JPH04211210A - Lens barrel by use of vibrating motor - Google Patents

Lens barrel by use of vibrating motor

Info

Publication number
JPH04211210A
JPH04211210A JP3038888A JP3888891A JPH04211210A JP H04211210 A JPH04211210 A JP H04211210A JP 3038888 A JP3038888 A JP 3038888A JP 3888891 A JP3888891 A JP 3888891A JP H04211210 A JPH04211210 A JP H04211210A
Authority
JP
Japan
Prior art keywords
lens
bearing
stator
vibration
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3038888A
Other languages
Japanese (ja)
Other versions
JPH0748087B2 (en
Inventor
Makoto Katsuma
勝間 真
Hiroyasu Murakami
村上 博泰
Akira Hiramatsu
平松 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3038888A priority Critical patent/JPH0748087B2/en
Publication of JPH04211210A publication Critical patent/JPH04211210A/en
Publication of JPH0748087B2 publication Critical patent/JPH0748087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce torque loss caused by a load of energizing force by a spring member. CONSTITUTION:A cylindrical fixed barrel 24, a bearing 25 arranged in an inner diameter position of the fixed barrel 24 and a stator 2 are provided, and a vibrating motor to rotate a rotary body 21, which is energized springily in the optical axial direction against the stator 2 by means of a spring member 22, around the optical axis by means of vibration of the stator 2 and a movable lens 20 are also provided. Furthermore, the rotary body 21 and a rotary bearing object 27 for a bearing 25 are brought into contact with each other in the optical axial direction, and the movable lens 20 is moved in the optical axial direction by rotating the rotary body 21 by means of a lens delivery mechanism, and a receiver of energizing force by the spring member 22 in the vibrating motor in the optical axial direction is carried out by means of a fixing member 23 through the rotary bearing object 27.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、機械的振動を利用する
振動波モータを用いたレンズ鏡筒に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens barrel using a vibration wave motor that utilizes mechanical vibration.

【0002】0002

【従来の技術】振動モータは、既に特開昭52−291
92号公報などによって知られているように、固定体と
移動体とを摩擦接触させ、これらの少なくとも一方を電
気−機械エネルギ変換素子自体、或いは電気−機械エネ
ルギ変換素子を含む弾性振動体で構成し、電気−機械エ
ネルギ変換素子に交流の電気エネルギーを加えることに
よって、機械的振動エネルギーを発生させ、移動体を一
方向に摩擦駆動させるものである。
[Prior Art] Vibration motors have already been developed in Japanese Patent Application Laid-open No. 52-291.
As is known from Japanese Patent No. 92, etc., a fixed body and a movable body are brought into frictional contact, and at least one of them is constituted by an electro-mechanical energy conversion element itself or an elastic vibrating body including an electro-mechanical energy conversion element. By applying alternating current electrical energy to the electro-mechanical energy conversion element, mechanical vibration energy is generated, and the movable body is frictionally driven in one direction.

【0003】0003

【発明が解決しようとする課題】従来、振動モータをレ
ンズ駆動に応用しようとする試みはなされているが、次
のような問題点があった。即ち、振動モータにはステー
タと回転体とが強く摩擦接触するようにバネ部材が設け
られているが、このバネ部材の付勢力が大きな負荷とな
って、レンズ駆動がスムーズにいかない点である。
[Problems to be Solved by the Invention] Conventionally, attempts have been made to apply a vibration motor to driving a lens, but the following problems have been encountered. In other words, the vibration motor is provided with a spring member so that the stator and the rotating body come into strong frictional contact, but the biasing force of this spring member becomes a large load, making it difficult to drive the lens smoothly. .

【0004】本発明の目的は、バネ部材の付勢力の負荷
によるトルク損失を少なくすることができる、振動モー
タを用いたレンズ鏡筒を提供することである。
An object of the present invention is to provide a lens barrel using a vibration motor that can reduce torque loss due to the load of the biasing force of a spring member.

【0005】[0005]

【課題を解決するための手段】本発明は、円筒状の固定
筒と、該固定筒の内径位置に配設された軸受と、ステー
タを有し、該ステータに対してバネ部材によって光軸方
向にバネ付勢される回転体を、該ステータの振動によっ
て光軸回りに回転させる振動モータと、可動レンズとを
備え、回転体と軸受の軸受用回転物とを光軸方向に接触
させ、レンズ繰出し機構によって回転体の回転により可
動レンズを光軸方向に移動させ、振動モータにおけるバ
ネ部材の付勢力の光軸方向の受けを、ボール、ローラー
等の軸受用回転物を介して固定部材で受けたことにより
、バネ部材の付勢力の負荷を軸受用回転物に与えて、そ
の負荷によるトルク損失を影響がでないレベルに下げた
ことを特徴とする。
[Means for Solving the Problems] The present invention has a cylindrical fixed cylinder, a bearing disposed at an inner diameter position of the fixed cylinder, and a stator, and a spring member is applied to the stator in the optical axis direction. A vibration motor that rotates a rotating body, which is spring-biased by a spring, around the optical axis by the vibration of the stator, and a movable lens, the rotating body and the rotating body for the bearing of the bearing are brought into contact in the optical axis direction, and the lens The movable lens is moved in the optical axis direction by the rotation of the rotating body by the feeding mechanism, and the fixed member receives the biasing force of the spring member in the vibration motor in the optical axis direction via a rotating bearing such as a ball or roller. As a result, the load of the urging force of the spring member is applied to the bearing rotating object, and the torque loss due to the load is reduced to a level where it is not affected.

【0006】[0006]

【実施例】本発明の実施例としてのレンズ鏡筒を説明す
る前に、振動モータの一例を第1図により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before explaining a lens barrel as an embodiment of the present invention, an example of a vibration motor will be explained with reference to FIG.

【0007】図1において、1は力Fで加圧されている
移動体(回転体)、2は電歪素子により弾性振動を行う
固定体(ステータ)で、x軸を固定体2の表面上の方向
、z軸をその法線方向とする。電歪素子により固定体2
の表面に屈曲振動を与えると、進行振動波が発生し、固
定体2の表面上を伝搬していく。この進行振動波は縦波
と横波を伴なった表面波で、その質点の運動は楕円軌道
を画く。質点Aに着目すると、縦振幅u、横振幅wの楕
円運動を行っており、表面波の進行方向をx軸方向とす
ると、楕円運動は反時計方向の向きである。この表面波
は一波長毎に頂点A,A′…を有し、その頂点速度はx
成分のみであって、v=2πfu(fは振動数)である
。そこで、移動体1の表面を固定体2の表面に摩擦接触
させると、移動体1の表面は頂点A,A′…のみに接触
するから、移動体1は摩擦力により矢印Nの方向に駆動
される。
In FIG. 1, 1 is a moving body (rotating body) pressurized by a force F, 2 is a fixed body (stator) that vibrates elastically using an electrostrictive element, and the x-axis is set on the surface of the fixed body 2. , and the z-axis is its normal direction. Fixed body 2 by electrostrictive element
When bending vibration is applied to the surface of the fixed body 2, a traveling vibration wave is generated and propagates on the surface of the fixed body 2. This traveling vibrational wave is a surface wave accompanied by longitudinal waves and transverse waves, and the motion of its mass point follows an elliptical orbit. Focusing on the mass point A, it is performing an elliptical motion with a longitudinal amplitude u and a lateral amplitude w, and if the traveling direction of the surface wave is the x-axis direction, the elliptical motion is counterclockwise. This surface wave has apex A, A'... for each wavelength, and the apex velocity is x
component only, and v=2πfu (f is the frequency). Therefore, when the surface of the movable body 1 is brought into frictional contact with the surface of the fixed body 2, the surface of the movable body 1 contacts only the vertices A, A', etc., so the movable body 1 is driven in the direction of the arrow N by the frictional force. be done.

【0008】移動体1の速度は振動数fに比例する。ま
た、加圧接触による摩擦駆動のために、縦振幅uばかり
でなく、横振幅wにも依存する。即ち、移動体1の速度
は楕円運動の大きさに比例する。したがって、移動体1
の速度は電歪素子に加える電圧に比例する。
The speed of the moving body 1 is proportional to the frequency f. Furthermore, due to frictional drive due to pressurized contact, it depends not only on the longitudinal amplitude u but also on the transverse amplitude w. That is, the speed of the moving body 1 is proportional to the magnitude of the elliptical motion. Therefore, moving body 1
The speed of is proportional to the voltage applied to the electrostrictive element.

【0009】図2は振動モータの一例の構成を示す分解
図である。環状の移動体1には摩擦接触しやすくするた
めに硬質ゴム1aが接着される。環状の固定体2には二
つのグループを形成する電歪素子3a,3bが接着され
る。電歪素子3a,3bは、単独で動作すると、固定体
2が共振するような状態、即ち、定在振動波が存在する
ような位置に配置され、且つ電歪素子3aによる定在振
動波長と電歪素子3bによる定在振動波長とが等しくな
り、90°位相がずれる(1波長/4だけ物理的位置が
ずれる)ように配置される。フェルト4は、固定体2の
摩擦接触面と反対の面の振動を吸収する。支持体5は固
定体2、電歪素子3a,3b及びフェルト4を支持する
FIG. 2 is an exploded view showing the configuration of an example of a vibration motor. Hard rubber 1a is adhered to the annular moving body 1 to facilitate frictional contact. Electrostrictive elements 3 a and 3 b forming two groups are bonded to the annular fixed body 2 . When the electrostrictive elements 3a and 3b operate independently, they are arranged in a state where the fixed body 2 resonates, that is, in a position where a standing vibration wave exists, and the electrostrictive elements 3a and 3b are arranged in a position where the standing vibration wavelength is They are arranged so that the wavelength of the standing vibration caused by the electrostrictive element 3b is equal to each other, and the phase is shifted by 90 degrees (the physical position is shifted by 1 wavelength/4). The felt 4 absorbs vibrations on the surface of the fixed body 2 opposite to the frictional contact surface. The support body 5 supports the fixed body 2, the electrostrictive elements 3a and 3b, and the felt 4.

【0010】図3は進行振動波と定在振動波の発生を説
明する図である。説明上、電歪素子3a,3bは図2の
ような配置ではなく、交互に配列されているが、上記と
同じ条件を満たしており、等価な配置である。駆動用電
源6はV=Vosin ωt という電圧を供給する。 電歪素子3aにはライン7により駆動用電源6から直接
、電圧Vo sin ωt が印加され、電歪素子3b
には90°移相器8を経てライン9により電圧Vo s
in(ωt ±π/2) が印加される。電圧Vo s
in(ωt ±π/2) の±は移動体1を動かす方向
によって切り換えられる。図3のイ〜ヘは電圧Vo s
in(ωt −π/2) が印加されている場合の振動
波の状態を示す。イは電歪素子3aのみにより定在振動
波10を発生させている状態、ロは電歪素子3bのみに
より90°位相遅れのある定在振動波11を発生させて
いる状態、をそれぞれ示す。ハ〜ニは二つの電歪素子3
a,3bを同時に動作させて、進行振動波12を発生さ
せている状態を示す。ハは時刻t=0+2nπ/ω、ニ
は時刻t=π/2ω+2nπ/ω、ホは時刻t=π/ω
+2nπ/ω、ヘは 3π/2ω+2nπ/ω、の進行
振動波12の位相をそれぞれ示す。進行振動波12は第
3図の右方向に進むが、固定体2の摩擦接触面の任意の
質点は反時計方向の楕円運動を行う。したがって、移動
体1は左方向に移動する。
FIG. 3 is a diagram illustrating the generation of traveling vibration waves and standing vibration waves. For the sake of explanation, the electrostrictive elements 3a and 3b are not arranged as shown in FIG. 2 but are arranged alternately, but they satisfy the same conditions as above and are equivalent arrangements. The driving power source 6 supplies a voltage of V=Vosin ωt. A voltage Vo sin ωt is directly applied to the electrostrictive element 3a from the drive power source 6 through a line 7, and the electrostrictive element 3b
The voltage Vo s is applied via line 9 through 90° phase shifter 8.
in(ωt ±π/2) is applied. VoltageVos
The ± of in(ωt ±π/2) can be switched depending on the direction in which the moving body 1 is moved. A to F in Fig. 3 are voltages Vo s
The state of the vibration wave when in(ωt −π/2) is applied is shown. A shows a state in which a standing vibration wave 10 is generated only by the electrostrictive element 3a, and B shows a state in which a standing vibration wave 11 with a 90° phase delay is generated only by the electrostrictive element 3b. H~N are two electrostrictive elements 3
It shows a state in which traveling vibration waves 12 are generated by operating a and 3b simultaneously. C is time t=0+2nπ/ω, D is time t=π/2ω+2nπ/ω, and E is time t=π/ω.
+2nπ/ω and F indicate the phase of the traveling vibration wave 12 of 3π/2ω+2nπ/ω, respectively. The traveling vibration wave 12 travels to the right in FIG. 3, but any mass point on the frictional contact surface of the fixed body 2 performs an elliptical motion in a counterclockwise direction. Therefore, the moving body 1 moves to the left.

【0011】イ、ロの定在振動波10、11の発生状態
において、固定体2の摩擦接触面上の節以外の質点では
横振動、即ち、図3で上下運動だけである。したがって
、移動体1と固定体2との摩擦接触は、静止摩擦状態で
はなく、動摩擦状態であり、摩擦係数が小さくなり、接
触面積も小さくなる。そのため、手動で移動体1を動か
す場合に、小さい力で動かすことができる。
In the state in which the standing vibration waves 10 and 11 of A and B are generated, the mass points other than the nodes on the frictional contact surface of the fixed body 2 exhibit only transverse vibration, that is, vertical movement in FIG. 3. Therefore, the frictional contact between the movable body 1 and the fixed body 2 is not a static friction state but a dynamic friction state, and the friction coefficient is small and the contact area is also small. Therefore, when moving the movable body 1 manually, it can be moved with a small force.

【0012】図4は、本発明の一実施例であるレンズ鏡
筒の構造を示す。図2と同様な部分は同一符号にて示す
FIG. 4 shows the structure of a lens barrel according to an embodiment of the present invention. Components similar to those in FIG. 2 are designated by the same reference numerals.

【0013】レンズ鏡筒の固定胴13の後端には、カメ
ラに装着するためのバヨネット又はスクリューマウント
などの装着部材14が設けられる。固定胴13には光軸
方向に直進溝13aが設けられる。レンズ保持胴15,
16は、固定胴13の内側に嵌装され、変倍作用と変倍
に伴う収差の補正作用とを行うレンズ光学系17を保持
する。各レンズ保持胴15,16にはピン15a,16
aが植立され、これらのピン15a,16aは直進溝1
3aを貫いて、固定胴13の外周に嵌装されたカム筒1
8のカム溝18a,18bに嵌合する。レンズ保持筒1
9は合焦用レンズ光学系20を保持し、外周にレンズ保
持胴15と螺合するねじ部19aを有する。その円筒鍔
部19bは、回転体としての距離調整環21の内周面に
光軸方向に平行に形成された直進溝21aに嵌入される
。距離調整環21の先端には握部21bが設けられる。 距離調整環21の摩擦接触部21cは図2の移動体1に
相当し、固定体2(ステータ)にリング板バネ22によ
って圧接される。固定の基筒23はビス(不図示)によ
り固定胴13に一体的に固定され、固定体2、電歪素子
3a,3b及びフェルト4を支持する。
At the rear end of the fixed barrel 13 of the lens barrel, a mounting member 14 such as a bayonet or screw mount for mounting on the camera is provided. A straight groove 13a is provided in the fixed barrel 13 in the optical axis direction. lens holding cylinder 15,
Reference numeral 16 holds a lens optical system 17 that is fitted inside the fixed barrel 13 and performs a magnification change function and a correction function for aberrations accompanying the magnification change. Each lens holding cylinder 15, 16 has pins 15a, 16.
a is planted, and these pins 15a and 16a are inserted into the straight groove 1.
The cam cylinder 1 penetrates through 3a and is fitted on the outer periphery of the fixed cylinder 13.
It fits into the cam grooves 18a and 18b of No.8. Lens holding tube 1
Reference numeral 9 holds the focusing lens optical system 20, and has a threaded portion 19a on the outer periphery to be screwed into the lens holding barrel 15. The cylindrical collar portion 19b is fitted into a rectilinear groove 21a formed in the inner peripheral surface of the distance adjustment ring 21 as a rotating body in parallel to the optical axis direction. A grip portion 21b is provided at the tip of the distance adjustment ring 21. The friction contact portion 21c of the distance adjustment ring 21 corresponds to the movable body 1 in FIG. 2, and is pressed against the fixed body 2 (stator) by a ring leaf spring 22. The fixed base cylinder 23 is integrally fixed to the fixed cylinder 13 with screws (not shown), and supports the fixed body 2, the electrostrictive elements 3a and 3b, and the felt 4.

【0014】基筒23には固定筒としての外筒24がネ
ジ止めされ、外筒24の内側には軸受用の第1環25と
第2環26とが取り付けられる。即ち、第1環25は軸
受用回転物としての軸受用ボール27を介してリング板
バネ22により距離調整環21の摩擦接触部21cに押
し付けられる。第2環26は外筒24の内周面にねじ込
まれることにより取り付けられるが、第1環25と第2
環26との接合部分にはV字形状の円周溝が形成され、
この円周溝と距離調整環21の外周面に形成された略U
字形状の円周溝との間に軸受用ボール28が保持される
。これにより、距離調整環21が外筒24に回転可能に
取り付けられると共に、摩擦接触部21cの固定体2に
対する回転可能な摩擦接触が確保される。
An outer cylinder 24 serving as a fixed cylinder is screwed to the base cylinder 23, and a first ring 25 and a second ring 26 for bearings are attached to the inside of the outer cylinder 24. That is, the first ring 25 is pressed against the friction contact portion 21c of the distance adjustment ring 21 by the ring leaf spring 22 via the bearing ball 27 as a rotating object for the bearing. The second ring 26 is attached by being screwed into the inner peripheral surface of the outer cylinder 24, but the first ring 25 and the second ring
A V-shaped circumferential groove is formed at the joint with the ring 26,
This circumferential groove and the approximately U formed on the outer peripheral surface of the distance adjustment ring 21
A bearing ball 28 is held between the groove and the circumferential groove. Thereby, the distance adjustment ring 21 is rotatably attached to the outer cylinder 24, and rotatable frictional contact of the frictional contact portion 21c with the fixed body 2 is ensured.

【0015】なお、上記リング板バネ22の付勢力の光
軸方向の受けは、一方側が固定筒としての外筒24で受
け、他方側を軸受用ボール27を介して固定部材として
の基筒23で受けるようにした。それにより、リング板
バネ22の付勢力による距離調整環21のトルク損失は
、球状でしかも回転可能な軸受用ボール27により極め
て少なくなり、実質的に問題にならないで済む。
The biasing force of the ring plate spring 22 in the optical axis direction is received on one side by the outer cylinder 24 as a fixed cylinder, and on the other side by the base cylinder 23 as a fixed member via a bearing ball 27. I decided to accept it. As a result, the torque loss of the distance adjustment ring 21 due to the biasing force of the ring plate spring 22 is extremely reduced due to the spherical and rotatable bearing ball 27, and is essentially not a problem.

【0016】コード板29はくし歯状電極を有するもの
で、外筒24の内壁面に取り付けられ、距離調整環21
に固定された摺動子30がくし歯状電極上を摺動するこ
とによって距離調整環21の回転量、即ち合焦用レンズ
光学系20の移動量に相当する数のパルスから成る移動
量モニタ信号が発生する。電動手動切換スイッチ31が
外筒24に設けられ、その接片32は基筒23上に取り
付けられる。操作ピン33はカム筒18に取り付けられ
、基筒23の外側から光軸まわりに回すことによりカム
筒18を回転させる。カム筒18が回転すると、カム溝
18a,18bがピン15a,16aを直進溝13aに
沿って移動させるので、レンズ保持胴15,16は光軸
方向に移動し、変倍作用と収差補正作用とを行う。
The code plate 29 has comb-like electrodes, is attached to the inner wall surface of the outer cylinder 24, and is connected to the distance adjustment ring 21.
When the slider 30 fixed to the slider 30 slides on the comb-shaped electrode, a movement amount monitor signal is generated which is made up of a number of pulses corresponding to the amount of rotation of the distance adjustment ring 21, that is, the amount of movement of the focusing lens optical system 20. occurs. An electric manual changeover switch 31 is provided on the outer cylinder 24, and its contact piece 32 is attached on the base cylinder 23. The operation pin 33 is attached to the cam barrel 18, and rotates the cam barrel 18 by turning it around the optical axis from the outside of the base barrel 23. When the cam cylinder 18 rotates, the cam grooves 18a and 18b move the pins 15a and 16a along the straight groove 13a, so the lens holding cylinders 15 and 16 move in the optical axis direction, and perform the zooming action and the aberration correction action. I do.

【0017】図5は、本発明の一実施例の回路を示す。 自動焦点用の受光器34は、例えば電荷結合素子などで
、測距回路35に接続される。測距回路35の出力端子
Aは、振動波モータへハイレベルの駆動信号又はローレ
ベルの停止信号を出力し、出力端子Bは、ハイレベルの
至近側駆動方向信号又はローレベルの無限遠側駆動方向
信号を出力し、入力端子Cには、電動手動切換回路36
からインバータ37を経て切換信号が入力し、入力端子
Dには、モニタ信号発生回路38からチャタリング吸収
回路39を経て移動量モニタ信号が入力する。電動手動
切換回路36は電動手動切換スイッチ31及び抵抗40
から成り、モニタ信号発生回路38はコード板29、摺
動子30及び抵抗41から成る。パルス発生回路42は
発振器43、分周比1/2の分周器44,45及びイン
バータ46から成り、90°位相差のあるパルスを分周
器44,45から出力する。47はオアゲート、48は
アンドゲート、49は排他的オアゲートである。排他的
オアゲート49は、測距回路35の出力端子Bからの入
力がハイレベルの時に分周器44のパルスに対する分周
器45のパルスの位相を90°進んだものとし、ローレ
ベルの時に90°遅れたものとする。
FIG. 5 shows a circuit of one embodiment of the present invention. The autofocus light receiver 34 is connected to the distance measuring circuit 35 using, for example, a charge-coupled device. Output terminal A of the distance measuring circuit 35 outputs a high-level drive signal or a low-level stop signal to the vibration wave motor, and output terminal B outputs a high-level near-side drive direction signal or a low-level infinity-side drive signal. A direction signal is output, and an electric manual switching circuit 36 is connected to the input terminal C.
A switching signal is inputted to the input terminal D via the inverter 37, and a movement amount monitor signal is inputted to the input terminal D from the monitor signal generation circuit 38 via the chattering absorption circuit 39. The electric manual changeover circuit 36 includes an electric manual changeover switch 31 and a resistor 40.
The monitor signal generating circuit 38 consists of a code plate 29, a slider 30, and a resistor 41. The pulse generation circuit 42 includes an oscillator 43, frequency dividers 44, 45 with a frequency division ratio of 1/2, and an inverter 46, and outputs pulses having a phase difference of 90 degrees from the frequency dividers 44, 45. 47 is an OR gate, 48 is an AND gate, and 49 is an exclusive OR gate. The exclusive OR gate 49 assumes that the phase of the pulse of the frequency divider 45 is advanced by 90 degrees with respect to the pulse of the frequency divider 44 when the input from the output terminal B of the distance measuring circuit 35 is at a high level, and by 90 degrees when the input is at a low level. ° It is considered late.

【0018】駆動制御回路50は電歪素子3a,3bの
駆動を制御する回路で、トランジスタ、抵抗及びインバ
ータから成る二つのプッシュプル回路51,52、スイ
ッチングトランジスタ53,54などによって構成され
る。スイッチングトランジスタ53,54は抵抗55及
びレンズ駆動電源スイッチ(不図示)を経て電源に接続
される。
The drive control circuit 50 is a circuit for controlling the drive of the electrostrictive elements 3a and 3b, and is composed of two push-pull circuits 51 and 52 made up of transistors, resistors, and inverters, switching transistors 53 and 54, and the like. The switching transistors 53 and 54 are connected to a power source via a resistor 55 and a lens drive power switch (not shown).

【0019】次に図4及び5に示される実施例の動作に
ついて説明する。レンズ駆動電源スイッチ(不図示)が
オンすることにより電動手動切換回路36、インバータ
37、オアゲート47、アンドゲート48、排他的オア
ゲート49、パルス発生回路42、駆動制御回路50に
電源が供給され、パルス発生回路42は動作をはじめる
Next, the operation of the embodiment shown in FIGS. 4 and 5 will be explained. When the lens drive power switch (not shown) is turned on, power is supplied to the electric manual switching circuit 36, inverter 37, OR gate 47, AND gate 48, exclusive OR gate 49, pulse generation circuit 42, and drive control circuit 50, and the pulse generation circuit 42 and drive control circuit 50 are supplied with power. The generating circuit 42 starts operating.

【0020】電動手動切換スイッチ31がオフされて、
電動駆動が選択された場合には、電動手動切換回路36
はハイレベルの切換信号を出力するので、アンドゲート
48は開通する。また、この切換信号はインバータ37
で反転されて、ローレベルとなり、測距回路35の入力
端子Cに入力する。
[0020] When the electric manual changeover switch 31 is turned off,
When electric drive is selected, electric manual switching circuit 36
Since outputs a high level switching signal, AND gate 48 is opened. Also, this switching signal is applied to the inverter 37.
The signal is inverted at , becomes low level, and is input to the input terminal C of the distance measuring circuit 35 .

【0021】カメラの撮影操作のために、2段階ストロ
ークからなるレリーズボタンの第1段ストロークが押さ
れると、測光演算動作が開始される。測距回路35は入
力端子Cへのローレベルの切換信号の入力により電動駆
動であることを判別し、自動焦点動作を開始すると共に
、合焦域を自動焦点用の狭い幅に設定する。受光器34
は被写体からの反射光を受光し、測距回路35は受光器
34からの被写体情報により公知のコントラスト検知方
式、ずれ検知方式などに基づいて合焦誤差を検出し、レ
ンズ駆動量及び駆動方向を演算する。レンズ駆動量は測
距回路35内のカウンタ(不図示)にプリセットされる
。出力端子Aからはハイレベルの駆動信号が出力され、
被写体が至近側にあると仮定すれば、出力端子Bからは
ハイレベルの至近側駆動方向信号が出力される。そのた
め、オアゲート47、アンドゲート48は共にハイレベ
ルの信号を出力し、スイッチングトランジスタ53,5
4をオンにする。したがって、プッシュプル回路51,
52に電源が供給される。パルス発生回路42は動作中
であり、分周器44のパルスは直接プッシュプル回路5
2を制御するので、電歪素子3bに高周波電力が与えら
れる。分周器45のパルスは、排他的オアゲート49に
よって反転されて、分周器44のパルスに対して90°
位相が進んだものとなり、プッシュプル回路51を制御
するので、電歪素子3aに90°位相の進んだ高周波電
力が与えられる。これにより、固定体2に進行振動波1
2が発生し、距離調整環21は合焦方向に回転される。 これに伴って、レンズ保持筒19はレンズ保持胴15と
螺合しながら回転するので、繰出し方向に移動し、合焦
域に至る。
When the first stroke of the release button, which consists of two strokes, is pressed for photographing operation of the camera, a photometric calculation operation is started. The distance measuring circuit 35 determines that it is electrically driven by inputting a low-level switching signal to the input terminal C, starts automatic focusing operation, and sets the focusing range to a narrow width for automatic focusing. Light receiver 34
receives the reflected light from the subject, and the distance measuring circuit 35 detects the focusing error based on the subject information from the light receiver 34 based on a known contrast detection method, shift detection method, etc., and determines the lens drive amount and drive direction. calculate. The lens drive amount is preset in a counter (not shown) in the distance measuring circuit 35. A high level drive signal is output from output terminal A,
Assuming that the subject is on the near side, output terminal B outputs a high level near side drive direction signal. Therefore, the OR gate 47 and the AND gate 48 both output high level signals, and the switching transistors 53 and 5
Turn on 4. Therefore, the push-pull circuit 51,
Power is supplied to 52. The pulse generation circuit 42 is in operation, and the pulses from the frequency divider 44 are directly transmitted to the push-pull circuit 5.
2, high frequency power is applied to the electrostrictive element 3b. The pulses of frequency divider 45 are inverted by exclusive-OR gate 49 to 90° to the pulses of frequency divider 44.
Since the phase is advanced and the push-pull circuit 51 is controlled, high frequency power with a 90° phase advance is applied to the electrostrictive element 3a. As a result, a traveling vibration wave 1 is generated in the fixed body 2.
2 occurs, and the distance adjustment ring 21 is rotated in the focusing direction. Along with this, the lens holding cylinder 19 rotates while being screwed together with the lens holding cylinder 15, so that it moves in the drawing direction and reaches the in-focus area.

【0022】距離調整環21の回転によって、摺動子3
0はコード板29上を摺動し、レンズの移動量に対応し
たパルス数の移動量モニタ信号を発生する。この移動量
モニタ信号は測距回路35の入力端子Dに入力し、カウ
ンタにプリセットされたレンズ駆動量を減算させる。カ
ウンタの値が零になると、出力端子Aからローレベルの
停止信号が出力され、オアゲート47、アンドゲート4
8の出力はローレベルに反転するので、スイッチングト
ランジスタ53,54はオフとなり、電歪素子3a,3
bは電源からしゃ断されて、距離調整環21の駆動は停
止される。ここでまた、受光器34及び測距回路35に
より測距が行われ、合焦誤差が合焦域に入っていれば、
合焦表示をする。合焦域に入っていない時には、再び前
記と同様にレンズ駆動が行われる。
By rotating the distance adjustment ring 21, the slider 3
0 slides on the code plate 29 and generates a movement amount monitor signal of the number of pulses corresponding to the movement amount of the lens. This movement amount monitor signal is input to the input terminal D of the distance measuring circuit 35, and causes the counter to subtract the preset lens drive amount. When the value of the counter reaches zero, a low level stop signal is output from output terminal A, and OR gate 47 and AND gate 4
Since the output of 8 is inverted to low level, the switching transistors 53 and 54 are turned off, and the electrostrictive elements 3a and 3
b is cut off from the power source, and the driving of the distance adjustment ring 21 is stopped. Here again, distance measurement is performed by the light receiver 34 and the distance measuring circuit 35, and if the focusing error is within the in-focus range,
Indicates focus. When the lens is not in the in-focus area, the lens is driven again in the same manner as described above.

【0023】被写体が無限遠側にある場合には、測距回
路35の出力端子Bはローレベルの無限遠側駆動方向信
号を出力するので、排他的オアゲート49は分周器45
のパルスをそのまま通し、分周器44のパルスより位相
を90°遅れたものとする。故に電歪素子3a,3bは
逆方向に進行する進行振動波を発生し、距離調整環21
は逆方向に回転し、レンズ保持筒19を繰込み方向に移
動させる。
When the subject is on the infinity side, the output terminal B of the distance measuring circuit 35 outputs a low-level infinity side drive direction signal, so the exclusive OR gate 49 is connected to the frequency divider 45.
It is assumed that the pulse is passed through as is and its phase is delayed by 90 degrees from the pulse of the frequency divider 44. Therefore, the electrostrictive elements 3a and 3b generate traveling vibration waves traveling in opposite directions, and the distance adjustment ring 21
rotates in the opposite direction to move the lens holding cylinder 19 in the retracting direction.

【0024】電動手動切換スイッチ31がオンされて、
手動駆動が選択された場合には、電動手動切換回路36
はローレベルの切換信号を出力するので、オアゲート4
7の出力はハイレベルとなり、スイッチングトランジス
タ54をオンにする。一方、アンドゲート48の出力は
ローレベルとなり、スイッチングトランジスタ53をオ
フにする。したがって、電歪素子3bには高周波電力が
供給されずに、電歪素子3aのみに高周波電力が供給さ
れる。そのため、固定体2には定在振動波10が発生し
、固定体2と距離調整環21の摩擦トルクが小さくなる
。そこで、外筒24の先端からわずかに表出している握
部21bを持って、距離調整環21を回せば、小さい手
動トルクで軽く回り、レンズ保持筒19は光軸方向に移
動される。
[0024] When the electric manual changeover switch 31 is turned on,
When manual drive is selected, the electric manual switching circuit 36
outputs a low level switching signal, so OR gate 4
The output of 7 becomes high level, turning on the switching transistor 54. On the other hand, the output of the AND gate 48 becomes low level, turning off the switching transistor 53. Therefore, high frequency power is not supplied to the electrostrictive element 3b, but only to the electrostrictive element 3a. Therefore, a standing vibration wave 10 is generated in the fixed body 2, and the friction torque between the fixed body 2 and the distance adjustment ring 21 is reduced. Therefore, by holding the grip portion 21b slightly exposed from the tip of the outer cylinder 24 and turning the distance adjustment ring 21, the lens holding cylinder 19 is moved in the optical axis direction by turning the distance adjusting ring 21 lightly with a small manual torque.

【0025】測距回路35は、入力端子Cにハイレベル
の切換信号が入力することによって、手動駆動であるこ
とを判別し、手動用の広い合焦域の幅を設定して、合焦
用レンズ光学系20がその合焦域に至ると合焦表示を行
う。
The distance measuring circuit 35 determines that manual drive is being performed by inputting a high-level switching signal to the input terminal C, sets the width of a wide focusing range for manual driving, and sets the width of a wide focusing range for manual driving. When the lens optical system 20 reaches its in-focus area, in-focus display is performed.

【0026】以上説明した実施例では、振動モータによ
って合焦用レンズ光学系20のみを移動させたが、ズー
ム用レンズ光学系(17,20)を移動させるようにし
ても良い。
In the embodiment described above, only the focusing lens optical system 20 is moved by the vibration motor, but the zooming lens optical system (17, 20) may also be moved.

【0027】[0027]

【発明の効果】本発明の振動モータを用いたレンズ鏡筒
は、振動モータを駆動源として可動レンズを駆動するに
あたり、トルク損失を少なくすることができた。その第
1の特徴は、振動モータの出力による回転伝達系中に軸
受用回転物を用いた軸受を設けたことであり、これによ
り通常の嵌合による受けに比べて格段にトルク損失を少
なくすることができる。又、第2の特徴は、振動モータ
におけるバネ部材(ステータに被駆動部材を適度な圧力
で摩擦接触させるために用いられる)の付勢力によるト
ルク損失を抑えたことにあり、これは、該付勢力の受け
を、回転することにより応力を分散させてトルク損失を
少なくできる上記軸受用回転物を介して行って、実質上
影響がないようにしたので、振動モータを組み込んだレ
ンズ鏡筒の実用化を可能とした。
Effects of the Invention The lens barrel using the vibration motor of the present invention was able to reduce torque loss when driving the movable lens using the vibration motor as the drive source. The first feature is that a bearing using a rotating bearing is installed in the rotation transmission system generated by the output of the vibration motor, which significantly reduces torque loss compared to a normal fitting type receiver. be able to. The second feature is that torque loss due to the biasing force of the spring member (used to bring the stator into frictional contact with the driven member at an appropriate pressure) in the vibration motor is suppressed; The force is received through the above-mentioned rotary bearing, which can disperse stress and reduce torque loss by rotating, so that there is virtually no influence, making it possible to put a lens barrel incorporating a vibration motor into practical use. It made it possible to

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】一例としての振動モータの駆動原理を説明する
図である。
FIG. 1 is a diagram illustrating the driving principle of a vibration motor as an example.

【図2】一例としての振動モータの基本的構成を示す分
解図である。
FIG. 2 is an exploded view showing the basic configuration of a vibration motor as an example.

【図3】図2に図示の振動モータにおける進行振動波と
定在振動波の発生を説明する図である。
3 is a diagram illustrating the generation of traveling vibration waves and standing vibration waves in the vibration motor shown in FIG. 2. FIG.

【図4】本発明の一実施例を示す断面図である。FIG. 4 is a sectional view showing an embodiment of the present invention.

【図5】同じく回路図である。FIG. 5 is a circuit diagram as well.

【符号の説明】[Explanation of symbols]

2    固定体(ステータ) 3a,3b  電歪素子 20  合焦用レンズ光学系(可動レンズ)21  距
離調整環(回転体) 21c  摩擦接触部 22  リング板バネ(バネ部材) 23  基筒(固定部材) 24  外筒(固定筒) 25  軸受用の第1環(軸受)
2 Fixed body (stator) 3a, 3b Electrostrictive element 20 Focusing lens optical system (movable lens) 21 Distance adjustment ring (rotating body) 21c Frictional contact portion 22 Ring plate spring (spring member) 23 Base tube (fixed member) 24 Outer cylinder (fixed cylinder) 25 First ring for bearing (bearing)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  円筒状の固定筒と、該固定筒の内径位
置に配設された軸受と、ステータを有し、該ステータに
対してバネ部材によって光軸方向にバネ付勢される回転
体を、該ステータの振動によって光軸回りに回転させる
振動モータと、可動レンズとを備え、前記回転体と前記
軸受の軸受用回転物とを光軸方向に接触させ、レンズ繰
出し機構によって前記回転体の回転により前記可動レン
ズを光軸方向に移動させ、前記振動モータにおける前記
バネ部材の付勢力の光軸方向の受けを、前記軸受用回転
物を介して固定部材で受けたことを特徴とする、振動モ
ータを用いたレンズ鏡筒。
1. A rotating body that has a cylindrical fixed cylinder, a bearing disposed at an inner diameter position of the fixed cylinder, and a stator, and is biased toward the optical axis by a spring member against the stator. comprises a vibration motor that rotates around the optical axis by vibration of the stator, and a movable lens, the rotating body and the bearing rotating body of the bearing are brought into contact in the optical axis direction, and the rotating body is rotated by a lens feeding mechanism. The movable lens is moved in the optical axis direction by the rotation of the vibration motor, and the fixed member receives the biasing force of the spring member in the vibration motor in the optical axis direction via the bearing rotating object. , a lens barrel using a vibration motor.
JP3038888A 1991-02-12 1991-02-12 Lens barrel using vibration motor Expired - Lifetime JPH0748087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038888A JPH0748087B2 (en) 1991-02-12 1991-02-12 Lens barrel using vibration motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038888A JPH0748087B2 (en) 1991-02-12 1991-02-12 Lens barrel using vibration motor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57211284A Division JPS59101608A (en) 1982-12-03 1982-12-03 Lens driving device using oscillatory wave motor

Publications (2)

Publication Number Publication Date
JPH04211210A true JPH04211210A (en) 1992-08-03
JPH0748087B2 JPH0748087B2 (en) 1995-05-24

Family

ID=12537750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038888A Expired - Lifetime JPH0748087B2 (en) 1991-02-12 1991-02-12 Lens barrel using vibration motor

Country Status (1)

Country Link
JP (1) JPH0748087B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095270A (en) * 1999-09-22 2001-04-06 Seiko Instruments Inc Direct-acting mechanism with ultrasonic motor and electronics therewith
JP2006081290A (en) * 2004-09-09 2006-03-23 Konica Minolta Opto Inc Self-oscillation circuit and driving device using the same
JP2007033983A (en) * 2005-07-28 2007-02-08 Nec Tokin Corp Lens module
US7242131B2 (en) 2004-05-12 2007-07-10 Olympus Corporation Ultrasonic motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107736B (en) * 2013-02-01 2015-07-01 东南大学 Positive and negative transfer phase control method of three-power-supply circular traveling wave ultrasonic motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001095270A (en) * 1999-09-22 2001-04-06 Seiko Instruments Inc Direct-acting mechanism with ultrasonic motor and electronics therewith
JP4497594B2 (en) * 1999-09-22 2010-07-07 セイコーインスツル株式会社 Linear motion mechanism using ultrasonic motor and electronic equipment using the same
US7242131B2 (en) 2004-05-12 2007-07-10 Olympus Corporation Ultrasonic motor
JP2006081290A (en) * 2004-09-09 2006-03-23 Konica Minolta Opto Inc Self-oscillation circuit and driving device using the same
JP2007033983A (en) * 2005-07-28 2007-02-08 Nec Tokin Corp Lens module

Also Published As

Publication number Publication date
JPH0748087B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US4560263A (en) Drive system for a vibration wave motor for lens control
US4513219A (en) Vibration wave motor
US7339306B2 (en) Mechanism comprised of ultrasonic lead screw motor
JPH041598B2 (en)
JP4377956B2 (en) Optical objective module
US4491401A (en) Diaphragm device
US4660933A (en) Lens driving device
KR101607149B1 (en) Vibration actuator and imager
JPH04211210A (en) Lens barrel by use of vibrating motor
EP1784875B1 (en) Mechanism comprised of ultrasonic lead screw motor
US8159763B2 (en) Vibrating element, vibration actuator, lens barrel, camera system and method for driving vibration actuator
JPH0410607B2 (en)
JPH0611636A (en) Lens barrel and motor driving device
JPS5996882A (en) Vibration wave motor
JPH0472470B2 (en)
US5751502A (en) Lens barrel with built-in ultrasonic motor
WO2020237450A1 (en) Imaging device and information terminal
US20140218814A1 (en) Driving apparatus, optical apparatus and imaging apparatus
JPH112752A (en) Vibration actuator driving device and lens barrel
JP2633198B2 (en) Equipment having a vibration wave driving device
JP4365926B2 (en) Lens barrel with vibratory drive
JPH05268780A (en) Driver
JPH0466007B2 (en)
JPH0477287B2 (en)
JP2592798B2 (en) Vibration type driving device