JP3721607B2 - 高配向性の硬質基材被膜およびその被膜の結晶学的配向性の制御方法 - Google Patents

高配向性の硬質基材被膜およびその被膜の結晶学的配向性の制御方法 Download PDF

Info

Publication number
JP3721607B2
JP3721607B2 JP21209895A JP21209895A JP3721607B2 JP 3721607 B2 JP3721607 B2 JP 3721607B2 JP 21209895 A JP21209895 A JP 21209895A JP 21209895 A JP21209895 A JP 21209895A JP 3721607 B2 JP3721607 B2 JP 3721607B2
Authority
JP
Japan
Prior art keywords
polycrystalline
coating
film
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21209895A
Other languages
English (en)
Other versions
JPH0959098A (ja
Inventor
久典 大原
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21209895A priority Critical patent/JP3721607B2/ja
Publication of JPH0959098A publication Critical patent/JPH0959098A/ja
Application granted granted Critical
Publication of JP3721607B2 publication Critical patent/JP3721607B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質基材の表面を被覆する高配向性の被膜およびその被膜の結晶学的配向性の制御方法に関するものである。なお、高配向性とは、ある特定の結晶面に優先的に配向することを称するものとする。
【0002】
【従来の技術】
従来から、硬質基材の表面を被覆するように被膜を形成して得られる複合材料は知られている。以下、このような複合材料の一例として、超硬合金などからなる硬質基材の表面をセラミックスによって被覆した場合を挙げ、それについて説明する。
【0003】
セラミックスは、その結晶面(結晶方位)により被膜の機械的特性のみならず、化学的特性や電気的特性なども変化する。そのため、セラミックス被膜の表面を特定の結晶面に配向させるための手法が検討されてきた。
【0004】
しかしながら、セラミックスの合成方法として一般に用いられている粉末冶金法では結晶方位の制御は不可能であり、セラミックス被膜の配向性を制御する方法としては気相合成法のみが実用化されている。なお、セラミックスを一旦溶融状態にして再結晶させる、いわゆる液相エピタキシも検討されているが、対象となるセラミックスの融点が極めて高く、実用化はされていない。
【0005】
上述した従来の気相合成法では、特定の結晶面に優先的に配向させるために、大きく分けて次のような2つの手法が検討されている。
【0006】
第1の手法は、基材に単結晶材料を用いてエピタキシャル成長させるというものである。より詳しくは、ある基材の上にセラミックス被膜を気相合成法により形成する際に、セラミックス被膜を構成する結晶の成長が基材の結晶方位に支配されることを利用し、優先的な配向性を持ったセラミックス被膜を形成するものである。
【0007】
第2の手法は、気相合成時の条件を最適化することにより優先的な配向性をえるというものである。より具体的には、物理蒸着(PVD)法あるいは化学蒸着(CVD)法などにおいて、被膜形成条件を最適化することによりある特定の結晶方位に優先的に配向した被膜を形成するものである。
【0008】
【発明が解決しようとする課題】
しかしながら、上記の第1および第2の手法には、次に説明するような問題点があった。
【0009】
上記の第1の手法の場合、広い面積にわたって優先的に配向した被膜を得るには、その面積に応じた単結晶基材が必要となり、基材が高価になるという問題が生じる。また、面積の大きな単結晶基材の入手が困難であることから、工業的にも実用化できていなかった。このような問題点を回避するために、単結晶基材としてシリコンを選択し、このシリコン単結晶からなる基材上にセラミックス被膜を生成する、いわゆるヘテロエピタキシも検討されている。しかしながら、シリコン基材上に形成されたセラミックス被膜では用途が限定されてしまうため、結果として実用化には至っていないというのが現状である。
【0010】
また、上記の第2の手法では、実験的にはある特定の方位に優先的に配向したセラミックス被膜を形成できることが確認されてはいるものの、最適な条件の幅が狭く、安定して同じ配向性を持ったセラミックス被膜を形成することは困難であるという問題があった。
【0011】
以上説明したように、従来の手法では、セラミックスなどからなる被膜において、広い面積にわたって安定してある特定の方位に優先的に結晶面を配向させることは極めて困難であった。
【0012】
この発明は、上記のような課題を解決するためになされたものである。この発明の目的は、基材表面を覆う被膜において、安定してかつ広範囲にわたってある特定の方位に優先的に結晶面を配向させることにある。
【0013】
【課題を解決するための手段】
この発明に係る高配向性の硬質基材被膜は、硬質材料からなる基材と、多結晶被膜と、原子注入領域とを備える。多結晶被膜は、基材の表面上に形成され、ある特定の方位に優先的に結晶面が配向した結晶構造を有する。原子注入領域は、外部から多結晶被膜を貫通して該多結晶被膜内にほとんど存在しなくなるように基材内に原子が注入されることにより基材内に形成される。
【0014】
上記のように、この発明に係る高配向性の硬質基材被膜は、基材内に原子注入領域が形成される。この原子注入領域は、基材の表面上に形成された多結晶被膜を貫通して基材内に原子が注入されることにより形成される。このように、基材内に原子が注入されることにより、基材と多結晶被膜との界面近傍に位置する基材の表面の結晶性が乱される。それにより、基材と多結晶被膜との界面近傍に位置する基材の表面において原子の拡散が誘起されることとなる。その結果、基材と多結晶被膜との密着強度を高めることが可能となる。また、上記のように原子が基材内に注入されることにより、基材自体の表面硬度をも増大させることが可能となる。
【0015】
この発明に係る被膜の結晶学的配向性の制御方法によれば、まず、基材の表面上に多結晶被膜を形成する。この多結晶被膜を貫通して該多結晶被膜内にほとんど存在しなくなるように基材内にイオンを注入することにより多結晶被膜内に結晶欠陥を生成する。そして、多結晶被膜内に生成された結晶欠陥を回復させることにより、特定の結晶面を優先的に成長させる。
【0016】
上記のように、この発明に係る被膜の結晶学的配向性の制御方法によれば、基材の表面上に形成された多結晶被膜内に積極的に結晶欠陥を生成した後、この結晶欠陥を回復させることにより特定の結晶面を優先的に成長させている。結晶欠陥が生成された場合、この結晶欠陥による損傷によって多結晶被膜内部に歪みが蓄積される。この歪みの蓄積による歪みエネルギが増大することにより、部分的再結晶化の形で歪みエネルギが開放される。再結晶化においては、表面エネルギを小さくするような面が優先的に成長すると考えられる。そのため、上記のように、結晶欠陥を回復させることにより、ある特定の結晶面を優先的に成長させることが可能となる。それにより、基材の表面上に形成された多結晶被膜の結晶面を、ある特定の結晶面に配向させることが可能となる。
【0017】
【発明の実施の形態】
以下、図1〜図3を用いて、この発明の実施の形態について説明する。図1〜図3は、この発明の1つの実施の形態における被膜の結晶学的配向性の制御方法の第1工程〜第3工程を模式的に示す断面図である。
【0018】
まず図1を参照して、超硬合金,鋼,セラミックス,サーメットなどからなる硬質基材1の表面上に、PVD法あるいはCVD法を用いて、セラミックスなどからなる多結晶被膜2を形成する。なお、本明細書において、セラミックスとは、周期律表のIVa,Va,VIa族金属の炭化物および/または窒化物のことを称するものとする。多結晶被膜2がセラミックスにより構成される場合、多結晶被膜2の成長方向、すなわち硬質基材1の表面に垂直な方向を基準にした場合、色々な方向を向いた結晶が多結晶被膜2内に存在している。
【0019】
次に、図2を参照して、多結晶被膜2を貫通して硬質基材1内に到達するようにイオン3を注入する。それにより、硬質基材1内にイオン3が保持されることになる。ここで、多結晶被膜2がセラミックスにより構成される場合には、ホウ素,炭素および窒素から選ばれる少なくとも1種類のイオンを用いることが好ましい。なお、イオン3を注入する際には、ターゲットとなる硬質基材1および多結晶被膜2は所定以上の温度に保持されていることが好ましい。
【0020】
上記のようにイオン3が多結晶被膜2内に注入されることにより、イオン3は、多結晶被膜2を構成する結晶格子(結晶を構成する原子)と弾性衝突を繰返しながら徐々にエネルギを失う。そして、最終的には、硬質基材1にまで達し、その硬質基材1の結晶の内部に取込まれる。このようにしてイオン3が多結晶被膜2を貫通することにより、多結晶被膜2内に結晶欠陥(損傷)が生成されることになる。
【0021】
また、同時に、イオン3が硬質基材1の表面に注入されることにより、硬質基材1と多結晶被膜2との界面4近傍に位置する硬質基材1の表面の結晶性が乱されることになる。それにより、硬質基材1の表面において原子の拡散が誘起される。その結果、界面4における多結晶被膜2と硬質基材1との密着強度を増大させることが可能となる。また、イオン3が硬質基材1の表面に注入されることにより、界面4近傍における硬質基材1自体の硬度をも増大させることが可能となる。
【0022】
ここで、上記のようにイオン3が多結晶被膜2に注入されることによる結晶欠陥の生成過程についてさらに詳しく説明する。多結晶被膜2内には、イオン3の注入方向から見た場合に、結晶を構成する原子と原子の間隔の大きい(すなわち隙間が大きい)結晶と、原子と原子の間隔が小さい(隙間が小さい)結晶とが存在し得る。原子と原子の間隔が大きい場合には、注入されたイオンと結晶を構成する原子との衝突頻度が少なくなり、結晶に与える損傷は小さいものとなる。一方、原子と原子の間隔が小さい場合には、注入イオンと原子との衝突が多くなり、結晶に与える損傷は大きくなる。つまり、結晶方位により、損傷を受けやすい(結晶欠陥が生成されやすい)結晶面とそうでない結晶面が存在し得ることになる。
【0023】
たとえば、多結晶被膜2がTiNに代表されるNaCl型の結晶であると仮定し、ホウ素などの原子半径の小さいイオンを注入イオン3として使用した場合を例にとって考えてみる。ホウ素イオン(B3+)の注入方向が各格子面に垂直であるとした場合、イオン注入による損傷の大きな格子面から順に列挙すると下記のようになる。
【0024】
(111)>(110)>(100)
このことより、(111)面が最もイオン3によって損傷を受けやすいということがわかる。それにより、イオン3の注入方向を適切に調整することにより、所望の結晶面に結晶欠陥を生成することが可能となる。
【0025】
次に、図3を参照して、上記のようにして結晶欠陥を生成した後、この結晶欠陥を回復させる。これは、たとえば、硬質基材1および多結晶被膜2を所定の温度以上の温度に保持することによってなされ得る。たとえば、超硬合金からなる硬質基材1の表面にTiN膜を形成した場合には、硬質基材1の温度を約350K以上に保持することによって、結晶欠陥を回復させることが可能となる。このとき、硬質基材1の表面には、イオン3の注入になるイオン(原子)注入領域5が形成される。このイオン注入領域5の形成により、硬質基材1と多結晶被膜2との密着強度を増大させることが可能となるとともに、硬質基材自体の表面硬度をも増大させることが可能となる。
【0026】
ここで、結晶欠陥の回復過程についてより詳しく説明する。結晶欠陥としては空格子点や格子間原子などの点欠陥が生成される。このような欠陥による損傷により多結晶被膜2内に歪みが蓄積する。そして、歪みエネルギが増大すると部分的に再結晶化の形で歪みエネルギが開放される。再結晶化においては、表面のエネルギを小さくするような面が優先的に成長すると考えられる。たとえば、TiN膜の場合には、表面エネルギの小さな順に結晶面を列挙すると次のようになる。
【0027】
(111)<(110)<(100)
このことより、TiN膜の場合には、(111)面が優先的に成長すると考えられる。この特性を利用して、結晶面をある特定の方位に優先的に配向させるように制御することが可能となる。
【0028】
ここで、上記のTiN膜の場合を例にとって、上述の内容をまとめてみる。
TiN膜では、イオン3の注入方向が各格子面に垂直であるとした場合、(111)面が最も損傷を受けやすくなる。しかしながら、上述のように、回復過程においては(111)面が優先的に成長するため、損傷を受けたとしても優先的にこの(111)面は回復する。
【0029】
一方、(100)面や(110)面は損傷を受けにくいが、損傷を受けた場合には(111)面が優先的に成長することとなる。
【0030】
以上のことより、TiN膜では、イオン3の注入により損傷を受けた結晶が(111)面に優先的に配向するという現象が引起こされることとなる。このような現象を有効に利用することにより、硬質基材1の表面上に形成された多結晶被膜2の結晶面の配向性を制御することが可能となる。
【0031】
次に、注入されるイオン3のエネルギと結晶構造変化を生じさせる深さとの関係について説明する。硬質基材1の表面上に形成された多結晶被膜2のうち、表面部から深さd(μm)にわたって配向性を制御しようとする場合には、多結晶被膜2の表面に垂直に注入するイオン3のエネルギE(keV)は次の式で表わされる。
【0032】
E≧1000×d/0.5…(1)
上記のようにイオンの注入エネルギEを決定することにより、優先的配向を実現する深さを制御することが可能となる。エネルギEが上記の数式(1)の条件を満たす場合、注入されたイオン3は深さd(μm)よりも深い領域にまで到達し、表面から深さd(μm)の領域においては注入された原子はほとんど存在しなくなる。
【0033】
つまり、多結晶被膜2の内部に結晶欠陥が生成されるだけである。上記の数式(1)で表わされるエネルギEを下回るエネルギでイオン3が注入された場合には、そのイオン3は原子の形で深さd(μm)よりも浅い領域に取込まれて格子欠陥を生じる。しかしながら、この場合には、結晶構造の制御に悪影響を与えるため好ましいとはいえない。
【0034】
多結晶被膜2に注入されるイオン種としては、多結晶被膜2中に取込まれてもこの多結晶被膜2自身の特性を大きく変化させないように比較的原子サイズが小さいものを選択することが好ましい。また、イオン種としては、多結晶被膜2の構成元素が選択されることが好ましい。具体的には、多結晶被膜2がセラミックスにより構成される場合、イオン種としてはホウ素,窒素,炭素などが選択されることが好ましい。
【0035】
なお、比較的原子サイズが小さいイオン種を選択することが好ましいと述べたが、あまりにサイズが小さい場合には結晶欠陥を生成するのが困難となり好ましくない。かといって原子サイズがあまりに大きいイオン種では、結晶格子に与える機械的損傷が大きすぎることに加え、結晶格子に残存してしまった場合に多結晶被膜2の特性に悪影響を及ぼす可能性があるため好ましくない。このことより、注入するイオン種には、その多結晶被膜2の材質に応じて適切なサイズのものが選択される必要がある。
【0036】
【実施例】
次に、本発明の実施例について説明する。
【0037】
20mm×20mmの正方形で厚み5mmの形状を有し、片面が最大粗さで0.1μm以下まで研磨仕上げされた、JIS標記K10の超硬合金基材の研磨面上に、PVD法によって厚み2.0μmのTiN膜を形成した。そして、超硬合金基材のTiN膜による被覆面に、イオン注入装置を用いてホウ素イオンを注入した。ホウ素イオンは3価の正イオン(B3+)とした。ここで、2.0μmのTiN膜の厚み方向の全体にわたって配向性を変換すべく、7(MeV)のエネルギでホウ素イオンをTiN膜に注入した。
【0038】
この7(MeV)の値は、前述の数式(1)に基づいて決定された値である。この数式(1)に従えば、2.0μmの深さにホウ素イオンを注入するには、2×1000÷0.5=4000(keV)の注入エネルギが必要となる。この値に鑑み、この値以上の注入エネルギでホウ素イオンをTiN膜に注入した。また、ホウ素イオンの注入時には、超硬合金基材およびTiN膜は、350Kと600Kとに保持した。
【0039】
以上の条件で行なわれたTiN膜の配向性の評価を行なった。この評価には、θ−2θ法によるX線回析法を用いた。回析スペクトルの調査と合わせて、TiN膜の(220)面からの回析強度を1としたときの、各配向面の強度比でも評価した。
【0040】
図4には、ホウ素イオンの注入されていない超硬合金基材、350Kでホウ素イオンを注入した超硬合金基材、600Kでホウ素イオンを注入した超硬合金基材のそれぞれのTiN膜のX線回析結果が示されている。図4において、ホウ素イオンが注入されていない超硬合金基材では、TiN膜の(220)面の回析強度が最も大きくなっているのに対し、350Kおよび600Kでホウ素イオンが注入された超硬合金基材では、いずれの場合も(111)面の回析強度が最大となっているのがわかる。つまり、ホウ素イオンにより損傷を受けた結晶が優先的に(111)面に配向したことがわかる。
【0041】
上記の回析スペクトルからそれぞれの結晶面からの回析線強度比を測定し、まとめた結果を図5に示す。ホウ素イオンが注入されていない超硬合金基材では、(220)面以外の回析強度比がいずれも1以下であり、(220)面に優先的に配向していたことがわかる。これに対し、350K以上の温度でホウ素イオンの注入が行なわれた超硬合金基材では、いずれも(111)面からの回析強度比が2前後まで増加しており、(111)面に優先的に結晶面が配向されたことを示している。
【0042】
なお、今回開示された実施の形態はすべての点で例示であって制御的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれていることが意図される。
【図面の簡単な説明】
【図1】この発明の1つの実施の形態における被膜の結晶学的配向性の制御方法の第1工程を示す断面図である。
【図2】この発明の1つの実施の形態における被膜の結晶学的配向性の制御方法の第2工程を示す断面図である。
【図3】この発明の1つの実施の形態における被膜の結晶学的配向性の制御方法の第3工程を示す断面図である。
【図4】θ−2θ法によるTiN膜のX線回析結果を示す図である。
【図5】TiN膜の各格子面の回析強度比を示す図である。
【符号の説明】
1 硬質基材
2 多結晶被膜
3 イオン
4 界面
5 イオン注入領域

Claims (5)

  1. 硬質材料からなる基材と、
    前記基材の表面上に形成され、ある特定の方位に優先的に結晶面が配向した結晶構造を有する多結晶被膜と、
    外部から前記多結晶被膜を貫通して該多結晶被膜内にほとんど存在しなくなるように前記基材内に原子が注入されることにより前記基材内に形成された原子注入領域と、
    を備えた、高配向性の硬質基材被膜。
  2. 基材の表面上に多結晶被膜を形成する工程と、
    前記多結晶被膜を貫通して該多結晶被膜内にほとんど存在しなくなるように前記基材内にイオンを注入することにより前記多結晶被膜内に結晶欠陥を生成する工程と、
    前記結晶欠陥を回復させることにより、特定の結晶面を優先的に成長させる工程と、
    を備えた、被膜の結晶学的配向性の制御方法。
  3. 前記多結晶被膜は、周期律表のIVa,Va,VIa族金属の炭化物あるいは窒化物からなるNaCl型結晶構造を有し、
    前記結晶欠陥を生成する工程は、前記多結晶被膜に、ホウ素,炭素および窒素から選ばれる少なくとも1種類のイオンを注入することにより前記多結晶被膜内に結晶欠陥を生成する工程を含む、請求項2に記載の被膜の結晶学的配向性の制御方法。
  4. 前記イオンは前記多結晶被膜の表面の垂直上方から前記多結晶被膜内に注入エネルギE(keV)で注入され、前記多結晶被膜の表面から深さd(μm)にわたって配向性を制御する場合、
    E≧1000×d/0.5
    の関係を満たすように前記イオンの注入エネルギE(keV)が決定される、請求項3に記載の被膜の結晶学的配向性の制御方法。
  5. 前記多結晶被膜はTiN膜であり、
    前記イオンは、ホウ素イオン(B3+)であり、
    前記結晶欠陥を生成する工程は、前記ホウ素イオンを7(MeV)の注入エネルギで前記多結晶被膜に注入することにより前記多結晶被膜を貫通させる工程を含み、
    前記結晶欠陥を回復させる工程は、前記基材を約350K以上の温度に保持する工程を含む、請求項3に記載の被膜の結晶学的配向性の制御方法。
JP21209895A 1995-08-21 1995-08-21 高配向性の硬質基材被膜およびその被膜の結晶学的配向性の制御方法 Expired - Fee Related JP3721607B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21209895A JP3721607B2 (ja) 1995-08-21 1995-08-21 高配向性の硬質基材被膜およびその被膜の結晶学的配向性の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21209895A JP3721607B2 (ja) 1995-08-21 1995-08-21 高配向性の硬質基材被膜およびその被膜の結晶学的配向性の制御方法

Publications (2)

Publication Number Publication Date
JPH0959098A JPH0959098A (ja) 1997-03-04
JP3721607B2 true JP3721607B2 (ja) 2005-11-30

Family

ID=16616854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21209895A Expired - Fee Related JP3721607B2 (ja) 1995-08-21 1995-08-21 高配向性の硬質基材被膜およびその被膜の結晶学的配向性の制御方法

Country Status (1)

Country Link
JP (1) JP3721607B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305405B1 (en) * 2008-07-14 2013-12-18 Tungaloy Corporation Coated member

Also Published As

Publication number Publication date
JPH0959098A (ja) 1997-03-04

Similar Documents

Publication Publication Date Title
EP1721031B1 (en) Reduction of carrot defects in silicon carbide epitaxy
US7135074B2 (en) Method for manufacturing silicon carbide single crystal from dislocation control seed crystal
US7387680B2 (en) Method and apparatus for the production of silicon carbide crystals
EP2388359B1 (en) Method and system with seed holder for growing silicon carbide single crystals
EP0161829B1 (en) Process for preparing diamond thin film
EP0384667B1 (en) Diamond growth
KR102675266B1 (ko) 탄화탄탈 피복 탄소 재료 및 그 제조 방법, 반도체 단결정 제조 장치용 부재
JPH09268096A (ja) 単結晶の製造方法及び種結晶
EP0838536A3 (en) Method and apparatus for depositing highly oriented and reflective crystalline layers
US5744825A (en) Composite structure for an electronic component comprising a growth substrate, a diamond layer, and an intermediate layer therebetween
EP1540048B1 (en) Silicon carbide single crystal and method and apparatus for producing the same
JP3721607B2 (ja) 高配向性の硬質基材被膜およびその被膜の結晶学的配向性の制御方法
Canovic et al. CVD TiC/alumina and TiN/alumina multilayer coatings grown on sapphire single crystals
Tzeng et al. Free‐standing single‐crystalline chemically vapor deposited diamond films
JPH09263497A (ja) 炭化珪素単結晶の製造方法
JP2001181095A (ja) SiC単結晶およびその成長方法
US6689212B2 (en) Method for growing an α-SiC bulk single crystal
EP0504959B1 (en) Carbon-alloyed cubic boron nitride films
RU2154698C2 (ru) МОНОКРИСТАЛЛИЧЕСКИЙ SiC И СПОСОБ ЕГО ПОЛУЧЕНИЯ
Manaila et al. Ti nitride phases in thin films deposited by DC magnetron sputtering
WO1994016125A1 (en) Process for vapor-phase diamond synthesis
JP3717562B2 (ja) 単結晶の製造方法
JP3520571B2 (ja) 単結晶の成長方法
JPH11315000A (ja) 単結晶SiCおよびその製造方法
Bootsma et al. A strain-relieve transition in epitaxial growth of metals on Si (111)(7× 7)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees