JP2006081290A - Self-oscillation circuit and driving device using the same - Google Patents

Self-oscillation circuit and driving device using the same Download PDF

Info

Publication number
JP2006081290A
JP2006081290A JP2004261952A JP2004261952A JP2006081290A JP 2006081290 A JP2006081290 A JP 2006081290A JP 2004261952 A JP2004261952 A JP 2004261952A JP 2004261952 A JP2004261952 A JP 2004261952A JP 2006081290 A JP2006081290 A JP 2006081290A
Authority
JP
Japan
Prior art keywords
circuit
drive
voltage
offset
friction member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004261952A
Other languages
Japanese (ja)
Inventor
Satoyuki Yuasa
智行 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004261952A priority Critical patent/JP2006081290A/en
Publication of JP2006081290A publication Critical patent/JP2006081290A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving device capable of constantly driving a movable body at high speed at driving voltage of an optimum frequency even when the resonance frequency of an electromechanical transducing element is varied due to fluctuation in ambient temperature, variation in shape in mass production, or the like. <P>SOLUTION: A self-oscillation circuit includes: multiple electromechanical transducing elements 42 and 44 connected in parallel; a current detector circuit 52 that detects as voltage the currents passed through the electromechanical transducing elements 42 and 44; an offset circuit 54 that applies offset voltage to output voltage from the current detector circuit 52; and an amplifier circuit 56 that amplifies output voltage from the offset circuit 54 and applies it to the electromechanical transducing elements. The self-oscillation circuit oscillates at the primary resonance frequency of a vibration system including at least the electromechanical transducing elements 42 and 44. The driving device is driven with this self-oscillation circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自励発振回路およびそれを用いた駆動装置に関する。より詳しくは、前記駆動装置は圧電素子などの電気機械変換素子を利用したものであって、例えばレンズ駆動や精密ステージ駆動に適したものである。   The present invention relates to a self-excited oscillation circuit and a drive device using the same. More specifically, the driving device uses an electromechanical transducer such as a piezoelectric element, and is suitable for, for example, lens driving or precision stage driving.

従来、圧電素子を用いた駆動装置として、図10に示すものが知られている。図10(a)は駆動装置10の分解斜視図であり、図10(b)はその組立図である。   Conventionally, a drive device using a piezoelectric element is known as shown in FIG. FIG. 10A is an exploded perspective view of the drive device 10, and FIG. 10B is an assembly view thereof.

駆動装置10は、電気機械変換素子としての圧電素子12を備えている。圧電素子12は、矩形状の薄い圧電板を多数枚積層して構成された積層型圧電素子である。圧電素子12の両側面には、電極(一方のみ図示)14がそれぞれ形成されており、各電極14は導線16,16を介して不図示の駆動回路に接続されている。   The driving device 10 includes a piezoelectric element 12 as an electromechanical conversion element. The piezoelectric element 12 is a stacked piezoelectric element configured by stacking a large number of rectangular thin piezoelectric plates. Electrodes (only one shown) 14 are respectively formed on both side surfaces of the piezoelectric element 12, and each electrode 14 is connected to a drive circuit (not shown) via conductors 16 and 16.

圧電素子12の伸縮方向(長手方向)の一端には、例えば円柱状の錘18が固定されている。圧電素子12の伸縮方向の他端には、例えば丸棒状の駆動摩擦部材20が固定されている。   For example, a cylindrical weight 18 is fixed to one end of the piezoelectric element 12 in the expansion / contraction direction (longitudinal direction). For example, a round bar-shaped drive friction member 20 is fixed to the other end of the piezoelectric element 12 in the expansion / contraction direction.

駆動摩擦部材20の周囲には、移動体22が駆動摩擦部材20に沿って移動可能に設けられている。移動体22には、レンズ等の駆動対象物が取り付けられることになる。   A moving body 22 is provided around the driving friction member 20 so as to be movable along the driving friction member 20. A driving object such as a lens is attached to the moving body 22.

移動体22は、スライダ24を有している。スライダ24には、断面略半円状の溝26が形成されており、この溝26内に駆動摩擦部材20が嵌合している。スライダ24に嵌合した駆動摩擦部材20の上には、矩形板状の摩擦部材28が配置されている。摩擦部材28は、2つのねじ30でスライダ24に固定される板ばね32によって、駆動摩擦部材20に付勢されている。この板ばね32の付勢力によって、移動体22は、所定の摩擦力でもって駆動摩擦部材20に係合している。   The moving body 22 has a slider 24. A groove 26 having a substantially semicircular cross section is formed in the slider 24, and the drive friction member 20 is fitted in the groove 26. A rectangular plate-like friction member 28 is disposed on the driving friction member 20 fitted to the slider 24. The friction member 28 is urged against the driving friction member 20 by a leaf spring 32 fixed to the slider 24 with two screws 30. Due to the biasing force of the leaf spring 32, the moving body 22 is engaged with the drive friction member 20 with a predetermined friction force.

続いて、図11を参照して前記駆動装置10の動作について説明する。図11(a)は駆動装置10の各状態を概略的に示し、図11(b)は圧電素子12の変位を時間との関係で示したものである。   Next, the operation of the driving device 10 will be described with reference to FIG. FIG. 11 (a) schematically shows each state of the driving device 10, and FIG. 11 (b) shows the displacement of the piezoelectric element 12 in relation to time.

駆動回路から圧電素子12に、立ち上がり部が緩やかで立ち下がり部が急なパルス状駆動電圧が印加されると、駆動電圧の立ち上がり部に対応するときには図11における期間aのように圧電素子12は比較的緩慢に伸長する一方、駆動電圧の立ち下がり部に対応するときには図11における期間bのように圧電素子12は比較的急速に収縮して初期状態に戻る。この場合、前記期間aにおいて移動体22は、圧電素子12が緩慢に伸長することによる駆動摩擦部材20の比較的ゆっくりとした変位に伴って、図10(b)中の矢印A方向(すなわち圧電素子12から離れる方向、以下この方向を繰り出し方向という。)に移動する。一方、前記期間bにおいては、圧電素子12が急速に収縮することにより圧電素子12が比較的速く変位する。このとき、移動体22の慣性力が移動体22と駆動摩擦部材20との間の摩擦力に打ち勝つことにより、移動体22が駆動摩擦部材20に対して滑ってその位置に留まる(あるいは、駆動摩擦部材20の変位量よりも小さい距離だけ圧電素子12側に移動する)。このような期間a,bが交互に繰り返されることで、駆動摩擦部材20が図11(b)に示すような鋸歯状の変位でもって振動し、これにより移動体22は駆動摩擦部材20に沿って繰り出し方向に移動する。   When a pulsed drive voltage having a gradual rise and a steep fall is applied from the drive circuit to the piezoelectric element 12, the piezoelectric element 12 is in a period a in FIG. 11 when corresponding to the rise of the drive voltage. While extending relatively slowly, the piezoelectric element 12 contracts relatively rapidly and returns to the initial state as shown in period b in FIG. 11 when it corresponds to the falling portion of the drive voltage. In this case, during the period a, the moving body 22 moves in the direction indicated by the arrow A in FIG. 10B (ie, piezoelectric) in accordance with the relatively slow displacement of the driving friction member 20 caused by the piezoelectric element 12 slowly extending. It moves in a direction away from the element 12, hereinafter referred to as a feeding direction). On the other hand, in the period b, the piezoelectric element 12 is displaced relatively quickly due to the rapid contraction of the piezoelectric element 12. At this time, the inertial force of the moving body 22 overcomes the frictional force between the moving body 22 and the driving friction member 20, so that the moving body 22 slides on the driving friction member 20 and remains in that position (or driving). It moves to the piezoelectric element 12 side by a distance smaller than the displacement amount of the friction member 20). By repeating such periods a and b alternately, the drive friction member 20 vibrates with a sawtooth displacement as shown in FIG. 11B, whereby the moving body 22 moves along the drive friction member 20. To move in the feeding direction.

一方、移動体22を図10(b)中の矢印B方向(すなわち圧電素子12に近づく方向、以下この方向を戻り方向という。)に移動させるときには、立ち上がり部が急で立ち下がり部が緩やかなパルス状駆動電圧を駆動回路から圧電素子12に印加する。このときの移動体22の移動原理は上述したのとは逆になる。すなわち、圧電素子12が急速に伸長するときには移動体22は駆動摩擦部材20に対して滑ってその位置に留まり、圧電素子12が緩慢に収縮するときに移動体22は駆動摩擦部材20の変位に伴って移動する。これが繰り返されることで、移動体22は駆動摩擦部材20に沿って戻り方向に移動する。   On the other hand, when the moving body 22 is moved in the direction of arrow B in FIG. 10B (that is, the direction approaching the piezoelectric element 12, this direction is hereinafter referred to as the return direction), the rising portion is abrupt and the falling portion is gentle. A pulsed drive voltage is applied to the piezoelectric element 12 from the drive circuit. The principle of movement of the moving body 22 at this time is opposite to that described above. That is, when the piezoelectric element 12 rapidly expands, the moving body 22 slides on the driving friction member 20 and stays at that position, and when the piezoelectric element 12 slowly contracts, the moving body 22 is displaced by the driving friction member 20. Move with it. By repeating this, the moving body 22 moves in the return direction along the drive friction member 20.

また、下記特許文献1には、前記圧電素子12に代えて複数の圧電素子を直列に連結したものを用いた駆動装置が開示されている。この駆動装置では、各圧電素子にそれぞれ異なる左右対称波形の変動電圧を印加することより、圧電素子の連結体および駆動摩擦部材20について鋸歯状の変位を得て、移動体22を駆動するようにしている。   Further, Patent Document 1 below discloses a drive device using a plurality of piezoelectric elements connected in series instead of the piezoelectric element 12. In this drive device, by applying varying voltages having different symmetrical waveforms to each piezoelectric element, a sawtooth-like displacement is obtained for the connecting body of the piezoelectric elements and the driving friction member 20, and the moving body 22 is driven. ing.

しかしながら、前記駆動装置10および特許文献1の駆動装置では、駆動電圧の周波数を上げることができず、移動体20の駆動速度が遅くなってしまうという問題がある。そのため、駆動電圧の周波数を上げても駆動できるように、駆動摩擦部材20と移動体22とが相対的に常に滑っている状態にし、圧電素子の伸長時と収縮時の滑り量の差で移動体22を駆動する方法が提案されている。ところが、この方法を用いた駆動よりもさらに高速での駆動が求められている。   However, the driving device 10 and the driving device of Patent Document 1 have a problem that the frequency of the driving voltage cannot be increased and the driving speed of the moving body 20 becomes slow. Therefore, the driving friction member 20 and the moving body 22 are always in a relatively slippery state so that they can be driven even when the frequency of the driving voltage is increased, and the movement is caused by the difference in sliding amount between the expansion and contraction of the piezoelectric element. A method of driving the body 22 has been proposed. However, there is a demand for driving at a higher speed than driving using this method.

ここで、圧電素子を交流電圧で駆動する場合、共振周波数で駆動するのが最も効率が良い。特許文献1に開示される駆動方法では、1次共振と比較して、高次の共振が小さいか、もしくは無い。そのため、共振周波数で駆動し、駆動摩擦部材20の変位波形を大きくしても、その波形が正弦波に近くなってしまい、移動体22を効率よく駆動することができない。また、環境温度変動や形状ばらつき等により、圧電素子の共振周波数が変化するため、常に安定した高速駆動を実現しようとすると温度センサや速度センサ等を用いて最適な駆動条件を補正する必要がある。   Here, when the piezoelectric element is driven with an AC voltage, it is most efficient to drive at the resonance frequency. In the driving method disclosed in Patent Document 1, the higher-order resonance is smaller or absent compared to the primary resonance. Therefore, even if driving is performed at the resonance frequency and the displacement waveform of the driving friction member 20 is increased, the waveform becomes close to a sine wave, and the moving body 22 cannot be driven efficiently. In addition, since the resonance frequency of the piezoelectric element changes due to environmental temperature fluctuations, shape variations, etc., it is necessary to correct optimum driving conditions using a temperature sensor, speed sensor, etc., in order to always achieve stable high-speed driving. .

特開平11−41953号公報Japanese Patent Laid-Open No. 11-41953

そこで、本発明は、環境温度変動や量産による形状ばらつき等で電気機械変換素子の共振周波数が変化しても、常に最適な周波数の駆動電圧で移動体を効率よく高速駆動できる駆動装置を提供するとともに、そのために好適に用いられる自励発振回路を提供することを課題とする。   Therefore, the present invention provides a drive device that can efficiently and rapidly drive a moving body with a drive voltage having an optimum frequency even when the resonance frequency of the electromechanical transducer changes due to environmental temperature fluctuations or shape variations due to mass production. In addition, it is an object to provide a self-excited oscillation circuit that is preferably used for that purpose.

前記課題を解決するために、本発明の自励発振回路は、1つまたは並列に接続された複数の電気機械変換素子と、
前記電気機械変換素子に流れる電流を電圧として検出する電流検出回路と、
前記電流検出回路からの出力電圧にオフセット電圧を付加するオフセット回路と、
前記オフセット回路からの出力電圧を増幅して前記電気機械変換素子に印加する増幅回路とを備え、
少なくとも前記電気機械変換素子を含む振動系の1次共振周波数で発振することを特徴とするものである。
In order to solve the above problems, a self-excited oscillation circuit of the present invention includes one or a plurality of electromechanical transducers connected in parallel,
A current detection circuit for detecting a current flowing through the electromechanical transducer as a voltage;
An offset circuit for adding an offset voltage to the output voltage from the current detection circuit;
An amplification circuit that amplifies the output voltage from the offset circuit and applies the amplified voltage to the electromechanical transducer,
It oscillates at a primary resonance frequency of a vibration system including at least the electromechanical transducer.

本発明の自励発振回路では、前記増幅回路からの出力電圧の波形が矩形波状であり、
前記オフセット回路のオフセット電圧により前記増幅回路の出力電圧波形のデューティ比が変化してもよい。
In the self-excited oscillation circuit of the present invention, the waveform of the output voltage from the amplifier circuit is a rectangular wave,
The duty ratio of the output voltage waveform of the amplifier circuit may change depending on the offset voltage of the offset circuit.

また、本発明の駆動装置は、前記自励発振回路からなる駆動回路と、
前記駆動回路の電気機械変換素子2つと前記各電気機械変換素子の間に挟まれた第1錘とからなる振動発生部材と、
前記振動発生部材の一端に固定された第2錘と、
前記振動発生部材の他端に固定された駆動摩擦部材と、
前記駆動摩擦部材の周囲に所定の摩擦力で係合する移動体とを備え、
前記駆動摩擦部材を鋸歯状に変位させて前記移動体を前記駆動摩擦部材に沿って移動させるように、前記駆動回路により駆動電圧を前記電気機械変換素子に印加することを特徴とするものである。
Further, the drive device of the present invention comprises a drive circuit comprising the self-excited oscillation circuit,
A vibration generating member comprising two electromechanical transducer elements of the drive circuit and a first weight sandwiched between the electromechanical transducer elements;
A second weight fixed to one end of the vibration generating member;
A drive friction member fixed to the other end of the vibration generating member;
A movable body engaged with a predetermined frictional force around the drive friction member,
A drive voltage is applied to the electromechanical transducer by the drive circuit so as to displace the drive friction member in a sawtooth shape and move the movable body along the drive friction member. .

本発明の駆動装置では、前記オフセット回路のオフセット電圧を変えることで前記増幅回路の出力電圧波形のデューティ比を変化させることによって、前記移動体の移動速度および移動方向の少なくとも一方を変化させてもよい。   In the driving device of the present invention, even if at least one of the moving speed and the moving direction of the moving body is changed by changing the duty ratio of the output voltage waveform of the amplifier circuit by changing the offset voltage of the offset circuit. Good.

また、本発明の駆動装置では、前記移動体には収差補正レンズが取り付けられ、記録媒体の記録層における光スポットの収差を補正するように前記収差補正レンズを光ヘッド装置内で駆動してもよい。ここでの収差は、対象となる記録層に収束する光スポットが記録媒体のカバー層や他の記録層を通過する際に発生する収差を意味する。   In the driving device of the present invention, an aberration correction lens is attached to the movable body, and the aberration correction lens is driven in the optical head device so as to correct the aberration of the light spot in the recording layer of the recording medium. Good. The aberration here means an aberration generated when a light spot converged on a target recording layer passes through a cover layer or another recording layer of the recording medium.

本発明の自励発振回路によれば、環境温度変動や形状ばらつき等によって電気機械変換素子の1次共振周波数が変化した場合でも、その変化に追従して常に電気機械変換素子を含む振動系の1次共振周波数で発振するため、安定して電気機械変換素子を効率よく駆動することができる。   According to the self-excited oscillation circuit of the present invention, even when the primary resonance frequency of the electromechanical transducer changes due to environmental temperature fluctuation or shape variation, the vibration system including the electromechanical transducer always follows the change. Since oscillation occurs at the primary resonance frequency, the electromechanical transducer can be driven stably and efficiently.

また、前記自励発振回路を用いた本発明の駆動装置によれば、環境温度変動や形状ばらつき等にかかわらず電気機械変換素子を含む振動系を常に1次共振周波数で駆動することができ、安定して移動体の高速駆動を実現できる。   Further, according to the driving device of the present invention using the self-excited oscillation circuit, the vibration system including the electromechanical transducer can always be driven at the primary resonance frequency regardless of environmental temperature fluctuation, shape variation, and the like. High-speed driving of the moving body can be realized stably.

以下に、本発明の実施の形態について添付図面を参照して説明する。
図1(a)は本発明の一実施形態である駆動装置40の分解斜視図、図1(b)はその組立図である。駆動装置40は、前記背景技術として説明した駆動装置10とほぼ同様の構成を備えている。異なる点として、前記駆動装置10の圧電素子12に代えて、錘18より小さい円盤状のもう1つ別の錘(第1錘)46を間に挟んで連結された2つの圧電素子42,44が設けられている。2つの圧電素子42,44は、後述する駆動回路50に導線16を介して並列に接続されている。2つの圧電素子42,44と錘46とで、振動発生部材48が構成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1A is an exploded perspective view of a drive device 40 according to an embodiment of the present invention, and FIG. The drive device 40 has substantially the same configuration as the drive device 10 described as the background art. The difference is that, instead of the piezoelectric element 12 of the driving device 10, two piezoelectric elements 42 and 44 that are connected with another disk-shaped weight (first weight) 46 smaller than the weight 18 interposed therebetween. Is provided. The two piezoelectric elements 42 and 44 are connected in parallel to the drive circuit 50 described later via the conducting wire 16. The two piezoelectric elements 42 and 44 and the weight 46 constitute a vibration generating member 48.

これ以外の構成については、前記駆動装置10と同一である。すなわち、振動発生部材48の伸縮方向(長手方向)の一端には、例えば円柱状の錘(第2錘)18が固定されている。振動発生部材48の伸縮方向の他端には、例えば丸棒状の駆動摩擦部材20が固定されている。   The other configuration is the same as that of the driving device 10. That is, for example, a columnar weight (second weight) 18 is fixed to one end of the vibration generating member 48 in the expansion / contraction direction (longitudinal direction). For example, a round bar-shaped drive friction member 20 is fixed to the other end of the vibration generating member 48 in the expansion / contraction direction.

駆動摩擦部材20の周囲には、移動体22が駆動摩擦部材20に沿って移動可能に設けられている。移動体22には、レンズ等の駆動対象物が取り付けられることになる。   A moving body 22 is provided around the driving friction member 20 so as to be movable along the driving friction member 20. A driving object such as a lens is attached to the moving body 22.

移動体22は、スライダ24を有している。スライダ24には、断面略半円状の溝26が形成されており、この溝26内に駆動摩擦部材20が嵌合している。スライダ24に嵌合した駆動摩擦部材20の上には、矩形板状の摩擦部材28が配置されている。摩擦部材28は、2つのねじ30でスライダ24に固定される板ばね32によって、駆動摩擦部材20に付勢されている。この板ばね32の付勢力によって、移動体22は、所定の摩擦力でもって駆動摩擦部材20に係合している。   The moving body 22 has a slider 24. A groove 26 having a substantially semicircular cross section is formed in the slider 24, and the drive friction member 20 is fitted in the groove 26. A rectangular plate-like friction member 28 is disposed on the driving friction member 20 fitted to the slider 24. The friction member 28 is urged against the driving friction member 20 by a leaf spring 32 fixed to the slider 24 with two screws 30. Due to the biasing force of the leaf spring 32, the moving body 22 is engaged with the drive friction member 20 with a predetermined friction force.

なお、摩擦部材28を駆動摩擦部材20に付勢するための付勢手段は、板ばねに限らず、コイルばねやゴム等の弾性部材であってもよい。   The urging means for urging the friction member 28 to the drive friction member 20 is not limited to a leaf spring, but may be an elastic member such as a coil spring or rubber.

図2は、駆動装置40の駆動回路50を示す。駆動回路50は、電流検出回路52、オフセット回路54および増幅回路56の3つの回路ブロックからなる自励発振回路である。電流検出回路52は、圧電素子42,44に流れる電流を電圧として検出する電流検出抵抗52aを有している。また、電流検出回路52は、直列接続された4つのオペアンプ52bを含む。これらのオペアンプ52bは、カットオフ周波数が例えば30kHzの4次のハイパスフィルタ、および、カットオフ周波数が例えば300kHzの4次のローパスフィルタとして機能し、余分な電圧信号のカットと位相調整を行う。   FIG. 2 shows the drive circuit 50 of the drive device 40. The drive circuit 50 is a self-excited oscillation circuit composed of three circuit blocks: a current detection circuit 52, an offset circuit 54, and an amplification circuit 56. The current detection circuit 52 includes a current detection resistor 52a that detects a current flowing through the piezoelectric elements 42 and 44 as a voltage. The current detection circuit 52 includes four operational amplifiers 52b connected in series. These operational amplifiers 52b function as a fourth-order high-pass filter with a cutoff frequency of, for example, 30 kHz and a fourth-order low-pass filter with a cutoff frequency of, for example, 300 kHz, and cut and phase adjustment of an extra voltage signal.

オフセット回路54は、オフセット電源54aとオペアンプ54bを含み、電流検出回路52からの出力電圧に直流オフセット電圧を付加するものである。オフセット電源54aによるオフセット電圧値は可変になっている。   The offset circuit 54 includes an offset power supply 54a and an operational amplifier 54b, and adds a DC offset voltage to the output voltage from the current detection circuit 52. The offset voltage value by the offset power supply 54a is variable.

増幅回路56は、オペアンプ56aとこれに並列接続された2つのツェナーダイオード56bとを含み、オフセット回路54からの出力電圧を増幅して圧電素子42,44に印加するものである。   The amplifier circuit 56 includes an operational amplifier 56a and two Zener diodes 56b connected in parallel thereto, and amplifies the output voltage from the offset circuit 54 and applies it to the piezoelectric elements 42 and 44.

増幅回路56は、オフセット回路54からの出力電圧に2つのツェナーダイオード56bでリミッタをかけることにより略矩形波のパルス状駆動電圧を出力する。また、オフセット回路54により付加されるオフセット電圧値を変えることにより、増幅回路56の出力電圧波形のデューティ比が変化するようになっている。   The amplifying circuit 56 outputs a substantially rectangular wave pulsed driving voltage by applying a limiter to the output voltage from the offset circuit 54 by two Zener diodes 56b. Further, by changing the offset voltage value added by the offset circuit 54, the duty ratio of the output voltage waveform of the amplifier circuit 56 is changed.

なお、本実施形態では、増幅回路56で駆動電圧の増幅を行っているが、電流検出回路52およびオフセット回路54もそれぞれオペアンプを有しているので、電流検出回路52やオフセット回路54で電圧信号の増幅を行ってもよい。   In the present embodiment, the drive voltage is amplified by the amplifier circuit 56. However, since the current detection circuit 52 and the offset circuit 54 also have operational amplifiers, the voltage signal is output by the current detection circuit 52 and the offset circuit 54. May be amplified.

図3は、駆動装置40の駆動電圧と駆動摩擦部材20の変位の伝達特性を示す。図3から明らかなように、本実施形態の駆動装置40では、駆動摩擦部材20の変位利得(すなわち振動振幅)が例えば約103kHzで極大となる。この約103kHzの周波数は、圧電素子42,44と錘46と駆動摩擦部材20とを含む振動系の1次共振周波数であり、最も効率よく且つ高速で移動体22を駆動できる周波数である。   FIG. 3 shows the transmission characteristics of the driving voltage of the driving device 40 and the displacement of the driving friction member 20. As is apparent from FIG. 3, in the drive device 40 of the present embodiment, the displacement gain (that is, the vibration amplitude) of the drive friction member 20 becomes maximum at about 103 kHz, for example. The frequency of about 103 kHz is the primary resonance frequency of the vibration system including the piezoelectric elements 42 and 44, the weight 46, and the driving friction member 20, and is the frequency at which the moving body 22 can be driven most efficiently and at high speed.

一方、図4は駆動回路50の一巡伝達特性を示すが、発振周波数は利得が0dB以上で且つ位相が0degの条件で決まり、駆動回路50では利得0dBで位相0degとなる例えば約103kHzの周波数で発振する。すなわち、この発振周波数は、圧電素子42,44と錘46と駆動摩擦部材20とを含む振動系の1次共振周波数と常に一致する。したがって、駆動装置40では、環境温度変動や量産による形状ばらつき等によって圧電素子42,44の共振周波数が変化した場合にも、常に前記振動系の1次共振周波数に一致した周波数の駆動電圧で圧電素子42,44を駆動することができ、安定した移動体22の高速駆動を実現できる。   On the other hand, FIG. 4 shows a round-trip transfer characteristic of the drive circuit 50. The oscillation frequency is determined by the condition that the gain is 0 dB or more and the phase is 0 deg. The drive circuit 50 has a gain of 0 dB and a phase of 0 deg. Oscillates. That is, this oscillation frequency always matches the primary resonance frequency of the vibration system including the piezoelectric elements 42 and 44, the weight 46, and the drive friction member 20. Therefore, in the driving device 40, even when the resonance frequency of the piezoelectric elements 42 and 44 changes due to environmental temperature fluctuations, shape variations due to mass production, etc., the piezoelectric device always uses a driving voltage having a frequency that matches the primary resonance frequency of the vibration system. The elements 42 and 44 can be driven, and stable high-speed driving of the moving body 22 can be realized.

なお、駆動回路50は、並列に接続された複数の圧電素子を駆動する場合に限らず、1つの圧電素子を駆動する場合にも好適に用いられる。   The drive circuit 50 is preferably used not only when driving a plurality of piezoelectric elements connected in parallel, but also when driving one piezoelectric element.

図5は、オフセット回路54によるオフセット電圧値を−0.4V、0V、+0.4Vと変化させたときの増幅回路56の出力電圧波形を示す。いずれの場合も周波数が103kHzの矩形波のパルス電圧となるが、オフセット電圧値−0.4Vのときデューティ比0.33、オフセット電圧値0Vのときデューティ比0.5、オフセット電圧値+0.4Vのときデューティ比0.66にそれぞれなっている。このようにオフセット回路54によるオフセット電圧値を可変とすることによって、増幅回路56からの出力電圧波形のデューティ比を変化させることができる。   FIG. 5 shows an output voltage waveform of the amplifier circuit 56 when the offset voltage value by the offset circuit 54 is changed to −0.4V, 0V, and + 0.4V. In either case, the pulse voltage is a rectangular wave with a frequency of 103 kHz. The duty ratio is 0.33 when the offset voltage value is −0.4 V, the duty ratio is 0.5 when the offset voltage value is 0 V, and the offset voltage value is +0.4 V. In this case, the duty ratio is 0.66. Thus, by making the offset voltage value by the offset circuit 54 variable, the duty ratio of the output voltage waveform from the amplifier circuit 56 can be changed.

図6は、図5(c)に示す駆動電圧(オフセット電圧+0.4V、周波数103kHz、デューティ比0.66)を圧電素子42,44に印加したときの駆動摩擦部材20の変位を表している。この変位波形は、比較的速い繰り出し方向の変位と比較的ゆっくりとした戻り方向の変位を繰り返す略鋸歯状になっており、したがって移動体22を戻り方向に駆動することができる。この場合、振幅が非常に大きくなるため、移動体22は駆動摩擦部材20に対して常に滑っている状態になるが、伸長時と収縮時の滑り量の差によって移動体22を戻り方向に移動させることが可能になる。   FIG. 6 shows the displacement of the drive friction member 20 when the drive voltage (offset voltage +0.4 V, frequency 103 kHz, duty ratio 0.66) shown in FIG. 5C is applied to the piezoelectric elements 42 and 44. . This displacement waveform has a substantially saw-tooth shape that repeats a relatively fast feed direction displacement and a relatively slow return direction displacement, so that the moving body 22 can be driven in the return direction. In this case, since the amplitude becomes very large, the moving body 22 always slides with respect to the drive friction member 20, but the moving body 22 is moved in the return direction due to the difference in the amount of slipping between expansion and contraction. It becomes possible to make it.

一方、図5(a)に示す駆動電圧(オフセット電圧−0.4V、周波数103kHz、デューティ比0.33)を圧電素子42,44に印加した場合には、駆動電圧を構成する矩形波に含まれる2次成分の位相がデューティ比0.66の場合に対して180degだけずれていることによって、駆動摩擦部材20の変位波形は図6に示すものとは逆の傾きの略鋸歯状となる。すなわち、この場合の駆動摩擦部材20の変位波形は、比較的ゆっくりとした繰り出し方向の変位と比較的速い戻り方向の変位を繰り返す略鋸歯状になる。これにより、移動体22を繰り出し方向に駆動することができる。このように増幅回路56からの出力電圧のデューティ比を変化させることによって、移動体22の移動方向を変えることができる。   On the other hand, when the drive voltage (offset voltage −0.4 V, frequency 103 kHz, duty ratio 0.33) shown in FIG. 5A is applied to the piezoelectric elements 42 and 44, the drive voltage is included in the rectangular wave. Since the phase of the secondary component to be shifted is 180 degrees with respect to the case where the duty ratio is 0.66, the displacement waveform of the drive friction member 20 has a substantially saw-tooth shape having an inclination opposite to that shown in FIG. That is, the displacement waveform of the drive friction member 20 in this case has a substantially serrated shape that repeats a relatively slow displacement in the feeding direction and a relatively fast displacement in the return direction. Thereby, the moving body 22 can be driven in the feeding direction. Thus, the moving direction of the moving body 22 can be changed by changing the duty ratio of the output voltage from the amplifier circuit 56.

図7は、駆動電圧のデューティ比と移動体22の移動速度との関係を示す。図7に示すように、デューティ比0.33および0.66付近で移動体22は最も高速になり、デューティ比0.5付近では移動体22は動かなくなる。このように増幅回路56からの出力電圧のデューティ比を変化させることによって、移動体22の移動速度も変えることができる。   FIG. 7 shows the relationship between the duty ratio of the drive voltage and the moving speed of the moving body 22. As shown in FIG. 7, the moving body 22 has the highest speed near the duty ratios of 0.33 and 0.66, and the moving body 22 does not move near the duty ratio of 0.5. Thus, by changing the duty ratio of the output voltage from the amplifier circuit 56, the moving speed of the moving body 22 can also be changed.

図8は、環境温度を変えたときの移動体22の速度を示す。ここで、通常駆動とは、環境温度にかかわらず、周波数103kHzでデューティ比0.66の矩形波パルス状駆動電圧で駆動した場合のことである。図8に示すように、通常駆動の場合には、環境温度が変わると、圧電素子42,44と錘46と駆動摩擦部材20とを含む振動系の共振周波数も変化するために、駆動電圧の周波数が前記振動系の共振周波数からずれて、移動体22の速度が低下してしまう。これに対し、本実施形態の駆動装置40のように自励発振回路による駆動の場合には、環境温度の変動に伴って前記振動系の共振周波数が変化しても、駆動回路50は常にその共振周波数で発振するため移動体22の速度変化がほとんどなく、安定した高速駆動を維持することができることが分かる。   FIG. 8 shows the speed of the moving body 22 when the environmental temperature is changed. Here, the normal driving means that the driving is performed with a rectangular pulse driving voltage having a frequency of 103 kHz and a duty ratio of 0.66 regardless of the environmental temperature. As shown in FIG. 8, in the case of normal driving, when the environmental temperature changes, the resonance frequency of the vibration system including the piezoelectric elements 42 and 44, the weight 46, and the driving friction member 20 also changes. The frequency deviates from the resonance frequency of the vibration system, and the speed of the moving body 22 decreases. On the other hand, in the case of driving by the self-excited oscillation circuit as in the driving device 40 of the present embodiment, the driving circuit 50 always keeps the same even if the resonance frequency of the vibration system changes with the environmental temperature fluctuation. It can be seen that since the oscillation occurs at the resonance frequency, there is almost no change in the speed of the moving body 22 and stable high-speed driving can be maintained.

次に、図9を参照して前記駆動装置40を光ヘッド装置に適用した例について説明する。駆動装置40の移動体22には、収差補正レンズ60を保持したレンズ玉枠62の一端が取り付けられている。レンズ玉枠62の他端はガイド軸64に係合しており、これによりレンズ玉枠62が駆動摩擦部材20を中心に回転するのが規制されている。この光ヘッドでは、レーザ装置66から発せられたレーザ光Lは、収差補正レンズ60および対物レンズ68を介して、記録媒体100のフロント記録層102またはリア記録層104に光スポットとして照射されるようになっている。   Next, an example in which the driving device 40 is applied to an optical head device will be described with reference to FIG. One end of a lens ball frame 62 holding the aberration correction lens 60 is attached to the moving body 22 of the driving device 40. The other end of the lens ball frame 62 is engaged with the guide shaft 64, thereby restricting the lens ball frame 62 from rotating around the drive friction member 20. In this optical head, the laser light L emitted from the laser device 66 is irradiated as a light spot on the front recording layer 102 or the rear recording layer 104 of the recording medium 100 through the aberration correction lens 60 and the objective lens 68. It has become.

DVDなどの記録層が複数ある記録媒体100では、各記録層102,104間の距離が数十μm離れているため、収差補正レンズ60をレーザ光Lと略平行に駆動して、各記録層102,104に適した位置に光スポットの照準が合うように球面収差を補正する必要がある。球面収差補正のための収差補正レンズ60の移動時間は短い方が好ましいが、例えば従来の駆動装置10を収差補正レンズ駆動用いた場合には、環境温度の変化によって駆動速度が大幅に落ちるために、駆動摩擦部材20と移動体22とが相対的に常に滑っている状態で収差補正しても収差補正に時間がかかってしまう。これに対し、上述したように駆動装置40では、環境温度の変化にかかわらず収差補正レンズ60の高速駆動が可能であるため、短時間での球面収差補正が可能になる。3波長のレーザを使用する場合には、収差補正レンズ60の移動距離が長くなるために、本実施形態の駆動装置40が特に有効である。   In the recording medium 100 having a plurality of recording layers such as a DVD, since the distance between the recording layers 102 and 104 is several tens of μm, the aberration correction lens 60 is driven substantially in parallel with the laser beam L, and each recording layer It is necessary to correct the spherical aberration so that the light spot is aimed at a position suitable for 102 and 104. Although it is preferable that the movement time of the aberration correction lens 60 for spherical aberration correction is short, for example, when the conventional driving device 10 is used to drive the aberration correction lens, the driving speed is greatly reduced due to a change in environmental temperature. Even if aberration correction is performed in a state where the drive friction member 20 and the moving body 22 are always relatively sliding, it takes time to correct the aberration. On the other hand, as described above, since the driving device 40 can drive the aberration correction lens 60 at high speed regardless of the change in the environmental temperature, the spherical aberration can be corrected in a short time. In the case of using a three-wavelength laser, the moving distance of the aberration correction lens 60 becomes long, so that the driving device 40 of this embodiment is particularly effective.

なお、本発明は、電気機械変換素子を固定する素子固定タイプの駆動装置に限らず、移動体を固定するタイプのものや、駆動摩擦部材を固定するタイプのもの、自走式のものなど、電気機械変換素子を用いた種々のタイプの駆動装置に広く適用することができる。   The present invention is not limited to an element-fixing type driving device that fixes an electromechanical conversion element, but a type that fixes a moving body, a type that fixes a driving friction member, a self-propelled type, etc. The present invention can be widely applied to various types of drive devices using electromechanical transducer elements.

駆動装置の分解斜視図と組立図。The exploded perspective view and assembly drawing of a drive device. 駆動回路の構成図。The block diagram of a drive circuit. 駆動電圧と駆動摩擦部材変位の伝達特性を示すグラフ。The graph which shows the transmission characteristic of a drive voltage and a drive friction member displacement. 駆動回路の一巡伝達特性を示すグラフ。The graph which shows the circuit transfer characteristic of a drive circuit. オフセット電圧を変化させた場合の駆動電圧波形を示す図。The figure which shows the drive voltage waveform at the time of changing an offset voltage. 図5(c)に示す駆動電圧で駆動した場合の駆動摩擦部材の変位波形図。FIG. 6 is a displacement waveform diagram of the drive friction member when driven by the drive voltage shown in FIG. 駆動電圧のデューティ比と移動体の移動速度との関係を示すグラフ。The graph which shows the relationship between the duty ratio of a drive voltage, and the moving speed of a moving body. 環境温度を変えたときの移動体の速度を示すグラフ。The graph which shows the speed of a moving body when environmental temperature is changed. 駆動装置を光ヘッド装置に適用した例を示す図。The figure which shows the example which applied the drive device to the optical head apparatus. 従来例の駆動装置の分解斜視図と組立図。The exploded perspective view and assembly drawing of the drive device of a prior art example. 従来例の駆動装置の各状態を示す概略図と圧電素子の変位波形図。Schematic which shows each state of the drive device of a prior art example, and the displacement waveform figure of a piezoelectric element.

符号の説明Explanation of symbols

18…錘(第2錘)
20…駆動摩擦部材
22…移動体
40…駆動装置
42…圧電素子(電気機械変換素子)
44…圧電素子(電気機械変換素子)
46…錘(第1錘)
48…振動発生部材
50…駆動回路(自励発振回路)
52…電流検出回路
54…オフセット回路
56…増幅回路
18 ... weight (second weight)
20 ... Driving friction member 22 ... Moving body 40 ... Driving device 42 ... Piezoelectric element (electromechanical transducer)
44 ... Piezoelectric element (electromechanical transducer)
46 ... weight (first weight)
48 ... Vibration generating member 50 ... Drive circuit (self-excited oscillation circuit)
52 ... Current detection circuit 54 ... Offset circuit 56 ... Amplifier circuit

Claims (5)

1つまたは並列に接続された複数の電気機械変換素子と、
前記電気機械変換素子に流れる電流を電圧として検出する電流検出回路と、
前記電流検出回路からの出力電圧にオフセット電圧を付加するオフセット回路と、
前記オフセット回路からの出力電圧を増幅して前記電気機械変換素子に印加する増幅回路とを備え、
少なくとも前記電気機械変換素子を含む振動系の1次共振周波数で発振することを特徴とする自励発振回路。
One or a plurality of electromechanical transducers connected in parallel;
A current detection circuit for detecting a current flowing through the electromechanical transducer as a voltage;
An offset circuit for adding an offset voltage to the output voltage from the current detection circuit;
An amplification circuit that amplifies the output voltage from the offset circuit and applies the amplified voltage to the electromechanical transducer,
A self-excited oscillation circuit that oscillates at a primary resonance frequency of a vibration system including at least the electromechanical transducer.
前記増幅回路からの出力電圧の波形は矩形波状であり、
前記オフセット回路のオフセット電圧により前記増幅回路の出力電圧波形のデューティ比が変化することを特徴とする請求項1に記載の自励発振回路。
The waveform of the output voltage from the amplifier circuit is a rectangular wave,
2. The self-excited oscillation circuit according to claim 1, wherein a duty ratio of an output voltage waveform of the amplifier circuit is changed by an offset voltage of the offset circuit.
前記請求項1または2に記載の自励発振回路からなる駆動回路と、
前記駆動回路の電気機械変換素子2つと前記各電気機械変換素子の間に挟まれた第1錘とからなる振動発生部材と、
前記振動発生部材の一端に固定された第2錘と、
前記振動発生部材の他端に固定された駆動摩擦部材と、
前記駆動摩擦部材の周囲に所定の摩擦力で係合する移動体とを備え、
前記駆動摩擦部材を鋸歯状に変位させて前記移動体を前記駆動摩擦部材に沿って移動させるように、前記駆動回路により駆動電圧を前記電気機械変換素子に印加することを特徴とする駆動装置。
A drive circuit comprising the self-excited oscillation circuit according to claim 1 or 2,
A vibration generating member comprising two electromechanical transducer elements of the drive circuit and a first weight sandwiched between the electromechanical transducer elements;
A second weight fixed to one end of the vibration generating member;
A drive friction member fixed to the other end of the vibration generating member;
A movable body engaged with a predetermined frictional force around the drive friction member,
A drive device, wherein a drive voltage is applied to the electromechanical conversion element by the drive circuit so as to displace the drive friction member in a sawtooth shape and move the moving body along the drive friction member.
前記オフセット回路のオフセット電圧を変えることで前記増幅回路の出力電圧波形のデューティ比を変化させることによって、前記移動体の移動速度および移動方向の少なくとも一方を変化させることを特徴とする請求項3に記載の駆動装置。   The at least one of the moving speed and the moving direction of the moving body is changed by changing the duty ratio of the output voltage waveform of the amplifier circuit by changing the offset voltage of the offset circuit. The drive device described. 前記移動体には収差補正レンズが取り付けられ、記録媒体の記録層における光スポットの収差を補正するように前記収差補正レンズを光ヘッド装置内で駆動することを特徴とする請求項3または4に記載の駆動装置。   5. The aberration correction lens is attached to the movable body, and the aberration correction lens is driven in an optical head device so as to correct an aberration of a light spot in a recording layer of a recording medium. The drive device described.
JP2004261952A 2004-09-09 2004-09-09 Self-oscillation circuit and driving device using the same Pending JP2006081290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004261952A JP2006081290A (en) 2004-09-09 2004-09-09 Self-oscillation circuit and driving device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261952A JP2006081290A (en) 2004-09-09 2004-09-09 Self-oscillation circuit and driving device using the same

Publications (1)

Publication Number Publication Date
JP2006081290A true JP2006081290A (en) 2006-03-23

Family

ID=36160289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261952A Pending JP2006081290A (en) 2004-09-09 2004-09-09 Self-oscillation circuit and driving device using the same

Country Status (1)

Country Link
JP (1) JP2006081290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282448A (en) * 2006-04-11 2007-10-25 Fujinon Corp Driver
JP2011087455A (en) * 2009-09-18 2011-04-28 Murata Mfg Co Ltd Piezoelectric actuator driver circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211210A (en) * 1991-02-12 1992-08-03 Canon Inc Lens barrel by use of vibrating motor
JPH08126357A (en) * 1994-10-19 1996-05-17 Alps Electric Co Ltd Piezoelectric motor drive circuit
JPH09163770A (en) * 1995-12-08 1997-06-20 Olympus Optical Co Ltd Ultrasonic motor driver
JP2001119962A (en) * 1999-10-20 2001-04-27 Minolta Co Ltd Actuator using piezoelectric crystal element and drive method therefor
JP2003164173A (en) * 2001-11-22 2003-06-06 Minolta Co Ltd Drive unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211210A (en) * 1991-02-12 1992-08-03 Canon Inc Lens barrel by use of vibrating motor
JPH08126357A (en) * 1994-10-19 1996-05-17 Alps Electric Co Ltd Piezoelectric motor drive circuit
JPH09163770A (en) * 1995-12-08 1997-06-20 Olympus Optical Co Ltd Ultrasonic motor driver
JP2001119962A (en) * 1999-10-20 2001-04-27 Minolta Co Ltd Actuator using piezoelectric crystal element and drive method therefor
JP2003164173A (en) * 2001-11-22 2003-06-06 Minolta Co Ltd Drive unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282448A (en) * 2006-04-11 2007-10-25 Fujinon Corp Driver
JP2011087455A (en) * 2009-09-18 2011-04-28 Murata Mfg Co Ltd Piezoelectric actuator driver circuit
JP2015159724A (en) * 2009-09-18 2015-09-03 株式会社村田製作所 Piezoelectric actuator driver circuit

Similar Documents

Publication Publication Date Title
JP3832396B2 (en) Drive device, position control device, and camera
JP4209464B2 (en) Ultrasonic actuator device
US6320298B1 (en) Actuator driving circuit, an actuator driving device, and an actuator driving method
JP2007053831A (en) Driver
JPH04345928A (en) Driving device for recording medium
JP2010233316A (en) Ultrasonic motor
JPH10290589A (en) Driver using electromechanical transducer
JP2006113874A (en) Positioning device
WO2006003997A1 (en) Optical head and optical disk device
JP2006081290A (en) Self-oscillation circuit and driving device using the same
US6218764B1 (en) Actuator using electromechanical transducer and drive pulse generator suitable thereof
JP2006087217A (en) Drive unit
JP4814948B2 (en) Control device for vibration actuator
JP4664004B2 (en) DRIVE DEVICE AND INFORMATION RECORDING DEVICE
US8274197B2 (en) Driving device
US8203253B2 (en) Piezoelectric actuator, driving device, positioning device and laser module
JP2005323450A (en) Driving device
JP4760212B2 (en) Drive device
JP2008199880A (en) Actuator unit and drive method thereof, drive for information recording/reading head, and information recording/reading apparatus
JP2010051059A (en) Drive device and optical device
KR100400640B1 (en) Stack-Type Piezoelectric Actuator For Optical Pick-up Device
US20070267580A1 (en) Drive stage for scanning probe apparatus, and scanning probe apparatus
JPH0965669A (en) Piezoelectric actuator
WO2011064988A1 (en) Optical pickup device
JP5338146B2 (en) Drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102