JP3720745B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP3720745B2
JP3720745B2 JP2001296215A JP2001296215A JP3720745B2 JP 3720745 B2 JP3720745 B2 JP 3720745B2 JP 2001296215 A JP2001296215 A JP 2001296215A JP 2001296215 A JP2001296215 A JP 2001296215A JP 3720745 B2 JP3720745 B2 JP 3720745B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water
water temperature
incoming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001296215A
Other languages
Japanese (ja)
Other versions
JP2003106655A (en
Inventor
錦司 森
正和 安藤
幸弘 鈴木
宏明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2001296215A priority Critical patent/JP3720745B2/en
Publication of JP2003106655A publication Critical patent/JP2003106655A/en
Application granted granted Critical
Publication of JP3720745B2 publication Critical patent/JP3720745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、自然エネルギーを利用した太陽熱温水器や廃熱を利用した温水器等で構成される温水供給装置が温水混合ユニットにて接続可能とされる給湯装置に関するものである。
【0002】
【従来の技術】
最近は、省エネ等の観点から、例えば太陽熱利用の太陽熱温水器を温水混合ユニットを介して給湯装置に接続した給湯システムが種々提案されている。このような給湯システムは、太陽熱温水器での温水が給湯装置での給湯設定温度より高い場合は、上記温水混合ユニットにて温水と水とをミキシングし上記給湯設定温度となった混合水を給湯装置に給水すると共に給湯装置に対し燃焼不要を指示する一方、太陽熱温水器での温水が給湯設定温度より低い場合は、給湯装置におけるバーナの燃焼運転によって上記混合水を加熱し上記給湯設定温度にして出湯させる(特開平10−47752号公報)。
【0003】
そして、上記給湯装置には太陽熱温水器からの温水が給水されてくるので、バーナの燃焼運転によっては給湯装置から予期せぬ高温のお湯が出湯され得る。そこで、給湯装置には入水温センサおよび水量センサを設け、この入水温センサで検出する入水温度が10℃とか、30℃等の比較的低温の温度以下の場合にバーナを点火準備状態とし、そして、水量センサによって最低通水量の水量を検出すると、バーナを点火させて燃焼運転するものが提案されている(特開平9−210461号公報)。これによって、使用者が予期しない高温出湯を防止すると共に、バーナの着火が素早くなり湯温の立ち上がりを早くできるというものである。
【0004】
【発明が解決しようとする課題】
しかしながら、給湯装置の中には、故障ファクターの低減、部品点数の低減等から入水温センサを設けないようにしたものがあり、このような給湯装置に上記太陽熱温水器等の温水供給装置を接続しようとしても、給湯装置には入水温度を直接に検出できないため、上記のような給湯システムを確立することができない。
【0005】
すなわち、入水温センサを持たない給湯装置では、入水温度を熱量計算によって求めることは可能である。この熱量計算は、出湯温センサが検出する出湯温度から、バーナの燃焼による発熱量を水量センサが検出する通水量で割り算して求めたバーナによる上昇温度を引き算することで、入水温度を求めるものである。よって、バーナの燃焼運転中にはこの熱量計算によって入水温度を認識することができても、バーナが燃焼運転されていないときはバーナ燃焼の発熱量が無いため上記熱量計算によっても入水温度を認識できないからである。
【0006】
従って、仮に、このような給湯装置に上記太陽熱温水器を接続した場合、太陽熱温水器での温水の温度が高く上記温水混合ユニットからの指示で給湯装置が燃焼不要の状態にある場合に、次に太陽熱温水器の温水の温度が変動して低くなったり給湯設定温度が高く変更されたりした場合等に燃焼要の状態に移行すると、実際に燃焼運転されてからバーナの発熱量(燃焼量)を制御して出湯温度を温調することとなる。この場合、給湯装置のバーナが非燃焼状態から燃焼状態に移行して燃焼運転に入ってから上記熱量計算によって入水温度を求めていたのでは入水温度認識の遅れが生じるため、上記温調によって出湯温度が安定するまでには、ある程度の時間を要する。その結果、素早い湯温の立上げを実現することが困難である一方、太陽熱温水器からの温水の温度が比較的高かったり給湯装置での通水量が比較的少なかったりする場合等には上記温調の間に使用者が予期していない高温出湯がなされる事態も起こり得る。
【0007】
本発明は、上記事情に鑑みてなされたものであり、入水温センサを持たない給湯装置であっても、入水温度を素早く認識可能とし安全性の確保と共に温調性能を向上させたうえで温水供給装置を接続できるようにすることを課題とする。
【0008】
【課題を解決するための手段】
(1)本発明に係る給湯装置(請求項1)は、入水温センサは持たないが、少なくとも加熱手段、出湯温検出手段および水量検出手段を備え、入水路には温水供給装置を温水混合ユニットを介して接続可能とし、且つ、この温水混合ユニットからの燃焼不要指示を受付ける機能を備えた給湯装置において、上記燃焼不要指示の下に上記加熱手段が非燃焼状態にあって上記水量検出手段が通水検出状態にあるときは、上記出湯温検出手段が検出する出湯温度を入水温度値そのものとして常時更新して認識する入水温認識手段と、上記加熱手段を燃焼状態とする必要が生じたときに上記入水温認識手段における最新の入水温度値を基に上記加熱手段を制御する制御手段と、を備えたことを特徴とするものである。
【0009】
これによると、上記温水供給装置での温水温度が十分高く給湯装置の加熱手段が燃焼不要の状態にある場合は、上記入水温認識手段によって出湯温度が入水温度値そのものとして常時更新して認識される。すなわち、加熱手段が燃焼運転されていない状態では入水側と出水側は同じ温度にあるとみなせるからである。
【0010】
次に上記温水供給装置での温水温度が低下等し加熱手段を燃焼させる必要が生じたとき、上記制御手段によって上記入水温認識手段における最新の入水温度値を基に上記加熱手段が制御される。すなわち、このときの加熱手段の燃焼運転当初は、上記入水温認識手段で認識された入水温度値と、水量検出手段で検出された通水量とに基づいて、出湯温度が給湯設定温度となるように加熱手段の燃焼量が制御される。これにより、加熱手段が非燃焼状態から燃焼状態に移行するとき、入水温度認識の遅れが生じないため、加熱手段を素早く最適な燃焼状態にすることができる。
【0011】
(2)また、本発明に係る給湯装置(請求項2)は、上記給湯装置(請求項1)において、上記加熱手段の発熱量を上記水量検出手段が検出する通水量で割り算して得た温度値を、上記出湯温検出手段が検出する出湯温度から引き算して入水温度値を求める入水温演算手段を有し、上記入水温認識手段は、さらに上記加熱手段が燃焼状態であって上記水量検出手段が通水検出状態にあるときは、上記入水温演算手段によって求めた入水温度値を常時更新して認識するようにしたことを特徴とするものである。
【0012】
これによると、加熱手段が燃焼状態にある場合に出湯口のカラン等が閉じられて一旦加熱手段の燃焼が停止された後、再び出湯口のカラン等が開けられて加熱手段が燃焼状態に移行するとき、上記制御手段によって上記入水温認識手段における最新の入水温度値を基に上記加熱手段が制御される。これにより、加熱手段が燃焼状態から一旦燃焼停止され再び燃焼状態に移行するときでも、入水温度認識の遅れが生じないため、加熱手段を素早く最適な燃焼状態にすることができる。
【0013】
【発明の効果】
以上のように、請求項1に係る発明によると、上記入水温認識手段で加熱手段が非燃焼状態にあるときの最新の入水温度値が認識されているので、加熱手段が非燃焼状態から燃焼状態に切り替るときでも、入水温度を素早く認識することができ、これによって温調性能をよくすることができる。従って、加熱手段の非燃焼状態から燃焼状態への切り替り時に湯温の立ち上がりを早くできると共に、この時に使用者の予期せぬ高温出湯となることをも防止することができる。
しかも、入水温センサを持たないので、その分の故障ファクターが少なく、また、部品点数の低減による低コスト化をも実現できる。
【0014】
また、請求項2に係る発明によると、さらに、上記入水温認識手段で加熱手段が燃焼状態にあるときの最新の入水温度値が認識されているので、加熱手段が燃焼状態から一旦燃焼停止され再び燃焼状態になるときでも、入水温度を素早く認識することができ、これによって温調性能をよくすることができる。従って、加熱手段の一時的な燃焼停止状態から燃焼状態への切り替り時にも湯温の立ち上がりを早くできると共に、この時に使用者の予期せぬ高温出湯となることをも防止することができる。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態について添付図面を参照しながら説明する。
以下の実施の形態では、温水供給装置として太陽熱温水器を用い、この太陽熱温水器を温水混合ユニットを介して本発明の給湯装置に接続したソーラ給湯システムを例に挙げて説明する。
【0016】
図1は、ソーラ給湯システムの全体構成図を示す。このソーラ給湯システムは、太陽熱温水器5を温水混合ユニット1を介して給湯装置7に接続したものであり、以下にこれら各部の構成から説明する。
【0017】
(太陽熱温水器)
上記太陽熱温水器5は、太陽熱を吸収する集熱器50と貯湯タンク51内とを循環するように形成された蓄熱循環路52を具備しており、この蓄熱循環路52にはホッパ53と循環ポンプ54とが配設されている。また、貯湯タンク51の底部には、上水道等の水源の給水路60から延設されて水を供給するソーラ用給水路55と、水抜栓57を具備する水抜路58とが接続されていると共に、貯湯タンク51の頂部には、この貯湯タンク51のソーラ温水を取出すソーラ出湯路56が引き出されている。そして、上記循環ポンプ54を駆動させ畜熱循環路52内の液状媒体を循環させると、上記集熱器50で加熱された液状媒体が畜熱循環路52を通じて貯湯タンク51内へ導かれて貯湯タンク51内の水を熱交換加熱してソーラ温水とし、この貯湯タンク51内のソーラ温水がソーラ出湯路56を経て上記温水混合ユニット1側に送り込まれる。
【0018】
(温水混合ユニット)
温水混合ユニット1は、ユニット本体10に、ソーラ温水路14、冷水路15および混合水路16を備える通水回路13と、上記混合水路16に流入されるソーラ温水と水の混合を行う混合調節器12と、この温水混合ユニット1を制御するためのユニットコントローラ11とを備える。
【0019】
上記ソーラ温水路14は、太陽熱温水器5からのソーラ温水が通される管路であって、その流入口に上記太陽熱温水器5のソーラ出湯路56が接続され、その下流端で上記混合水路16に接続されている。上記冷水路15は、上水道等の水源からの水が通される管路であって、その流入口に給水路60の一部が減圧弁61の下流から分岐された給水分岐路10が接続され、その下流端で上記混合水路16に接続されている。上記混合水路16は、ソーラ温水と水との混合水が通される管路であって、上記ソーラ温水路14および上記冷水路15が合流されると共にその流出口に給湯装置7の入水路86が接続される。上記混合調節器12は、2軸制御あるいは1軸制御の調節弁を備え、ソーラ温水路14からのソーラ温水と冷水路15からの水との混合割合を決定する。なお、上記ソーラ温水路14、上記冷水路15および上記混合水路16には、適宜、温度センサや水量センサが設けられていてもよい。
【0020】
上記ユニットコントローラ11は、上記給湯装置7の給湯コントローラ72と通信線(信号線)77で接続されて通信機能を有し、リモコン71での給湯設定温度情報や運転モード情報、燃焼制御情報等の各種情報が受信される一方、温水混合ユニット1における混合水の混合制御情報、給湯装置7に対する燃焼不要の指示等の各種情報が給湯コントローラ72に送信される。
【0021】
また、このユニットコントローラ11は、リモコン71での運転モードに応じて、太陽熱温水器5でのソーラ温水の温度と、リモコン71での給湯設定温度とを比較して、上記混合調節器12に対しミキシング動作の制御を行う。例えば、ソーラ温水の温度が、給湯設定温度(給湯設定温度に数℃加減算した温度としてもよい。)より高ければ、給湯設定温度となるように上記混合調節器12に対する混合水のミキシング制御がされ、この場合は同時に給湯装置7へ燃焼不要の指示が出される。一方、ソーラ温水の温度が、給湯設定温度より低ければ、給湯装置7におけるバーナ3の規定燃焼(例えば最小燃焼)による上昇温度分を給湯設定温度から減算した目標混合温度となるように上記混合調節器12に対する混合水のミキシング制御がされる。
【0022】
(給湯装置)
上記給湯装置7は、熱交換器73を加熱するバーナ3と、熱交換器73が内蔵された装置本体70と、各種操作部等(運転スイッチ、浴槽の湯張りスイッチ・追焚スイッチ、湯温設定器、燃焼表示部等)が配置されたリモコン71と、このリモコン71と通信ケーブル78で接続されてこの給湯装置7を制御する給湯コントローラ72とを備える。
【0023】
上記バーナ3にはこれに接続されるガス配管の途中にガス比例弁31と電磁弁32とが設けられている。この電磁弁32の開閉によってガス配管へのガスの供給と停止とが行われる。また、上記ガス比例弁31の開度調節によってバーナ3における燃焼量(発熱量)の強弱が制御される。
【0024】
上記熱交換器73には、入水路86と出湯路84が接続されると共に、浴槽81との間で湯張り及び追焚きに使用される往き管82と戻り管83が接続されている。また、入水路86には、水量センサ62が設けられており、上記温水混合ユニット1からの混合水の水量が検出される。出湯路84には、出湯温センサ61が設けられており、この出湯路84を流れる温水の温度が検出される。また、出湯路84には、往き管82との間に浴槽81へ温水を供給するための風呂落とし込み路74が設けられ、この風呂落とし込み路74には、落とし込み開閉弁75が設けられ、その下流の往き管82との接続点には三方弁76が設けられている。上記落とし込み開閉弁75および上記三方弁76は、上記リモコン71で入力された運転モードに基づいて上記給湯コントローラ72によって制御される。そして、上記出湯路84の末端にはカラン等の出湯口85が設けられている。
【0025】
また、この給湯装置7は、入水温センサを持たないが、給湯コントローラ72によって上記温水混合ユニット1(ユニットコントローラ11)からの燃焼不要指示を受付ける機能を備える。
上記給湯コントローラ72は、入水温演算部721、入水温認識部722および制御部723を有する。これら各部721〜723は、例えばマイコンやシーケンサ等で構成することができる。
【0026】
上記入水温演算部721は、上記バーナ3の燃焼による発熱量Aを上記水量センサ62が検出する通水量Qで割り算して得た温度値を、上記出湯温センサ61が検出する出湯温度Tから引き算して入水温度値を求めるものである。上記入水温認識部722は、上記バーナ3が非燃焼状態であって上記水量センサ62が通水検出状態にあるときは、上記出湯温センサ61が検出する出湯温度を入水温度値そのものとして常時更新して認識し、また、上記バーナ3が燃焼状態であって上記水量センサ62が通水検出状態にあるときは、上記入水温演算部721によって求めた入水温度値を常時更新して認識するものである。上記制御部723は、上記温水混合ユニット1(ユニットコントローラ11)から燃焼不要の指示が送られてきた場合は上記バーナ3におけるガス比例弁31を完全に閉じるか電磁弁32を閉じてバーナ3を燃焼させないようにする。また、上記制御部723は、上記温水混合ユニット1(ユニットコントローラ11)から燃焼不要の指示が送られてこなかった場合は上記電磁弁32を開けた状態にしバーナ3を点火準備状態にし、上記水量センサ62が通水を検出するとバーナ3を燃焼させるようにする。なお、バーナ3を燃焼させるタイミングとしては、上記水量センサ62で通水を検出したそのときでもよいし、上記水量センサ62で一定以上の通水量(例えば、2dm3/分)を検出したときでもよい。
【0027】
また、上記制御部723は、上記バーナ3を燃焼状態とする必要が生じたときに上記入水温認識部722における最新の入水温度値を基に上記バーナ3を制御する。すなわち、上記入水温認識部722で認識された入水温度値と、水量センサ62で検出された通水量に基づいて、熱交換器73で加熱して得られる湯温がリモコン71での給湯設定温度となるように、ガス比例弁31の開度を調節してバーナ3の燃焼量をフィードフォワード制御する。そして、給湯運転中には出湯温センサ61で検出される出湯温度と上記給湯設定温度とが一致しない場合、この出湯温度と給湯設定温度との偏差に基づいて、出湯温度が給湯設定温度と一致するように、ガス比例弁31の開度を調節してバーナ3の燃焼量をフィードバック制御する。
【0028】
(給湯装置の動作)
次に、上記給湯装置の動作を説明する。
図2は、上記給湯コントローラ72による動作手順を示したフローチャートである。図2を参照して、給湯装置7のリモコン71で運転スイッチがONされると(ステップS1)、温水混合ユニット1から燃焼不要の指示がなされているか否か確認される(ステップS2)。すなわち、太陽熱温水器5におけるソーラ温水の温度が給湯装置7のリモコン71での給湯設定温度よりも高い場合には温水混合ユニット1は給湯装置7に対して燃焼不要の指示をする。なお、ソーラ温水の温度はソーラ温水路14に設けた温度センサ等によって検知されてもよい。
【0029】
そして、上記燃焼不要の指示がなされていた場合に水量センサ62によって通水が検出されると(ステップS3)、入水温認識部722において出湯温センサ61が検出する出湯温度を入水温度値そのものとして認識する(ステップS4)。この入水温認識動作は、バーナ3による燃焼が必要となるまで繰り返し行われる(ステップS5、S3、S4)。従って、バーナ3が非燃焼状態であって通水されている間は、その出湯温度が入水温度値そのものとして常時更新して認識される。
【0030】
次に、太陽熱温水器5の温水の温度が変動して低くなったりリモコン71での給湯設定温度が高く変更されたり等しバーナ3の燃焼が必要となると(ステップS5)、上記制御部723によって上記入水温認識部722における最新の入水温度値を基にバーナ3での燃焼量を制御する(ステップS6)。すなわち、入水温認識部722での入水温度値と、水量センサ62で検出する通水量とに基づいて、リモコン71で設定された給湯設定温度となるように、ガス比例弁31の開度調節をしてバーナ3の燃焼量をフィードフォワード制御する。これにより、バーナ3が非燃焼状態から燃焼状態に移行するときに、入水温度認識の遅れが生じないため、バーナ3を素早く最適な燃焼状態にすることができる。従って、バーナ3の非燃焼状態から燃焼状態への切り替り時に湯温の立ち上がりを早くできると共に、この時に使用者の予期せぬ高温出湯となることをも防止することができる。
【0031】
なお、上記ステップS6においてバーナ3の燃焼量制御を行う際に、制御部723は、上記入水温認識部722で認識されていた最新の入水温度値が一定温度値以下の場合にはバーナ3を直ちに点火し燃焼運転させるようにし、上記入水温度値が一定温度値を超えていた場合は一定時間(例えば、数秒間)上記入水温認識部722で入水温認識を行った後に上記バーナ3を点火し燃焼運転させるようにしてもよい。これによって、入水温度認識部722での入水温度が一定温度以下の場合に上記バーナ3を直ちに点火し燃焼運転させるので、出湯開始当初においてより確実に使用者が予期しない高温出湯を防止すると共に、バーナの着火が素早くなって湯温の立ち上がりを早くできる。また、入水温度認識部722での入水温度が一定温度を超える場合は、直ちにバーナ3を燃焼運転するとこのときバーナ3が最小燃焼量以上の加熱が行われてしまって使用者の予期せぬ高温出湯ともなり兼ねないが、数秒間等の一定時間に入水温認識部722で再び入水温認識を行った後にバーナ3を点火し燃焼運転させることで、出湯温度が給湯設定温度となるバーナ3の適切な燃焼量を決定したうえでバーナ3の燃焼運転を行える。これにより、出湯開始当初の入水温度が一定温度を超える場合でも確実に使用者が予期しない高温出湯を防止すると共に、給湯設定温度への湯温の立ち上がりを早く且つスムーズに行える。なお、上記一定温度とは、バーナ3を燃焼運転しても高温出湯とならない比較的低温の温度を意味し、例えば、10℃、20℃等の如く、実験等によって任意に決定することができる。
【0032】
そして、このステップS6における給湯運転中では出湯温センサ61で検出される出湯温度とリモコン71での給湯設定温度とが不一致である場合には、出湯温度と給湯設定温度の偏差に基づいて、出湯温度が給湯設定温度と一致するようにガス比例弁31の開度調節をしてバーナ3の燃焼量をフィードバック制御する。
【0033】
また、バーナ3が燃焼状態にあって水量センサ62が通水を検出しているとき、入水温演算部721がバーナ3の燃焼による発熱量A、水量センサ62で検出する通水量Qおよび出湯温センサ61で検出する出湯温度Tに基づく熱量計算(出湯温度T−(発熱量A/通水量Q))によって入水温度を求める。このとき、上記入水温認識部722は、上記入水温演算部721によって求めた入水温度値を常時更新して認識する(ステップS7、S8)。
【0034】
そして、バーナ3が燃焼状態にある場合に出湯口85のカラン等が閉じられて一旦バーナ3の燃焼が停止された後、再び出湯口85のカラン等が開けられてバーナ3が燃焼状態に移行するとき、上記制御部723によって上記入水温認識部722における最新の入水温度値を基に上記バーナ3の燃焼量が上記フィードフォワード制御される(ステップS9、S5、S6)。このとき上記入水温認識部722で認識されている最新の入水温度値は、ステップS7において上記入水温演算部721で求めた値である。従って、このときの入水温度値は、温水混合ユニット1から入水路86に送り込まれる混合水の温度とみなせ、且つ、通水停止される直前の値である。これにより、バーナ3が燃焼状態から一旦燃焼停止され再び燃焼状態に移行するときでも、入水温度認識の遅れが生じないため、バーナ3を素早く最適な燃焼状態にすることができ、温調性能をよくすることができる。従って、バーナ3の一時的な燃焼停止状態から燃焼状態への切り替り時にも湯温の立ち上がりを早くできると共に、この時に使用者の予期せぬ高温出湯となることをも防止することができる。
【0035】
そして、最終的にリモコン71で運転スイッチがOFFされると(ステップS10)、動作が終了される。なお、以上の動作において、運転スイッチがONされたときにバーナ3の燃焼が必要なときは(ステップS2でNOの判断)、入水温演算部721による熱量計算にて入水温度を求めたうえでバーナ3の燃焼量制御がなされる(ステップS7)。
【0036】
以上のように、実施の形態による給湯装置によれば、上記入水温認識部722でバーナ3が非燃焼状態にあるときの最新の入水温度値が認識されているので(ステップS4)、バーナ3が非燃焼状態から燃焼状態に切り替るときでも(ステップS5→S6)、入水温度を素早く認識することができ、これによって温調性能をよくすることができる。従って、バーナ3の非燃焼状態から燃焼状態への切り替り時に湯温の立ち上がりを早くできると共に、この時に使用者の予期せぬ高温出湯となることをも防止することができる。しかも、入水温センサ61を持たないので、その分の故障ファクターが少なく、また、部品点数の低減による低コスト化をも実現できる。
【0037】
また、上記入水温認識部722でバーナ3が燃焼状態にあるときの最新の入水温度値が認識されているので、バーナ3が燃焼状態から一旦燃焼停止され再び燃焼状態になるときでも、入水温度を素早く認識することができ、これによって温調性能をよくすることができる。従って、バーナ3の一時的な燃焼停止状態から燃焼状態への切り替り時にも湯温の立ち上がりを早くできると共に、この時に使用者の予期せぬ高温出湯となることをも防止することができる。
【0038】
一方、バーナの燃焼→非燃焼→燃焼の運転状態に切り替る場合、従来のものではバーナの非燃焼時は入水温度が認識されないから、前回の燃焼状態のときに熱量計算で求めた入水温度値を基に初期のバーナの燃焼量を決定することも可能であった。しかし、その場合、前回の燃焼状態のとき認識されていた入水温度(混合水の温度)が低かった場合はこの再燃焼時にバーナが必要燃焼量以上の加熱を行ってしまって出湯当初に高温出湯されるおそれがあった。
【0039】
ところが、上記実施の形態では、バーナ3の燃焼状態の運転(ステップS7,S8の繰り返し)から非燃焼状態の運転に移り(ステップS9からS5へ移り、さらにS3へ移ってS3,S4,S5の繰り返し)、再び燃焼状態の運転に切り替る場合(ステップS5からS6)でも、バーナ3の非燃焼状態のときの入水温度が認識されているから(ステップS4)、この入水温度値により初期のバーナ3の燃焼量が適切に決定される。従って、このような燃焼→非燃焼→燃焼のように再度燃焼状態に切り替った場合における出湯開始当初においても使用者が予期しない高温出湯を確実に防止できると共に、湯温の立ち上がりを早くできる。
【0040】
なお、上記実施の形態では、給湯装置7に接続する温水供給装置として太陽熱温水器5を用いるが、これに限らず、例えば廃熱利用の温水器等その他種々の温水供給装置であってもよい。
【図面の簡単な説明】
【図1】実施の形態における、ソーラ給湯システムの全体構成を示す構成図である。
【図2】実施の形態の給湯装置における制御フローを示すフローチャートである。
【符号の説明】
1 温水混合ユニット
3 バーナ(加熱手段)
5 太陽熱温水器(温水供給装置)
7 給湯装置
10 ユニット本体
11 ミキシングコントローラ
12 混合調節器
13 通水回路
14 ソーラ温水路
15 冷水路
16 混合水路
31 ガス比例弁
32 電磁弁
61 出湯温センサ(出湯温検出手段)
62 水量センサ(水量検出手段)
70 装置本体
71 リモコン
72 給湯コントローラ
73 熱交換器
77 通信線
78 通信ケーブル
81 浴槽
82 往き管
83 戻り管
84 出湯路
85 出湯口
86 入水路
721 入水温演算部
722 入水温認識部
723 制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water supply apparatus in which a hot water supply device configured by, for example, a solar water heater using natural energy or a water heater using waste heat can be connected by a hot water mixing unit.
[0002]
[Prior art]
Recently, various hot water supply systems in which a solar water heater using solar heat is connected to a hot water supply device via a hot water mixing unit have been proposed from the viewpoint of energy saving or the like. In such a hot water supply system, when the hot water in the solar water heater is higher than the set hot water supply temperature in the hot water supply device, the hot water and water are mixed in the hot water mixing unit and the mixed water having the hot water supply set temperature is supplied. While supplying water to the apparatus and instructing the hot water supply apparatus not to burn, when the hot water in the solar water heater is lower than the hot water supply set temperature, the mixed water is heated to the hot water supply set temperature by the combustion operation of the burner in the hot water supply apparatus. The hot water is discharged (Japanese Patent Laid-Open No. 10-47752).
[0003]
And since the hot water from a solar water heater is supplied to the hot water supply device, unexpectedly hot water can be discharged from the hot water supply device depending on the combustion operation of the burner. Therefore, the hot water supply apparatus is provided with an incoming water temperature sensor and a water amount sensor, and when the incoming water temperature detected by the incoming water temperature sensor is 10 ° C. or a temperature lower than a relatively low temperature such as 30 ° C., the burner is ready for ignition. When a minimum water flow amount is detected by a water amount sensor, a combustion operation is performed by igniting a burner (Japanese Patent Laid-Open No. 9-210461). As a result, high temperature hot water unexpected by the user can be prevented, the burner can be ignited quickly, and the rise of the hot water temperature can be accelerated.
[0004]
[Problems to be solved by the invention]
However, some water heaters have no water temperature sensor to reduce the failure factor and the number of parts, and connect the hot water supply device such as the solar water heater to such a water heater. Even when trying to do so, the hot water supply device cannot directly detect the incoming water temperature, and thus the above hot water supply system cannot be established.
[0005]
That is, in a hot water supply apparatus that does not have an incoming water temperature sensor, the incoming water temperature can be obtained by calorific value calculation. This calorific value calculation calculates the incoming water temperature by subtracting the rising temperature by the burner, which is obtained by dividing the calorific value of the burner by the amount of water flow detected by the water sensor, from the hot water temperature detected by the hot water temperature sensor. It is. Therefore, even when the burner combustion operation can recognize the incoming water temperature by this calorific value calculation, when the burner is not being burned, there is no burner combustion heat generation, so the incoming water temperature is also recognized by the above calorific value calculation. It is not possible.
[0006]
Therefore, if the solar water heater is connected to such a hot water heater, when the temperature of the hot water in the solar water heater is high and the hot water heater is in a state that does not require combustion as instructed by the hot water mixing unit, When the temperature of the hot water in the solar water heater fluctuates and decreases, or when the hot water supply set temperature is changed to a higher value, the burner's calorific value (combustion) Will control the temperature of the tapping water. In this case, if the inlet water temperature is obtained by the above calorific value calculation after the burner of the hot water supply device has shifted from the non-combustion state to the combustion state and entered the combustion operation, there will be a delay in the recognition of the incoming water temperature. It takes a certain amount of time for the temperature to stabilize. As a result, it is difficult to quickly start the hot water temperature, while the temperature of the hot water from the solar water heater is relatively high or the amount of water passing through the hot water supply device is relatively small. There may be a situation in which high temperature hot water unexpected by the user is made during the tone.
[0007]
The present invention has been made in view of the above circumstances, and even in a hot water supply apparatus that does not have an incoming water temperature sensor, it is possible to quickly recognize the incoming water temperature, ensure safety and improve temperature control performance. It is an object to enable connection of a supply device.
[0008]
[Means for Solving the Problems]
(1) The hot water supply apparatus according to the present invention (Claim 1) does not have an incoming water temperature sensor, but includes at least a heating means, a hot water temperature detecting means, and a water amount detecting means, and the hot water supply device is provided in the hot water supply unit in the hot water mixing unit. In the hot water supply apparatus that has a function of receiving a combustion unnecessary instruction from the hot water mixing unit and the heating means is in a non-combusting state under the combustion unnecessary instruction, and the water amount detecting means is When in the water flow detection state, it is necessary to constantly update and recognize the hot water temperature detected by the hot water temperature detection means as the incoming water temperature value itself, and to make the heating means in a combustion state. And a control means for controlling the heating means based on the latest incoming water temperature value in the incoming water temperature recognition means.
[0009]
According to this, when the hot water temperature in the hot water supply device is sufficiently high and the heating means of the hot water supply device is in a state that does not require combustion, the hot water temperature is constantly updated and recognized as the incoming water temperature value by the incoming water temperature recognition means. The That is, when the heating means is not in a combustion operation, it can be considered that the incoming water side and the outgoing water side are at the same temperature.
[0010]
Next, when it becomes necessary to burn the heating means due to a decrease in the temperature of the hot water in the hot water supply device, the heating means is controlled by the control means based on the latest incoming water temperature value in the incoming water temperature recognition means. . That is, at the beginning of the combustion operation of the heating means at this time, the hot water temperature is set to the hot water supply set temperature based on the incoming water temperature value recognized by the incoming water temperature recognition means and the water flow rate detected by the water amount detection means. In addition, the amount of combustion of the heating means is controlled. Thereby, when the heating means shifts from the non-combustion state to the combustion state, there is no delay in recognition of the incoming water temperature, so that the heating means can be quickly brought into the optimum combustion state.
[0011]
(2) Moreover, the hot water supply apparatus (Claim 2) according to the present invention is obtained by dividing, in the hot water supply apparatus (Claim 1), the heat generation amount of the heating means by the amount of water flow detected by the water amount detection means. A temperature value is subtracted from a tapping temperature detected by the tapping temperature detecting means to obtain a plunge temperature calculating means for obtaining a plunge temperature value. The inlet temperature recognizing means further includes the heating means in a combustion state and the amount of water. When the detection means is in a water flow detection state, the incoming water temperature value obtained by the incoming water temperature calculation means is constantly updated and recognized.
[0012]
According to this, when the heating means is in a combustion state, the hot water outlet's currant etc. is closed and the heating means's combustion is temporarily stopped, and then the hot water outlet's currant etc. is opened again, and the heating means shifts to the combustion state. Then, the heating means is controlled by the control means based on the latest incoming water temperature value in the incoming water temperature recognition means. As a result, even when the heating means is temporarily stopped from the combustion state and transitions to the combustion state again, there is no delay in recognition of the incoming water temperature, so that the heating means can be quickly brought into the optimum combustion state.
[0013]
【The invention's effect】
As described above, according to the first aspect of the present invention, since the latest incoming water temperature value when the heating means is in the non-combustion state is recognized by the incoming water temperature recognition means, the heating means is burned from the non-combustion state. Even when switching to the state, it is possible to quickly recognize the incoming water temperature, thereby improving the temperature control performance. Therefore, when the heating means is switched from the non-combustion state to the combustion state, the rise of the hot water temperature can be accelerated, and at this time, it is possible to prevent the user from expecting high-temperature hot water.
In addition, since there is no incoming water temperature sensor, the corresponding failure factor is small, and the cost can be reduced by reducing the number of parts.
[0014]
In addition, according to the invention of claim 2, since the latest incoming water temperature value when the heating means is in the combustion state is recognized by the incoming water temperature recognition means, the heating means is temporarily stopped from the combustion state. Even when the combustion state is resumed, the incoming water temperature can be recognized quickly, and the temperature control performance can be improved. Therefore, the rise of the hot water temperature can be quickened even when the heating means is switched from the temporary combustion stop state to the combustion state, and at this time, it is possible to prevent the hot water discharge unexpected by the user.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
In the following embodiments, a solar water heater is used as a hot water supply device, and a solar hot water supply system in which the solar water heater is connected to the hot water supply device of the present invention via a hot water mixing unit will be described as an example.
[0016]
FIG. 1 shows an overall configuration diagram of a solar hot water supply system. This solar hot water supply system is one in which a solar water heater 5 is connected to a hot water supply device 7 via a hot water mixing unit 1 and will be described below from the configuration of these parts.
[0017]
(Solar water heater)
The solar water heater 5 includes a heat storage circuit 52 formed so as to circulate between a heat collector 50 that absorbs solar heat and a hot water storage tank 51, and a hopper 53 and a circulation circuit are provided in the heat storage circuit 52. A pump 54 is provided. In addition, a solar water supply passage 55 that extends from a water supply passage 60 of a water source such as a water supply and supplies water and a water discharge passage 58 that includes a water drain plug 57 are connected to the bottom of the hot water storage tank 51. At the top of the hot water storage tank 51, a solar hot water outlet 56 for taking out the hot water of the solar water in the hot water storage tank 51 is drawn out. When the circulation pump 54 is driven to circulate the liquid medium in the livestock heat circulation path 52, the liquid medium heated by the heat collector 50 is guided into the hot water storage tank 51 through the livestock heat circulation path 52. The water in the tank 51 is heat-exchanged and heated to make solar hot water, and the hot water in the hot water storage tank 51 is sent to the hot water mixing unit 1 side through the solar hot water outlet 56.
[0018]
(Hot water mixing unit)
The hot water mixing unit 1 includes a water flow circuit 13 including a solar hot water channel 14, a cold water channel 15, and a mixed water channel 16 in the unit main body 10, and a mixing controller that mixes solar hot water and water flowing into the mixed water channel 16. 12 and a unit controller 11 for controlling the hot water mixing unit 1.
[0019]
The solar hot water channel 14 is a pipe through which the solar hot water from the solar water heater 5 passes, and the solar hot water discharge channel 56 of the solar water heater 5 is connected to the inlet of the solar hot water channel 14, and the mixed water channel at the downstream end thereof. 16 is connected. The cold water passage 15 is a pipe through which water from a water source such as a water supply is passed, and a water supply branch passage 10 in which a part of the water supply passage 60 is branched from the downstream side of the pressure reducing valve 61 is connected to the inlet. , And is connected to the mixed water channel 16 at the downstream end thereof. The mixed water channel 16 is a pipe through which the mixed water of solar hot water and water is passed, and the solar hot water channel 14 and the cold water channel 15 are merged and an inlet 86 of the hot water supply device 7 is connected to the outlet thereof. Is connected. The mixing controller 12 includes a control valve for two-axis control or one-axis control, and determines a mixing ratio of the solar hot water from the solar hot water passage 14 and the water from the cold water passage 15. The solar hot water channel 14, the cold water channel 15 and the mixed water channel 16 may be appropriately provided with a temperature sensor or a water amount sensor.
[0020]
The unit controller 11 is connected to the hot water supply controller 72 of the hot water supply device 7 through a communication line (signal line) 77 and has a communication function, such as hot water supply set temperature information, operation mode information, combustion control information, etc. While various types of information are received, various types of information such as mixing control information of the mixed water in the hot water mixing unit 1 and an instruction not to burn to the hot water supply device 7 are transmitted to the hot water supply controller 72.
[0021]
Further, the unit controller 11 compares the temperature of the solar hot water in the solar water heater 5 with the hot water supply set temperature in the remote controller 71 in accordance with the operation mode in the remote controller 71, and Controls the mixing operation. For example, if the temperature of the solar hot water is higher than the hot water supply set temperature (which may be a temperature obtained by adding or subtracting several degrees Celsius to the hot water supply set temperature), the mixing controller 12 performs mixing control of the mixed water to the hot water supply set temperature. In this case, an instruction not to burn is issued to the hot water supply device 7 at the same time. On the other hand, if the temperature of the solar hot water is lower than the hot water supply set temperature, the above mixing adjustment is performed so that the temperature rise by the prescribed combustion (for example, minimum combustion) of the burner 3 in the hot water supply device 7 is subtracted from the hot water set temperature. Mixing control of the mixed water with respect to the vessel 12 is performed.
[0022]
(Water heater)
The hot water supply device 7 includes a burner 3 for heating the heat exchanger 73, an apparatus main body 70 in which the heat exchanger 73 is incorporated, various operation units and the like (operation switch, hot water bath switch / remembrance switch, hot water temperature switch). A remote controller 71 provided with a setting device, a combustion display unit, and the like, and a hot water controller 72 connected to the remote controller 71 via a communication cable 78 to control the hot water supply device 7.
[0023]
The burner 3 is provided with a gas proportional valve 31 and an electromagnetic valve 32 in the middle of a gas pipe connected thereto. Supplying and stopping of the gas to the gas pipe are performed by opening and closing the electromagnetic valve 32. Further, the amount of combustion (heat generation amount) in the burner 3 is controlled by adjusting the opening degree of the gas proportional valve 31.
[0024]
The heat exchanger 73 is connected to a water inlet path 86 and a hot water outlet path 84, and is connected to a forward pipe 82 and a return pipe 83 that are used for filling and chasing with the bathtub 81. In addition, a water amount sensor 62 is provided in the water inlet 86, and the amount of mixed water from the warm water mixing unit 1 is detected. The hot water outlet 84 is provided with a hot water temperature sensor 61, and the temperature of the hot water flowing through the hot water outlet 84 is detected. In addition, a bath drop-off path 74 for supplying hot water to the bathtub 81 is provided between the hot water discharge path 84 and the forward pipe 82, and a drop-off opening / closing valve 75 is provided in the bath drop-off path 74, downstream thereof. A three-way valve 76 is provided at a connection point with the forward pipe 82. The dropping on / off valve 75 and the three-way valve 76 are controlled by the hot water supply controller 72 based on the operation mode input by the remote controller 71. A hot water outlet 85 such as a currant is provided at the end of the hot water outlet 84.
[0025]
The hot water supply device 7 does not have an incoming water temperature sensor, but has a function of receiving a combustion unnecessary instruction from the hot water mixing unit 1 (unit controller 11) by the hot water supply controller 72.
The hot water supply controller 72 includes an incoming water temperature calculation unit 721, an incoming water temperature recognition unit 722, and a control unit 723. Each of these units 721 to 723 can be configured by, for example, a microcomputer or a sequencer.
[0026]
The incoming water temperature calculation unit 721 calculates the temperature value obtained by dividing the heat generation amount A due to combustion of the burner 3 by the water flow amount Q detected by the water amount sensor 62 from the hot water temperature T detected by the outlet water temperature sensor 61. The water temperature value is calculated by subtraction. When the burner 3 is in a non-combustion state and the water volume sensor 62 is in a water flow detection state, the incoming water temperature recognition unit 722 is constantly updated with the hot water temperature detected by the hot water temperature sensor 61 as the incoming water temperature value itself. In addition, when the burner 3 is in a combustion state and the water amount sensor 62 is in a water flow detection state, the water temperature value obtained by the water temperature calculator 721 is constantly updated and recognized. It is. When an instruction not to burn is sent from the hot water mixing unit 1 (unit controller 11), the control unit 723 completely closes the gas proportional valve 31 in the burner 3 or closes the electromagnetic valve 32 to turn off the burner 3. Avoid burning. Further, the control unit 723 opens the electromagnetic valve 32 and sets the burner 3 to the ignition ready state when the no-combustion instruction is not sent from the hot water mixing unit 1 (unit controller 11), and the amount of water When the sensor 62 detects water flow, the burner 3 is combusted. The burner 3 may be burned at the time when the water flow sensor 62 detects water flow, or the water flow sensor 62 detects a water flow rate greater than a certain value (for example, 2 dm). Three / Min) may be detected.
[0027]
The control unit 723 controls the burner 3 based on the latest incoming water temperature value in the incoming water temperature recognition unit 722 when the burner 3 needs to be in a combustion state. That is, the hot water temperature obtained by heating with the heat exchanger 73 based on the incoming water temperature value recognized by the incoming water temperature recognition unit 722 and the amount of water detected by the water amount sensor 62 is the hot water supply set temperature in the remote controller 71. Thus, the amount of combustion of the burner 3 is feedforward controlled by adjusting the opening of the gas proportional valve 31. If the hot water temperature detected by the hot water temperature sensor 61 does not match the hot water supply set temperature during the hot water supply operation, the hot water temperature matches the hot water supply set temperature based on the deviation between the hot water temperature and the hot water set temperature. Thus, the amount of combustion of the burner 3 is feedback controlled by adjusting the opening of the gas proportional valve 31.
[0028]
(Operation of the water heater)
Next, the operation of the hot water supply apparatus will be described.
FIG. 2 is a flowchart showing an operation procedure by the hot water supply controller 72. Referring to FIG. 2, when the operation switch is turned on by remote controller 71 of hot water supply apparatus 7 (step S1), it is confirmed whether or not an instruction not requiring combustion is given from hot water mixing unit 1 (step S2). That is, when the temperature of the solar hot water in the solar water heater 5 is higher than the hot water supply set temperature in the remote controller 71 of the hot water supply device 7, the hot water mixing unit 1 instructs the hot water supply device 7 not to burn. The temperature of the solar hot water may be detected by a temperature sensor or the like provided in the solar hot water passage 14.
[0029]
When the water flow sensor 62 detects water flow when the above-described combustion unnecessary instruction has been given (step S3), the hot water temperature detected by the hot water temperature sensor 61 in the incoming water temperature recognition unit 722 is taken as the incoming water temperature value itself. Recognize (step S4). This incoming water temperature recognition operation is repeated until combustion by the burner 3 is required (steps S5, S3, S4). Therefore, while the burner 3 is in a non-combustion state and water is passed through, the hot water temperature is constantly updated and recognized as the incoming water temperature value itself.
[0030]
Next, when the temperature of the hot water in the solar water heater 5 fluctuates and becomes low, or when the hot water supply set temperature in the remote controller 71 is changed to a high value or the like, the burner 3 needs to be burned (step S5). The combustion amount in the burner 3 is controlled based on the latest incoming water temperature value in the incoming water temperature recognition unit 722 (step S6). That is, based on the incoming water temperature value in the incoming water temperature recognition unit 722 and the amount of water flow detected by the water amount sensor 62, the opening adjustment of the gas proportional valve 31 is adjusted so as to be the hot water supply set temperature set by the remote controller 71. Then, the combustion amount of the burner 3 is feedforward controlled. Thereby, when the burner 3 shifts from the non-combustion state to the combustion state, there is no delay in the recognition of the incoming water temperature, so that the burner 3 can be quickly brought into the optimum combustion state. Therefore, when the burner 3 is switched from the non-combustion state to the combustion state, the rise of the hot water temperature can be accelerated, and at this time, it is possible to prevent the user from unexpectedly hot hot water.
[0031]
In addition, when performing the combustion amount control of the burner 3 in the step S6, the control unit 723 moves the burner 3 when the latest incoming water temperature value recognized by the incoming water temperature recognition unit 722 is equal to or lower than a certain temperature value. Immediate ignition and combustion operation are performed. If the incoming water temperature value exceeds a certain temperature value, the incoming water temperature recognition unit 722 recognizes the incoming water temperature for a certain time (for example, several seconds), and then the burner 3 is moved. Ignition and combustion operation may be performed. Thereby, when the incoming water temperature in the incoming water temperature recognition unit 722 is equal to or lower than a certain temperature, the burner 3 is immediately ignited and burned, thereby preventing a hot hot water unexpectedly anticipated by the user at the beginning of the hot water discharge. The burner can be ignited quickly and the temperature rises quickly. Also, if the incoming water temperature in the incoming water temperature recognition unit 722 exceeds a certain temperature, if the burner 3 is immediately burned and operated, the burner 3 is heated above the minimum combustion amount at this time, which is unexpectedly high by the user. Although it may also serve as a hot water, the burner 3 is ignited and burned after the water temperature is recognized again by the water temperature recognition unit 722 for a certain time such as several seconds, so that the temperature of the burner 3 becomes the hot water supply set temperature. The burner 3 can be burned after an appropriate amount of combustion is determined. Thereby, even when the incoming water temperature at the beginning of the hot water supply exceeds a certain temperature, it is possible to reliably prevent high temperature hot water unexpected by the user and to quickly and smoothly rise the hot water temperature to the hot water supply set temperature. The above-mentioned constant temperature means a relatively low temperature that does not result in high temperature hot water even when the burner 3 is burned, and can be arbitrarily determined by experiments, such as 10 ° C. and 20 ° C., for example. .
[0032]
When the hot water temperature detected by the hot water temperature sensor 61 does not match the hot water supply temperature set by the remote controller 71 during the hot water supply operation in step S6, the hot water temperature is determined based on the deviation between the hot water temperature and the hot water temperature set temperature. The degree of combustion of the burner 3 is feedback controlled by adjusting the opening of the gas proportional valve 31 so that the temperature matches the hot water supply set temperature.
[0033]
Further, when the burner 3 is in a combustion state and the water amount sensor 62 detects water flow, the incoming water temperature calculation unit 721 generates heat A due to combustion of the burner 3, the water flow amount Q detected by the water amount sensor 62, and the hot water temperature. The incoming water temperature is determined by calorific value calculation based on the hot water temperature T detected by the sensor 61 (hot water temperature T- (heat generation amount A / water flow rate Q)). At this time, the incoming water temperature recognition unit 722 constantly updates and recognizes the incoming water temperature value obtained by the incoming water temperature calculation unit 721 (steps S7 and S8).
[0034]
Then, when the burner 3 is in a combustion state, the calorie or the like of the hot water outlet 85 is closed and the combustion of the burner 3 is once stopped, and then the curan or the like of the hot water outlet 85 is opened again and the burner 3 shifts to the combustion state. Then, the combustion amount of the burner 3 is feedforward controlled by the control unit 723 based on the latest incoming water temperature value in the incoming water temperature recognition unit 722 (steps S9, S5, S6). At this time, the latest incoming water temperature value recognized by the incoming water temperature recognition unit 722 is the value obtained by the incoming water temperature calculation unit 721 in step S7. Accordingly, the incoming water temperature value at this time can be regarded as the temperature of the mixed water sent from the hot water mixing unit 1 to the incoming water passage 86, and is a value immediately before the water flow is stopped. As a result, even when the burner 3 is temporarily stopped from the combustion state and transitions to the combustion state again, there is no delay in the recognition of the incoming water temperature, so that the burner 3 can be quickly brought into the optimum combustion state and the temperature control performance can be improved. Can do well. Therefore, the rise of the hot water temperature can be accelerated even when the burner 3 is switched from the temporary combustion stop state to the combustion state, and at this time, it is possible to prevent the user from unexpectedly hot hot water.
[0035]
When the operation switch is finally turned off by the remote controller 71 (step S10), the operation is terminated. In the above operation, when the burner 3 needs to be combusted when the operation switch is turned on (NO in step S2), after calculating the incoming water temperature by calculating the amount of heat by the incoming water temperature calculation unit 721. The combustion amount of the burner 3 is controlled (step S7).
[0036]
As described above, according to the hot water supply apparatus according to the embodiment, the latest incoming water temperature value when the burner 3 is in the non-burning state is recognized by the incoming water temperature recognition unit 722 (step S4). Even when the is switched from the non-combustion state to the combustion state (steps S5 → S6), the incoming water temperature can be quickly recognized, thereby improving the temperature control performance. Therefore, when the burner 3 is switched from the non-combustion state to the combustion state, the rise of the hot water temperature can be accelerated, and at this time, it is possible to prevent the user from unexpectedly hot hot water. In addition, since the incoming water temperature sensor 61 is not provided, the failure factor is reduced accordingly, and the cost can be reduced by reducing the number of parts.
[0037]
In addition, since the latest incoming water temperature value when the burner 3 is in the combustion state is recognized by the incoming water temperature recognition unit 722, even when the burner 3 is temporarily stopped from the combustion state and becomes in the combustion state again, the incoming water temperature Can be recognized quickly, thereby improving the temperature control performance. Therefore, the rise of the hot water temperature can be accelerated even when the burner 3 is switched from the temporary combustion stop state to the combustion state, and at this time, it is possible to prevent the user from unexpectedly hot hot water.
[0038]
On the other hand, when switching from burner combustion → non-combustion → combustion operation state, the conventional one does not recognize the incoming water temperature when the burner is not in combustion, so the incoming water temperature value obtained by calorific value calculation in the previous combustion state It was also possible to determine the amount of combustion of the initial burner based on this. However, in that case, if the incoming water temperature (mixed water temperature) recognized in the previous combustion state was low, the burner heated more than the required amount of combustion during this re-combustion and the high temperature There was a risk of being.
[0039]
However, in the above embodiment, the operation of the burner 3 in the combustion state (repetition of steps S7 and S8) is shifted to the operation in the non-combustion state (from step S9 to S5, and further to S3 and to S3, S4 and S5). (Repeat), even when switching to the operation in the combustion state again (steps S5 to S6), since the incoming water temperature when the burner 3 is in the non-combustion state is recognized (step S4), the initial burner is determined by this incoming water temperature value. The combustion amount of 3 is appropriately determined. Therefore, high temperature hot water unexpectedly anticipated by the user can be surely prevented even at the beginning of the hot water when switching to the combustion state again such as combustion → non-combustion → combustion, and the rise of the hot water temperature can be accelerated.
[0040]
In the above-described embodiment, the solar water heater 5 is used as the hot water supply device connected to the hot water supply device 7, but the present invention is not limited to this, and various other hot water supply devices such as a water heater using waste heat may be used. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an overall configuration of a solar hot water supply system in an embodiment.
FIG. 2 is a flowchart showing a control flow in the hot water supply apparatus of the embodiment.
[Explanation of symbols]
1 Hot water mixing unit
3 Burner (heating means)
5 Solar water heater (warm water supply device)
7 Water heater
10 Unit body
11 Mixing controller
12 Mixing controller
13 Water flow circuit
14 Solar heated waterway
15 cold waterway
16 Mixed waterway
31 Gas proportional valve
32 Solenoid valve
61 Hot water temperature sensor (hot water temperature detection means)
62 Water volume sensor (Water volume detection means)
70 Device body
71 remote control
72 Hot water controller
73 heat exchanger
77 communication line
78 Communication cable
81 bathtub
82 Outward pipe
83 Return pipe
84 Hot Spring
85 Hot spring outlet
86 waterway
721 Inlet water temperature calculation unit
722 Inlet temperature recognition unit
723 control unit

Claims (2)

入水温センサは持たないが、少なくとも加熱手段、出湯温検出手段および水量検出手段を備え、入水路には温水供給装置を温水混合ユニットを介して接続可能とし、且つ、この温水混合ユニットからの燃焼不要指示を受付ける機能を備えた給湯装置において、
上記燃焼不要指示の下に上記加熱手段が非燃焼状態にあって上記水量検出手段が通水検出状態にあるときは、上記出湯温検出手段が検出する出湯温度を入水温度値そのものとして常時更新して認識する入水温認識手段と、
上記加熱手段を燃焼状態とする必要が生じたときに上記入水温認識手段における最新の入水温度値を基に上記加熱手段を制御する制御手段と、を備えたことを特徴とする給湯装置。
Although it does not have an incoming water temperature sensor, it is provided with at least a heating means, a tapping temperature detection means, and a water amount detection means, and a hot water supply device can be connected to the inlet channel via a hot water mixing unit, and combustion from the hot water mixing unit is possible. In a water heater with a function to accept unnecessary instructions,
When the heating means is in a non-combustion state and the water amount detection means is in a water flow detection state under the combustion unnecessary instruction, the hot water temperature detected by the hot water temperature detection means is constantly updated as the incoming water temperature value itself. The incoming water temperature recognition means,
And a control means for controlling the heating means based on the latest incoming water temperature value in the incoming water temperature recognizing means when the heating means needs to be in a combustion state.
請求項1に記載の給湯装置において、
上記加熱手段の発熱量を上記水量検出手段が検出する通水量で割り算して得た温度値を、上記出湯温検出手段が検出する出湯温度から引き算して入水温度値を求める入水温演算手段を有し、
上記入水温認識手段は、さらに上記加熱手段が燃焼状態であって上記水量検出手段が通水検出状態にあるときは、上記入水温演算手段によって求めた入水温度値を常時更新して認識するようにしたことを特徴とする給湯装置。
The hot water supply apparatus according to claim 1,
A water temperature calculating means for subtracting the temperature value obtained by dividing the heat generation amount of the heating means by the amount of water flow detected by the water quantity detecting means from the temperature of the hot water detected by the hot water temperature detecting means, and obtaining an incoming water temperature value; Have
When the heating means is in a combustion state and the water amount detection means is in a water flow detection state, the incoming water temperature recognizing means constantly updates and recognizes the incoming water temperature value obtained by the incoming water temperature calculation means. A hot water supply device characterized by that.
JP2001296215A 2001-09-27 2001-09-27 Water heater Expired - Fee Related JP3720745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296215A JP3720745B2 (en) 2001-09-27 2001-09-27 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296215A JP3720745B2 (en) 2001-09-27 2001-09-27 Water heater

Publications (2)

Publication Number Publication Date
JP2003106655A JP2003106655A (en) 2003-04-09
JP3720745B2 true JP3720745B2 (en) 2005-11-30

Family

ID=19117501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296215A Expired - Fee Related JP3720745B2 (en) 2001-09-27 2001-09-27 Water heater

Country Status (1)

Country Link
JP (1) JP3720745B2 (en)

Also Published As

Publication number Publication date
JP2003106655A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP3705246B2 (en) Hot water system
JP5140634B2 (en) Hot water storage hot water supply system and cogeneration system
JP3720745B2 (en) Water heater
JP2003194404A (en) Flow type water heater
JP2004347196A (en) Hot water supply system
JPH09184659A (en) Hot water supply apparatus
JP3962640B2 (en) Water heater
JP4198522B2 (en) Cogeneration system
JP4682490B2 (en) Hot water system
JPH11230616A (en) Connecting unit for auxiliary hot water supply device
JP2004263914A (en) Heating system and cogeneration system
JP2005147579A (en) Gas combustion room heater and water heater
JP3864116B2 (en) Hot water system
JP3740089B2 (en) Hot water mixing unit
JPH01273927A (en) Device for room heating with hot water
JPH04371750A (en) Hot water feeder
JP2002277056A (en) Hot-water supplying system
JP3551498B2 (en) Hot water storage system
JPH11270906A (en) Warm water supply
JP2002257416A (en) Auxiliary heat source apparatus with over-heated hot water supply prohibitive function and solar heat hot- water supply apparatus
JPH09243170A (en) Gas water heater
JP3922788B2 (en) Hot water supply method and hot water supply apparatus
KR930001846B1 (en) Recombustion method in gas boiler
JPH01277137A (en) Temperature control device in hot water-circulating heater
JP3171701B2 (en) Carbonated water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees