆動装置に適用される駆動回路の具体的な動作を説明するための図である。
【図8】 駆動回路の別の構成例を示す図である。
【図9】 別の構成例である駆動回路の原理的な動作を説明するための駆動電圧のパルス波形等を示す図である。
【図10】 従来例の駆動装置の概略構成を示す図である。
【図11】 図10に示す駆動装置の駆動回路の構成例を示すブロック図である。
【図12】 図11に示す駆動回路の出力波形を示す図である。
【図13】 従来例の駆動装置の振幅伝達特性及び位相伝達特性を示す特性図である。
【符号の説明】
14,14' 駆動回路
26 圧電素子(電気機械変換素子)
141 第1のスイッチング回路
142 第2のスイッチング回路
143 第3のスイッチング回路
144 第4のスイッチング回路
145,145' 第1の波形発振器
146,146' 第2の波形発振器
151,151' 第1の駆動回路(第1の駆動手段)
152,152' 第2の駆動回路(第2の駆動手段)
Tr1 第1のスイッチ素子
Tr2 第2のスイッチ素子
Tr3 第3のスイッチ素子
Tr4 第4のスイッチ素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a driving device, and more particularly to a driving device suitable for driving an XY moving stage, a camera photographing lens, a projection lens of an overhead projector, a binocular lens, and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an impact-type piezoelectric actuator constructed by coupling an engagement member to which a photographic lens or the like is attached to a rod-like drive member so as to have a predetermined frictional force and fixing a piezoelectric element to one end of the drive member A driving device is known. For example, FIG. 10 is a diagram illustrating a schematic configuration of a driving device for adjusting the position of the photographing lens of the camera.
[0003]
10 includes a piezoelectric element 101 that is an electromechanical conversion element, a rod-like driving member 102 that is driven by the piezoelectric element 101, and an engagement member 103 that is coupled to the driving member 102 with a predetermined frictional force. And a drive circuit 104 that applies a drive voltage to the piezoelectric element 101.
[0004]
The piezoelectric element 101 expands and contracts according to the drive voltage applied from the drive circuit 104, and one end in the expansion / contraction direction is fixed to the support member 105, and the other end is in the axial direction of the drive member 102. One is fixed to one end. The engaging member 103 has a photographing lens L, which is a driving object, fixed to a predetermined location, and is movable along the axial direction on the driving member 102.
[0005]
As shown in FIG. 11, the drive circuit 104 includes a waveform generator 107 and a power amplifier 108. The waveform generator 107 generates a drive voltage composed of, for example, a rectangular wave of 0 to 5V and inputs it to the power amplifier 108. The power amplifier 108 converts the drive voltage supplied from the waveform generator 107 into a rectangle of 0 to 10V, for example. Amplified to a drive voltage consisting of waves and applied to the piezoelectric element 101.
[0006]
In the drive device 100 configured as described above, a drive voltage having a rectangular waveform as shown in FIG. 12A in which the duty ratio D (D = B / A) is 0.25, for example, is applied from the drive circuit 104 to the piezoelectric element. 101 is applied. This driving method using the driving voltage uses the amplitude transmission characteristic and the phase transmission characteristic due to the mechanical resonance characteristic of the driving member 102 coupled to the piezoelectric element 101 constituting the impact type piezoelectric actuator.
[0007]
FIG. 13A is a diagram illustrating the amplitude transfer characteristic, where the vertical axis represents the amplitude of the drive member 102, and the horizontal axis represents the ratio (fd / fr) of the drive frequency fd to the mechanical resonance frequency fr of the drive member 102. . FIG. 13B is a diagram showing the phase transfer characteristic, where the vertical axis represents the phase, and the horizontal axis represents the ratio (fd / fr) of the drive frequency fd to the mechanical resonance frequency fr of the drive member 102. The frequency fd1 (see FIG. 12 (b)) of the fundamental wave signal included in the drive voltage before and after the lowest mechanical resonance frequency fr1 among the plurality of resonances and the frequency fd2 of the second harmonic (see FIG. 12 (c)). Are set so that fd1 <fr1 <fd2 is satisfied, the mechanical response of the drive shaft to the harmonic signal component of the third harmonic frequency fd3 or higher is lowered. Then, the response of an appropriate mechanical displacement with respect to the fundamental wave signal and the second harmonic signal is obtained using the unimodal characteristic representing the distribution having only one mode of mechanical resonance, and further, the fundamental wave and the second harmonic wave are obtained. The amplitude of the drive voltage, the duty ratio D, the drive frequency fd, the amplitude transfer characteristic, and so that the mechanical displacement of the drive shaft finally becomes a sawtooth waveform as shown in FIG. A desired mechanical load speed of the impact type piezoelectric actuator is obtained by setting the phase transfer characteristic.
[0008]
Further, as an operation of the driving device 100, when a driving voltage is repeatedly applied to the piezoelectric element 101, the engagement member 103 is extended (direction away from the piezoelectric element 101) in the direction of the arrow a due to the expansion and contraction of the piezoelectric element 101. (See FIG. 10). That is, since the driving member 102 is gently extended at the rising portion C where the mechanical displacement is slow as shown in FIG. 12D, the friction coefficient between the engaging member 103 and the driving member 102 increases, and the engaging member 103 moves together with the drive member 102 in the feeding direction, but the drive member 102 is rapidly reduced at the steep falling portion D. Therefore, the friction coefficient between the engagement member 103 and the drive member 102 is reduced, and the drive is performed. Even if the member 102 moves in the return direction (the direction opposite to the arrow a), the engaging member 103 slips on the driving member 102 and stays at substantially the same position. For this reason, when a driving voltage having a waveform as shown in FIG. 12A is repeatedly applied to the piezoelectric element 101, the engaging member 103 moves intermittently in the direction of the arrow a.
[0009]
Further, when the engagement member 103 is moved in the return direction, the rising portion C shown in FIG. 12 (d) becomes a steep rising by changing the duty ratio D of the driving voltage. Try to fall slowly. As a result, at the rising portion C where the mechanical displacement is steep, the driving member 102 is suddenly extended in the feeding direction, so that the friction coefficient between the engaging member 103 and the driving member 102 is reduced, and the engaging member 103 is driven. While slipping on the member 102 and staying at substantially the same position, the driving member 102 is gradually reduced at the slow falling portion D, so that the friction coefficient between the engaging member 103 and the driving member 102 increases, The engaging member 103 moves with the driving member 102 in the return direction (the direction opposite to the arrow a). For this reason, the engaging member 103 moves intermittently in the direction opposite to the arrow a.
[0010]
[Problems to be solved by the invention]
However, in the above conventional drive device, the amplitude transfer characteristic and the phase transfer characteristic are the characteristics achieved by the mechanical design of the impact type piezoelectric actuator, so that it cannot be designed freely with restrictions such as cost reduction and miniaturization. Absent. Further, the amplitude and duty ratio D of the drive signal can be manipulated, and the composite ratio of the amplitude of the fundamental wave and the second harmonic can be changed. However, even if the duty ratio D is changed, the phase is in phase. It is difficult to manipulate the phase relationship because it remains unchanged. For this reason, it is necessary to set the phase relationship in the mechanical design of the impact type piezoelectric actuator. However, in this case as well, it cannot be designed freely due to restrictions such as cost reduction and size reduction.
[0011]
The present invention has been made to solve the above-described problem, and without relying on the phase transfer characteristic of the mechanical resonance characteristic by the drive signal application method that can manipulate the phase relationship in addition to the amplitude and the synthesis ratio. An object of the present invention is to provide a drive device that can obtain an optimum response of mechanical displacement.
[0012]
[Means for Solving the Problems]
The invention according to claim 1 is an electromechanical conversion element that expands and contracts when a drive signal is applied; a support member that is fixed to one end in the expansion and contraction direction of the electromechanical conversion element; The electromechanical conversion includes a drive member fixed to the other end in the expansion / contraction direction, an engagement member engaged with the drive member with a predetermined frictional force, and a drive circuit for driving the electromechanical conversion element. In the drive device that relatively moves the support member and the engagement member by expanding and contracting elements at different speeds, the drive circuit includes a first drive unit that generates a first drive signal having a predetermined frequency; Second driving means for generating a second driving signal having a predetermined frequency different from that of the first driving signal, and adding the first driving signal and the second driving signal to generate the electric Mechanical conversion element Applying the electro-mechanical conversion element is driven by the ratio between the frequency of the first frequency and the second driving signal of the driving signal and said integral ratio der Rukoto.
[0013]
According to this configuration, the first driving signal having the predetermined frequency generated by the first driving unit and the second driving unit having the predetermined frequency different from the first driving signal generated by the second driving unit. The electromechanical conversion element is driven by adding the drive signal and applying it to the electromechanical conversion element. For this reason, by operating the phase relationship between the first drive signal and the second drive signal, a drive capable of obtaining an optimum mechanical displacement response without depending on the phase transfer characteristic of the mechanical resonance characteristic of the electromechanical transducer. A device is realized.
[0015]
The ratio between the frequency of the frequency of the first drive signal a second drive signal for an integer ratio, the ratio between the frequency of the frequency of the first drive signal the second driving signal is an integer ratio It can be applied to a driving device.
[0016]
The invention according to claim 2 is characterized in that the integer ratio is 1: 2. According to this configuration, the present invention can be applied to a drive device in which the ratio of the frequency of the first drive signal and the frequency of the second drive signal is 1: 2.
[0017]
The invention according to claim 3 is characterized in that the drive speed in the expansion / contraction direction of the electromechanical transducer is changed by changing the phase relationship between the first drive signal and the second drive signal. According to this configuration, the drive speed in the expansion / contraction direction of the electromechanical transducer is changed by changing the phase relationship between the first drive signal and the second drive signal. By changing the phase relationship between the first drive signal and the second drive signal from the state where the displacement is obtained, a smooth speed change corresponding to the change amount can be obtained.
[0018]
According to a fourth aspect of the present invention, the frequencies of the first drive signal and the second drive signal are set based on the lowest mechanical resonance frequency fr of the electromechanical transducer. According to this configuration, since the frequencies of the first drive signal and the second drive signal are set based on the lowest mechanical resonance frequency fr of the electromechanical transducer, for example, the drive frequency fd1 of the first drive signal And the drive frequency fd2 of the second drive signal are set to satisfy fd1 <fr <fd2, set to satisfy fr <fd1 <fd2, or set to satisfy fd1 <fd2 <fr. This increases the degree of freedom of setting.
[0019]
According to the fifth aspect of the present invention, the first drive signal and the second drive signal have the same frequency, and the duty ratio D1 of the first drive signal and the duty ratio D2 of the second drive signal are , D1 + D2 = 1. According to this configuration, the first drive signal and the second drive signal have the same frequency, and the duty ratio D1 of the first drive signal and the duty ratio D2 of the second drive signal are D1 + D2 = The present invention can be applied even when the relationship is not 1, and the degree of freedom in setting increases.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram schematically showing a basic configuration of a drive device including an impact type piezoelectric actuator according to an embodiment of the present invention. In this figure, the drive device 10 includes a drive unit 12, a drive circuit 14 that drives the drive unit 12, a member sensor 16 that detects the position of an engagement member 30 attached to the drive unit 12, and the drive unit 12. A proximal end sensor 18 disposed at the proximal end of the drive unit 12, a distal end sensor 20 disposed at the distal end of the drive unit 12, and a control unit 22 for controlling the overall operation.
[0021]
FIG. 2 is a perspective view illustrating a configuration example of the drive unit 12. In this figure, the drive unit 12 has an element-fixed structure, and includes a support member 24, a piezoelectric element 26 that is an electromechanical conversion element, a drive member 28, and an engagement member 30.
[0022]
The support member 24 holds the piezoelectric element 26 and the drive member 28, and is formed by piercing the inside leaving the both end portions 241 and 242 in the axial direction of the cylindrical body and the partition wall 243 positioned substantially at the center. The first storage space 244 and the second storage space 245 are provided. In the first accommodation space 244, the piezoelectric element 26 is accommodated in a state in which the expansion / contraction direction, which is the polarization direction, coincides with the axial direction of the support member 24. Further, the drive member 28 and a part of the engagement member 30 are accommodated in the second accommodation space 245.
[0023]
The piezoelectric element 26 is formed by, for example, laminating a plurality of piezoelectric substrates having a predetermined thickness via electrodes between each piezoelectric substrate, and the longitudinal direction which is the expansion / contraction direction (lamination direction) thereof. One end surface is fixed to one end portion 241 side end surface of the first accommodation space 244. The other end 242 of the support member 24 and the partition wall 243 are provided with a round hole at the center position, and a rod-shaped drive member 28 having a circular cross section passes through both the round holes in the second storage space 245. It is accommodated so as to be movable along the axial direction.
[0024]
The end of the driving member 28 protruding into the first housing space 244 is fixed to the other end surface of the piezoelectric element 26, and the end of the driving member 28 protruding outside the second housing space 245 is predetermined by the leaf spring 32. Is biased toward the piezoelectric element 26 by the spring pressure. The urging of the drive member 28 by the leaf spring 32 is to stabilize the axial displacement of the drive member 28 based on the expansion / contraction operation of the piezoelectric element 26.
[0025]
The engaging member 30 includes a base portion 302 having mounting portions 301 on both sides in the axial direction of the driving member 28, and a sandwiching member 303 mounted between the mounting portions 301. The base portion 302 is the driving member 28. The engaging member 30 is pressed downward by the leaf springs 304 attached to the two attachment portions 301 and is brought into contact with the driving member 28, whereby the engaging member 30 is driven with a predetermined frictional force. When the driving force larger than the frictional force is applied to the engaging member 30, the engaging member 30 can move along the axial direction of the driving member 28. The engaging member 30 is attached with a photographic lens L (FIG. 1) that is a driving object.
[0026]
FIG. 3 is a diagram illustrating a configuration example of the drive circuit 14. The driving circuit 14 shown in FIG. 3 includes a bridge circuit, and includes a first driving circuit 151 that is a first driving unit and a second driving circuit 152 that is a second driving unit. The first drive circuit 151 includes a first switch circuit 141 including a switch element Tr1 which is an enhancement-type MOS (Metal Oxide Semiconductor) FET (Field Effect Transistor), and a switch element Tr2 which is also an enhancement-type MOS FET. A second switch circuit 142, a DC power supply voltage V1 from a drive power supply (not shown), and a waveform generator 145. The second drive circuit 152 includes a third switch circuit 143 composed of a switch element Tr3 that is an enhancement type MOS FET, a fourth switch circuit 144 composed of a switch element Tr4 that is also an enhancement type MOS FET, It comprises a DC power supply voltage V2 from the drive power supply and a waveform generator 146.
[0027]
In the first drive circuit 151, a first switch circuit 141 and a second switch circuit are connected between a DC power supply voltage V1 from a drive power supply (not shown) and supplied to the sort electrode of the switch element Tr1 and grounded. 142 series circuits are connected. The second drive circuit 152 is supplied with a DC power supply voltage V2 from a drive power supply (not shown) to the sort electrode of the switch element Tr3, and is connected to the ground connection point a. The third switch circuit 143 and the fourth switch circuit 144 series circuits are connected.
[0028]
The switch element Tr1 constituting the first switch circuit 141 and the switch element Tr3 constituting the third switch circuit 143 are P-channel FETs, and constitute the switch element Tr2 and the fourth switch circuit 144 constituting the second switch circuit 142. The switch element Tr4 is an N-channel FET. The switch elements Tr1 and Tr3 that are P-channel FETs are turned on when the drive control signal is low level, and the switch elements Tr2 and Tr4 that are N-channel FETs are turned on when the drive control signal is high level. The piezoelectric element 26 is connected between the connection point c of the first switch circuit 141 and the second switch circuit 142 and the connection point d of the third switch circuit 143 and the fourth switch circuit 144 to form a bridge circuit. The
[0029]
The first drive signal Sd1 from the waveform generator 145 is applied to the gate electrodes of the switch element Tr1 and the switch element Tr2, and the second drive signal Sd2 from the waveform generator 146 is the gate electrode of the switch element Tr3 and the switch element Tr4. To be applied. The first drive signal Sd1 and the second drive signal Sd2 are drive signals whose frequency ratio is an integer ratio, and in the present embodiment, this integer ratio is 1: 2. The first drive signal Sd1 has a rectangular waveform with an amplitude of V3 and a duty ratio D1 (D1 = B1 / A1) of 0.5, and the second drive signal Sd2 has an amplitude of V4 and a duty ratio D2 (D2 = B2 / A2) is a rectangular waveform of 0.5. Note that the duty ratio D1 of the first drive signal Sd1 and the duty ratio D2 of the second drive signal Sd2 are in a relationship of D1 + D2 = 1.
[0030]
The DC power supply voltages V1 and V2 are values that determine the magnitude of the rectangular wave drive voltage applied to the piezoelectric element 26, and the DC power supply voltage V1 is the first drive voltage Vd1 corresponding to the first drive signal Sd1, and the DC The power supply voltage V2 becomes the second drive voltage Vd2 corresponding to the second drive signal Sd2. The first drive voltage Vd1 and the second drive voltage Vd2 are voltages opposite in phase to the first drive signal Sd1 and the second drive signal Sd2, and are applied to the piezoelectric element 26, respectively.
[0031]
Note that the power supply system may be unified by setting the DC power supply voltages V1 and V2 to V1 = V2. In this case, the circuit configuration is simplified, and the drive circuit can be further reduced in cost and size.
[0032]
Returning to FIG. 1, the member sensor 16 is disposed within a movable range of the engaging member 30 and is configured by an appropriate sensor such as an MRE (Magneto Resistive Effect) element or a PSD (Position Sensitive Device) element. Has been. In addition, the proximal sensor 18 and the distal sensor 20 are configured by appropriate sensors such as a photo interrupter. Thus, the position of the engaging member 30 is detected by the member sensor 16 so that the movement of the engaging member 30 to a predetermined position can be controlled. On the other hand, the position of the engaging member 30 is determined by the proximal sensor 18 and the distal sensor. The further movement of the engaging member 30 is prohibited by detecting by 20.
[0033]
The control unit 22 includes a CPU (Central Processing Unit) that performs arithmetic processing, a ROM (Read Only Memory) that stores processing programs and data, and a RAM (Random Access Memory) that temporarily stores data. The drive circuit 14 is driven and controlled based on signals input from the member sensor 16, the proximal sensor 18, and the distal sensor 20. That is, the control unit 22 includes the first drive signal Sd1 generated in the first drive circuit 151, the DC power supply voltage V1 from the drive power supply, and the second drive signal Sd2 generated in the second drive circuit 152. And the DC power supply voltage V2 from the drive power supply are controlled.
[0034]
Next, the principle operation of the drive circuit 14 will be described with reference to FIGS. FIG. 4 is a diagram showing a pulse waveform of the drive voltage for explaining the principle operation of the drive circuit 14. FIG. 4A shows a rectangular wave representing the first drive signal Sd1 output from the waveform generator 145, the amplitude of the rectangular wave is V3, and the duty ratio D1 is 0.5. FIG. 4D shows a rectangular wave representing the second drive signal Sd2 output from the waveform generator 146, the amplitude of the rectangular wave is V4, and the duty ratio D2 is 0.5. The frequency ratio between the first drive signal Sd1 and the second drive signal Sd2 is 1: 2, and the relationship between the duty ratio D1 and the duty ratio D2 is D1 + D2 = 1.
[0035]
4B is a rectangular wave representing the first drive voltage Vd1 applied to the piezoelectric element 26, and FIG. 4E is a rectangle representing the second drive voltage Vd2 applied to the piezoelectric element 26. It is a wave. 4C shows a waveform representing the sine wave voltage Vd1c of the first drive frequency fd1 applied to the piezoelectric element 26, and FIG. 4F shows the waveform of the second drive frequency fd2 applied to the piezoelectric element 26. It is a waveform showing the sine wave voltage Vd2c. FIG. 4G shows a drive voltage Vd corresponding to the difference between the first drive voltage Vd1 and the second drive voltage Vd2. This drive voltage Vd is applied from the electrode A which is one electrode of the piezoelectric element 26 and the electrode B which is the other electrode (see FIG. 3).
[0036]
FIG. 5 is a characteristic diagram showing mechanical resonance characteristics of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 constituting the drive device 10 are fixed. FIG. 5A is a diagram illustrating the amplitude transfer characteristic, where the vertical axis represents the amplitude of the drive member 28, and the horizontal axis represents the ratio (fd / fr) of the drive frequency fd to the mechanical resonance frequency fr of the drive member 28. . FIG. 5B is a diagram showing the phase transfer characteristic, where the vertical axis represents the phase, and the horizontal axis represents the ratio (fd / fr) of the drive frequency fd to the mechanical resonance frequency fr of the drive member 28. Note that the value of Q, which is an amount representing the sharpness of resonance characteristics, is 10 as an effective Q value in a state where a mechanical load is mounted on the driving member.
[0037]
An amplitude having resonance characteristics by setting the drive frequency fd1 and the drive frequency fd2 in the vicinity of the lowest mechanical resonance frequency fr1 of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 are fixed. Utilizing the transfer characteristics, the mechanical displacement response to the harmonic components of the first drive voltage Vd1 and the second drive voltage Vd2 (having odd harmonics each because the duty ratios D1 and D2 are 0.5) is eliminated, A response corresponding to the fundamental wave component is obtained. That is, the sine wave voltage Vd1c having the drive frequency fd1 and the sine wave voltage Vd2c having the drive frequency fd2 are applied to the piezoelectric element 26. Therefore, there are the following three types of setting of the drive frequencies fd1 and fd2 with reference to fr1.
[0038]
fd1 <fd2 <fr1 (1)
fd1 <fr1 <fd2 (2)
fr1 <fd1 <fd2 (3)
[0039]
These settings can only be set to fd1 <fr1 <fd2 (2) in the conventional duty rectangular wave drive in order to achieve both the amplitude transfer characteristic and the phase transfer characteristic of the piezoelectric element 26. However, since the frequencies of the first drive signal Sd1 and the second drive signal Sd2 are set based on the lowest mechanical resonance frequency fr1 of the piezoelectric element 26 that is an electromechanical transducer, for example, the first drive signal Sd1 The drive frequency fd1 of the second drive signal Sd2 and the drive frequency fd2 of the second drive signal Sd2 are set so as to satisfy fd1 <fr1 <fd2 (2), or so that fr1 <fd1 <fd2 (3). It can be set or set so that fd1 <fd2 <fr1 (1), and the degree of freedom of setting increases.
[0040]
Note that the mechanical resonance frequency fr of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 are fixed is obtained by the following equation.
[0041]
[Expression 1]
Figure 0003722050
[0042]
In Equation 1, fro represents the free resonance frequency between the electrodes of the piezoelectric element 26 (mechanical resonance frequency in the direction between the electrodes of the piezoelectric element 26 itself), mp represents the mass of the piezoelectric element 26, and mf represents the mass of the drive member 28. ing. The mass of the support member 24 is related to the mechanical resonance frequency fr of the piezoelectric element 26 in the resonance system, but the mass of the support member 24 is larger than the sum of the masses mp and mf of the piezoelectric element 26 and the drive member 28. Therefore, it is not necessary to consider it as a calculation parameter because the influence on the mechanical resonance frequency fr is small. Further, the engaging member 30 does not have to be considered as a substantially resonant element because it slips with respect to the driving member 28 at the time of resonance of the piezoelectric element 26, and is therefore included as the calculation parameter of the above equation (1). Absent.
[0043]
FIG. 6A is a characteristic diagram showing the amplitude transmission characteristic in the case of fd1 <fr1 <fd2 (2) in FIGS. 5A and 5B, and the vertical axis represents the amplitude of the drive member 28. FIG. The horizontal axis represents the ratio of the drive frequency fd to the mechanical resonance frequency fr of the drive member 28 (fd / fr). FIG. 6B is a characteristic diagram showing the phase transfer characteristic in the case of fd1 <fr1 <fd2 (2) in FIGS. 5A and 5B, the vertical axis represents the phase, and the horizontal axis represents The ratio (fd / fr) of the drive frequency fd with respect to the mechanical resonance frequency fr of the drive member 28 is represented. FIG. 7 is a diagram for explaining a specific operation of the drive circuit 14 applied to the drive device 10 according to the present invention.
[0044]
For example, the drive frequency fd1 is 0.75 times (fd1 = 0.75 × fr1) the lowest mechanical resonance frequency fr1 of the resonance frequency fr of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 are fixed. Set as follows. For convenience of explanation, it is assumed that the DC power supply voltages V1 and V2 are V1 = V2. That is, the first drive voltage Vd1 and the second drive voltage Vd2 are Vd1 = Vd2. In this case, the first drive voltage Vd1 is a rectangular wave as shown in FIG. 7A, and the second drive voltage Vd2 is a rectangular wave as shown in FIG. 7B. A drive voltage Vd (Vd = Vd1−Vd2) corresponding to the difference between the first drive voltage Vd1 and the second drive voltage Vd2 is applied to both electrodes A and B of the piezoelectric element 26. Due to the amplitude transfer characteristics, the harmonic components of the displacement with respect to the first drive voltage Vd1 and the second drive voltage Vd2 are respectively removed, and the remaining fundamental components of the displacement are each subjected to changes in amplitude and phase. The amplitude change due to the amplitude transfer characteristic is r1: r2 = 2.25: 0.794 as shown in FIG. Further, the phase change due to the phase transfer characteristic is θ1: θ2 = −9.7 °: −173.2 ° as shown in FIG. 6B. The mechanical displacement x of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 are fixed is a combined displacement of the mechanical displacement x1 due to the first sine wave voltage Vd1c and the mechanical displacement x2 due to the second sine wave voltage Vd2c. (X = x1 + x2) (FIG. 7D). The speed v of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 are fixed is a combined speed (v = v1 + v2) of the speed v1 obtained by differentiating the mechanical displacement x1 and the speed v2 obtained by differentiating the mechanical displacement x2. (FIG. 7 (e)).
[0045]
Here, when looking at the waveform of the composite displacement x shown in FIG. 7 (d), a large bulge is generated at the rising portion E, which is not a saw waveform, and the support member 24 and the drive member 28 are The desired mechanical displacement x of the piezoelectric element 26 in the fixed state cannot be obtained. Further, when the velocities v1 and v2 of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 are fixed are substantially in phase, the waveform of the combined speed v has a substantially trapezoidal shape. The waveform of the composite speed v shown is not substantially trapezoidal, and the desired speed of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 are fixed cannot be obtained. Therefore, in order to obtain a desired sawtooth mechanical displacement of the piezoelectric element 26 with the support member 24 and the drive member 28 fixed, the amplitudes of the first sine wave voltage Vd1c and the second sine wave voltage Vd2c can be obtained. It is necessary to manipulate the phase relationship. Since it is difficult to change the characteristic of the mechanical resonance frequency fr1 in this operation, the amplitude operation is performed by changing the DC power supply voltage V1 or V2, and the phase operation is performed using the first drive signal Sd1 and the second drive signal. This is performed by varying the phase relationship of Sd2.
[0046]
Therefore, the DC power supply voltages V1 and V2 are set to, for example, V1: V2 = 1: 0.7, and the phase of the second drive signal Sd2 is advanced by, for example, 65 ° with respect to the phase of the first drive signal Sd1. As a result, a second drive voltage Vd2 ″ as shown in FIG. 7F is obtained. At this time, the mechanical displacement x2 ″ by the second sine wave voltage Vd2 ″ has a waveform shown in FIG. The combined displacement x ″ of the mechanical displacement x1 and the mechanical displacement x2 ″ has a sawtooth waveform as shown in FIG. 7G, and a desired mechanical displacement can be obtained. Further, the machine speed v2 ″ at this time has a waveform shown in FIG. The combined speed v ″ of the machine speed v1 and the machine speed v2 ″ has a substantially trapezoidal waveform as shown in FIG. 7G, and a desired machine speed can be obtained.
[0047]
As described above, the first drive signal Sd1 having a predetermined frequency generated by the first drive circuit 151 and the first drive signal Sd1 having a different frequency from the first drive signal Sd1 generated by the second drive circuit 152 are used. The two drive signals Sd2 are added and applied to the piezoelectric element 26 which is an electromechanical conversion element, so that the piezoelectric element 26 is driven. Therefore, by operating the phase relationship between the first drive signal Sd1 and the second drive signal Sd2, an optimum mechanical displacement response can be obtained without depending on the phase transfer characteristic of the mechanical resonance characteristic of the piezoelectric element 26. A driving device is realized.
[0048]
In addition, since the driving speed in the expansion / contraction direction of the piezoelectric element 26 that is an electromechanical conversion element is changed by changing the phase relationship between the first driving signal Sd1 and the second driving signal Sd2, for example, an optimal sawtooth waveform By changing the phase relationship between the first drive signal Sd1 and the second drive signal Sd2 from the state where the mechanical displacement of the state is obtained, a smooth speed change according to the change amount can be obtained.
[0049]
FIG. 8 is a diagram illustrating another configuration example of the drive circuit 14. In this figure, the drive circuit 14 'is constituted by a bridge circuit, and is constituted by a first drive circuit 151' and a second drive circuit 152 '. The first drive circuit 151 ′ includes a first switch circuit 141 composed of a switch element Tr1 which is an enhancement-type MOS (Metal Oxide Semiconductor) FET (Field Effect Transistor), and a switch element Tr2 which is also an enhancement-type MOS FET. And a second power supply voltage V1 from a drive power supply (not shown), a waveform generator 145 ′, a capacitor C1, an input resistance R1, and a feedback resistance R2. The second drive circuit 152 ′ includes a third switch circuit 143 composed of a switch element Tr3 that is an enhancement type MOS FET, a fourth switch circuit 144 composed of a switch element Tr4 that is also an enhancement type MOS FET, DC power source voltage V2 from the driving power source, waveform generator 146 ', capacitor C2, input resistor R3, and feedback resistor R4. As described above, by arranging the input resistor R1 and the feedback resistor R2 in the first drive circuit 151 ′, the gain G1 becomes an amplifier circuit with G1 = R2 / R1, and similarly, the second drive circuit 152 ′ has the gain G1. By arranging the input resistor R3 and the feedback resistor R4, an amplifier circuit in which the gain G2 is G2 = R4 / R3 is obtained. However, it is assumed that the gains G1 and G2 are sufficiently large.
[0050]
The first drive circuit 151 ′ includes a first switch circuit 141 and a second switch between a connection point a to which a DC power supply voltage V1 from a drive power supply (not shown) is supplied to the sort electrode of the switch element Tr1 and is grounded. A series circuit of the circuit 142 is connected. In the second drive circuit 152 ′, the third switch circuit 143 and the fourth switch are connected between the DC power supply voltage V2 from the drive power supply (not shown) and the ground connection point a to the sort electrode of the switch element Tr3. A series circuit of the circuit 144 is connected.
[0051]
The switch element Tr1 constituting the first switch circuit 141 and the switch element Tr3 constituting the third switch circuit 143 are P-channel FETs, and constitute the switch element Tr2 and the fourth switch circuit 144 constituting the second switch circuit 142. The switch element Tr4 is an N-channel FET. The switch elements Tr1 and Tr3 that are P-channel FETs are turned on when the drive control signal is low level, and the switch elements Tr2 and Tr4 that are N-channel FETs are turned on when the drive control signal is high level. The piezoelectric element 26 is connected between the connection point c of the first switch circuit 141 and the second switch circuit 142 and the connection point d of the third switch circuit 143 and the fourth switch circuit 144 to form a bridge circuit. The
[0052]
The first drive signal Sd1 ′ is applied to the input resistor R1 through the DC blocking capacitor C1, and the first drive voltage Vd1 ′ is a voltage obtained by multiplying the first drive signal Sd1 ′ by a gain G1. Similarly, the second drive signal Sd2 ′ is applied to the input resistor R3 through the DC blocking capacitor C2, and the second drive voltage Vd2 ′ becomes a voltage obtained by multiplying the second drive signal Sd2 ′ by a gain G2.
[0053]
FIG. 9 is a diagram showing a pulse waveform of the drive voltage for explaining the principle operation of the drive circuit 14 ′. FIG. 9A shows a sine wave representing the first drive signal Sd1 ′ output from the waveform generator 145 ′, and the amplitude of the sine wave is V3. FIG. 9D shows a sine wave representing the second drive signal Sd2 ′ output from the waveform generator 146 ′, and the amplitude of the sine wave is V4. The frequency ratio between the first drive signal Sd1 ′ and the second drive signal Sd2 ′ is an integer ratio, and in the present embodiment, this integer ratio is 1: 2.
[0054]
FIG. 9B shows a sine wave representing the first drive voltage Vd1 ′ applied to the piezoelectric element 26, and FIG. 9E shows the second drive voltage Vd2 ′ applied to the piezoelectric element 26. It is a sine wave that represents. FIG. 9C shows a waveform representing the sine wave voltage Vd1c ′ of the drive frequency fd1 ′ applied to the piezoelectric element 26, and FIG. 9F shows the sine wave voltage of the drive frequency fd2 ′ applied to the piezoelectric element 26. It is a waveform showing Vd2c '. FIG. 9G shows a drive voltage Vd ′ corresponding to the difference between the first drive voltage Vd1 ′ and the second drive voltage Vd2 ′. The drive voltage Vd ′ is applied from the electrode A that is one electrode of the piezoelectric element 26 and the electrode B that is the other electrode.
[0055]
As described above, by using the first drive signal Sd1 ′ and the second drive signal Sd2 ′ as sine waves, there is an advantage that it is not necessary to pay attention to harmonic removal due to the amplitude transfer characteristic.
[0056]
Further, the first drive signal Sd1 ′ that is a sine wave of a predetermined frequency generated by the first drive circuit 151 ′ and the first drive signal Sd1 ′ generated by the second drive circuit 152 ′ The piezoelectric element 26 is driven by adding the second drive signal Sd2 ′, which is a sine wave having a different predetermined frequency, and applying it to the piezoelectric element 26 that is an electromechanical conversion element. Therefore, by operating the phase relationship between the first drive signal Sd1 ′ and the second drive signal Sd2 ′, an optimum mechanical displacement response can be obtained without depending on the phase transfer characteristic of the mechanical resonance characteristic of the piezoelectric element 26. The resulting drive device is realized.
[0057]
In the present embodiment, a rectangular wave or a sine wave is used as both the first drive signal and the second drive signal. However, the present invention is not particularly limited to this, and either one is a rectangular wave and the other is the other. May be a sine wave. In this case, the drive circuit 14 includes a first drive circuit 151 that generates a rectangular wave and a second drive circuit 152 ′ that generates a sine wave, or a first drive circuit 151 that generates a sine wave. 'And a second drive circuit 152 for generating a rectangular wave. As described above, the waveforms generated as the first drive signal and the second drive signal are both rectangular waves, both sine waves, or either one is a rectangular wave and the other is a sine wave. A drive signal corresponding to the waveforms of the drive signal and the second drive signal can be obtained.
[0058]
In this embodiment, one of the duty ratio D1 of the first drive voltage Vd1 or the duty ratio D2 of the second drive voltage Vd2, or the duty ratio D1 of the first drive voltage Vd1 and the second drive. A rectangular wave having a relationship of D1 + D2 = 1 is used in which both the duty ratio D2 of the voltage Vd2 is 0.5, but the present invention is not particularly limited to this, and the duty ratios D1 and D2 are other than 0.5. , A rectangular wave not having a relationship of D1 + D2 = 1 may be used. In this case, for example, if the driving frequency setting method having the relationship fd1 <fd2 <fr1 (1) shown in FIG. 5A is selected, the third harmonic of the first driving voltage Vd1 is the mechanical resonance frequency. The possibility of being in the vicinity of fr1 increases. Therefore, there is a possibility that the response of the mechanical displacement to the third harmonic of the drive frequency of the piezoelectric element 26 in a state where the support member 24 and the drive member 28 are fixed due to the resonance characteristics may be adversely affected (not a saw waveform). Therefore, the duty ratio D2 of the second drive voltage Vd2 remains 0.5, and the first drive is performed by using a rectangular wave voltage with the duty ratio D1 of 0.33 or 0.67 as the first drive voltage Vd1. The voltage Vd1 does not contain the third harmonic component, and the above problem is solved. Thus, the first drive signal Sd1 and the second drive signal Sd2 have the same frequency, and the duty ratio D1 of the first drive signal Sd1 and the duty ratio D2 of the second drive signal Sd2 are: The present invention can also be applied to cases where there is no relationship of D1 + D2 = 1, and the degree of freedom of setting increases.
[0059]
Further, when changing or reversing the mechanical load speed of the piezoelectric element of the drive device according to the present invention, the first drive signal is obtained from the state of obtaining the sawtooth waveform of the mechanical displacement shown in FIG. By changing the phase relationship between Sd1 and the second drive signal Sd2, the mechanical displacement of the sawtooth waveform deviates from the optimum state in accordance with the amount of change, so the speed gradually decreases. Further, the amount of change is further increased to stop, and finally an inverted saw waveform is obtained, so that a smooth speed change according to the amount of change can be obtained. That is, the speed control of the mechanical load of the driving device can be performed by the phase difference between the first driving signal Sd1 and the second driving signal Sd2.
[0060]
Further, according to the driving voltage Vd shown in FIG. 4G, the piezoelectric element 26 is charged and discharged three times for one cycle. At the time of this discharge, there is a period in which the voltage once becomes 0 volt in principle (E1, E2, E3 in FIG. 4 (g)). This is a short-circuit discharge operation of the piezoelectric element 26 by the transistors (switch elements Td1, Tr2, Tr3, Tr4) of the drive circuit 14. In the conventional duty rectangular wave drive, there is one charge / discharge for one cycle of the drive voltage, and at the time of discharge, a discharge operation is performed through a DC power supply instead of a short-circuit discharge operation. The power consumption in the drive power supply is added, and as a result, the power consumption during driving is increased. The power consumption P1 in the conventional duty rectangular wave drive is expressed by the following equation (1).
[0061]
P1 = C × (2V) 2 × fd = 4 × C × V 2 × fd (1)
However, the power consumption in the conventional duty rectangular wave drive is P1, the capacitance of the piezoelectric element is C, the DC power supply voltage is V, and the drive frequency is fd.
[0062]
However, in the drive circuit according to the present invention, the power consumption P2 is expressed by the following equation (2).
P2 = 3 × C × V 2 × fd (2)
[0063]
Thus, the power consumption P2 of the drive circuit according to the present invention is 0.75 times the power consumption P1 of the conventional drive circuit, and the power consumption is improved.
[0064]
Although the present embodiment has been described with respect to the driving device related to the photographing lens of the camera, the present invention is not particularly limited thereto, and the driving device is suitable for driving the XY moving stage, the projection lens of the overhead projector, the lens of the binoculars, and the like. It is also applicable to.
[0065]
【The invention's effect】
According to the first aspect of the present invention, the first driving signal having the predetermined frequency generated by the first driving unit and the first driving signal generated by the second driving unit are different from each other. The electromechanical conversion element is driven by adding the second drive signal having the frequency and applying it to the electromechanical conversion element. For this reason, an optimum mechanical displacement response can be obtained by manipulating the phase relationship between the first drive signal and the second drive signal without depending on the phase transfer characteristic of the mechanical resonance characteristic of the electromechanical transducer. it can.
[0067]
Further , the present invention can be applied to a drive device in which the ratio of the frequency of the first drive signal and the frequency of the second drive signal is an integer ratio.
[0068]
According to the second aspect of the present invention, the present invention can be applied to a drive device in which the ratio of the frequency of the first drive signal and the frequency of the second drive signal is 1: 2.
[0069]
According to the third aspect of the invention, the drive speed in the expansion / contraction direction of the electromechanical transducer is changed by changing the phase relationship between the first drive signal and the second drive signal. By changing the phase relationship between the first drive signal and the second drive signal from the state in which the optimum mechanical displacement is obtained, a smooth speed change corresponding to the change amount can be obtained.
[0070]
According to the invention described in claim 4 , since the frequencies of the first drive signal and the second drive signal are set based on the lowest mechanical resonance frequency fr of the electromechanical transducer, for example, the first drive signal The drive frequency fd1 of the signal and the drive frequency fd2 of the second drive signal are set so as to satisfy fd1 <fr <fd2, or set so that fr <fd1 <fd2, or fd1 <fd2 <fr. The degree of freedom of setting will increase.
[0071]
According to the fifth aspect of the present invention, the first drive signal and the second drive signal have the same frequency, and the duty ratio D1 of the first drive signal and the duty ratio D2 of the second drive signal are the same. Can be applied even when the relationship is not D1 + D2 = 1, and the degree of freedom of setting increases.
[Brief description of the drawings]
FIG. 1 is a block diagram schematically showing a basic configuration of a drive device including an impact type piezoelectric actuator according to an embodiment of the present invention.
FIG. 2 is a perspective view illustrating a configuration example of a drive unit.
FIG. 3 is a diagram illustrating a configuration example of a drive circuit.
FIG. 4 is a diagram showing a pulse waveform of a drive voltage for explaining the principle operation of the drive circuit.
FIG. 5 is a characteristic diagram showing mechanical resonance characteristics of the piezoelectric element in a state where the supporting member and the driving member constituting the driving device are fixed.
FIG. 6 is a characteristic diagram showing an amplitude transfer characteristic and a phase transfer characteristic of the drive device according to the present invention.
FIG. 7 is a diagram for explaining a specific operation of a drive circuit applied to the drive device according to the present invention.
FIG. 8 is a diagram showing another configuration example of the drive circuit.
FIG. 9 is a diagram showing a drive voltage pulse waveform and the like for explaining a principle operation of a drive circuit as another configuration example;
FIG. 10 is a diagram showing a schematic configuration of a conventional drive device.
11 is a block diagram showing a configuration example of a drive circuit of the drive device shown in FIG.
12 is a diagram showing an output waveform of the drive circuit shown in FIG.
FIG. 13 is a characteristic diagram showing an amplitude transmission characteristic and a phase transmission characteristic of a conventional driving device.
[Explanation of symbols]
14, 14 'drive circuit 26 piezoelectric element (electromechanical transducer)
141 First switching circuit 142 Second switching circuit 143 Third switching circuit 144 Fourth switching circuits 145 and 145 ′ First waveform oscillators 146 and 146 ′ Second waveform oscillators 151 and 151 ′ First drive Circuit (first driving means)
152, 152 ′ second drive circuit (second drive means)
Tr1 First switch element Tr2 Second switch element Tr3 Third switch element Tr4 Fourth switch element

Claims (5)

駆動信号が印加されることにより伸縮する電気機械変換素子と、前記電気機械変換素子の伸縮方向における一方端に固着された支持部材と、前記電気機械変換素子の伸縮方向における他方端に固着された駆動部材と、前記駆動部材に所定の摩擦力で係合された係合部材と、前記電気機械変換素子を駆動する駆動回路とから構成され、前記電気機械変換素子を異なる速度で伸縮させることで前記支持部材と前記係合部材とを相対移動させる駆動装置において、
前記駆動回路は、所定の周波数の第1の駆動信号を生成する第1の駆動手段と、前記第1の駆動信号とは異なる所定の周波数の第2の駆動信号を生成する第2の駆動手段とを備え、前記第1の駆動信号と前記第2の駆動信号とを加算して前記電気機械変換素子に印加することで当該電気機械変換素子を駆動させ、前記第1の駆動信号の周波数と前記第2の駆動信号の周波数との比が整数比であることを特徴とする駆動装置。
An electromechanical conversion element that expands and contracts when a drive signal is applied, a support member that is fixed to one end in the expansion / contraction direction of the electromechanical conversion element, and an other end in the expansion / contraction direction of the electromechanical conversion element A drive member, an engagement member engaged with the drive member with a predetermined frictional force, and a drive circuit for driving the electromechanical conversion element, and extending and contracting the electromechanical conversion element at different speeds. In the drive device that relatively moves the support member and the engagement member,
The driving circuit includes a first driving unit that generates a first driving signal having a predetermined frequency, and a second driving unit that generates a second driving signal having a predetermined frequency different from the first driving signal. And adding the first drive signal and the second drive signal and applying the sum to the electromechanical conversion element to drive the electromechanical conversion element, and the frequency of the first drive signal drive the ratio of the frequency of the second drive signal and said integral ratio der Rukoto.
前記整数比は1:2であることを特徴とする請求項記載の駆動装置。The integral ratio of 1: driving apparatus according to claim 1, characterized in that the 2. 第1の駆動信号と第2の駆動信号との位相関係を変化させて前記電気機械変換素子の伸縮方向における駆動速度を変化させることを特徴とする請求項1又は2記載の駆動装置。 3. The driving apparatus according to claim 1, wherein the driving speed in the expansion / contraction direction of the electromechanical transducer is changed by changing a phase relationship between the first driving signal and the second driving signal. 前記電気機械変換素子の最も低い機械共振周波数frに基づいて第1の駆動信号及び第2の駆動信号の周波数を設定することを特徴とする請求項1〜のいずれかに記載の駆動装置。The drive device according to any one of claims 1 to 3 , wherein the frequencies of the first drive signal and the second drive signal are set based on the lowest mechanical resonance frequency fr of the electromechanical transducer. 第1の駆動信号と第2の駆動信号とは互いに周波数が同じであり、第1の駆動信号のデューティ比D1と第2の駆動信号のデューティ比D2とは、D1+D2=1の関係にないことを特徴とする請求項1〜のいずれかに記載の駆動装置。The first drive signal and the second drive signal have the same frequency, and the duty ratio D1 of the first drive signal and the duty ratio D2 of the second drive signal are not in a relationship of D1 + D2 = 1. drive device according to any one of claims 1 to 4, characterized in.
JP2001357660A 2001-11-22 2001-11-22 Drive device Expired - Fee Related JP3722050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357660A JP3722050B2 (en) 2001-11-22 2001-11-22 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357660A JP3722050B2 (en) 2001-11-22 2001-11-22 Drive device

Publications (2)

Publication Number Publication Date
JP2003164173A JP2003164173A (en) 2003-06-06
JP3722050B2 true JP3722050B2 (en) 2005-11-30

Family

ID=19168964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357660A Expired - Fee Related JP3722050B2 (en) 2001-11-22 2001-11-22 Drive device

Country Status (1)

Country Link
JP (1) JP3722050B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081290A (en) * 2004-09-09 2006-03-23 Konica Minolta Opto Inc Self-oscillation circuit and driving device using the same
JP4687314B2 (en) * 2005-08-04 2011-05-25 コニカミノルタホールディングス株式会社 Drive device and drive system
JP5151163B2 (en) * 2007-01-30 2013-02-27 コニカミノルタアドバンストレイヤー株式会社 Drive device and drive system
JP2021035157A (en) * 2019-08-23 2021-03-01 ソニー株式会社 Driving device, driving method, and electronic apparatus

Also Published As

Publication number Publication date
JP2003164173A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US6512321B2 (en) Driving apparatus and method of using same
JP3171187B2 (en) Piezo actuator
JP3432001B2 (en) Vibration wave device
US7193351B2 (en) Driving device and driving method
JP5077403B2 (en) Drive device
JP2001211669A (en) Driver
JP2001103772A (en) Piezoelectric actuator
US6844658B2 (en) Drive apparatus
JP3722050B2 (en) Drive device
JP4694681B2 (en) Ultrasonic motor and electronic device with ultrasonic motor
JPH10146072A (en) Oscillatory motor device
JP3722082B2 (en) Drive device
JP4110153B2 (en) Drive device for vibration actuator and drive method for vibration actuator
JP3711935B2 (en) Drive device
JP3722062B2 (en) Drive device
JP2005237145A (en) Drive circuit for piezoelectric element
JP3933460B2 (en) Drive device
JP4706792B2 (en) Drive device
JP2010279199A (en) Device for control of piezoelectric actuator
JP4666100B2 (en) Drive device
JP2004254412A (en) Drive circuit, driving method, and driver for electromechanical transducer
JPH05276770A (en) Ultrasonic actuator
JP4492738B2 (en) Piezoelectric actuator
JP4114447B2 (en) Driving circuit
JP2007202262A (en) Apparatus and method for controlling driving of piezoelectric actuator and electronic equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees