JP3922788B2 - Hot water supply method and hot water supply apparatus - Google Patents

Hot water supply method and hot water supply apparatus Download PDF

Info

Publication number
JP3922788B2
JP3922788B2 JP05891598A JP5891598A JP3922788B2 JP 3922788 B2 JP3922788 B2 JP 3922788B2 JP 05891598 A JP05891598 A JP 05891598A JP 5891598 A JP5891598 A JP 5891598A JP 3922788 B2 JP3922788 B2 JP 3922788B2
Authority
JP
Japan
Prior art keywords
combustion
hot water
water supply
time
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05891598A
Other languages
Japanese (ja)
Other versions
JPH11241864A (en
Inventor
大介 越水
哲生 上田
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP05891598A priority Critical patent/JP3922788B2/en
Publication of JPH11241864A publication Critical patent/JPH11241864A/en
Application granted granted Critical
Publication of JP3922788B2 publication Critical patent/JP3922788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、再給湯特性を改善することができる給湯装置に関する。
【0002】
【従来の技術】
一般的な給湯装置は、熱交換部と、燃焼部と、熱交換部を通る給湯用の配管とを備えている。配管には、水の流れを検出する検出手段が設けられている。配管の下流端に設けられた給湯栓を開くと、この検出手段が配管内の水の流れを検出する。この検出信号に応答して、制御手段は、上記燃焼部での燃焼を実行し、熱交換部を加熱する。配管内の水はこの熱交換部を通る過程で熱せられて湯となり、給湯栓から吐出される。
上記制御手段は、出湯温度が設定温度になるように燃焼部での燃焼熱量を制御する。そして、給湯栓が閉じられ、検出手段で配管内の水の流れを検出しなくなった時に、燃焼部での燃焼を停止する。このようにして、給湯が停止される。
【0003】
ところで、上記給湯装置には、給湯停止後に熱交換部内に留まっている湯の温度が一時的に上昇する現象、いわゆる後沸き現象が生じる。これは、給湯停止直後に、熱交換部に蓄えられた熱量が、熱交換部内に留まっている湯に、伝達されるためである。
最近、給湯装置は再出湯開始時、点火から熱交換部への伝熱が開始されるまでの間約1秒かかり、この間は給湯装置に水が入るのみで加熱されることがない。最近、この分の熱量を後沸きで生じる熱量で補い、又この後沸き現象を積極的に利用して、給湯が停止してから所定時間例えば5分以内に給湯栓を開いて再給湯させる場合には、この再給湯開始直後でも設定温度に近い温度の湯を吐出できるようにした給湯装置が開発されている。
【0004】
【発明が解決しようとする課題】
しかし、上記後沸き現象を利用して、5分間以内での再給湯直後の湯の安定を図るためには、上記給湯停止時点で蓄えられる熱交換部での熱量と、熱交換部に蓄えられる湯ないし水の量との相対的関係を適度な範囲にする必要がある。蓄熱量が滞留湯の量に対して大き過ぎると、後沸きが著しく滞留湯の温度が過度に上昇してしまうし、蓄熱量が滞留湯の量に対して小さ過ぎると十分な後沸きが得られないからである。そのため、熱交換部の熱容量(質量)、保有水量(熱交換部を通る配管の径及び長さ)を適度に設計する必要があり、設計上制約が大きかった。
また、燃焼能力(燃焼号数)の大きな給湯装置例えば32号の給湯装置を一般家庭で使用する場合、設定温度が40度前後であると、給湯栓を全開しても、最大燃焼能力で燃焼することがなく、その1/2〜1/3の燃焼熱量を発生させるだけである。この場合、熱交換部の熱容量が大きいにも拘わらず、その一部を加熱するだけであるため、後沸きが小さく、再給湯直後の湯を設定温度に近づけることはできなかった。
【0005】
【課題を解決するための手段】
請求項1の発明は、熱交換部と、この熱交換部に燃焼熱を供給する燃焼部と、熱交換部を通る給湯用の配管と、この配管内の水の流れを検出する検出手段と、この検出手段での水流検出に応答して上記燃焼部での燃焼を実行することにより給湯を行う制御手段と備えた給湯装置において、上記制御手段は、上記検出手段による水流検出状態から水流非検出状態に切り替わった時点、すなわち給湯停止時点において、給湯時の燃焼状況の情報に応じて総燃焼熱量を決定し、上記給湯停止時点からこの総燃焼熱量に達するまで継続燃焼を行うことを特徴とする。
【0007】
請求項の発明は、請求項に記載の給湯装置において、上記給湯時の燃焼状況の情報が、単位時間当たりの燃焼熱量,設定温度のいずれか一方または両者を含むことを特徴とする。
請求項の発明は、請求項に記載の給湯装置において、上記燃焼部は、独立して燃焼制御可能な複数の燃焼領域を有しており、上記給湯時の燃焼状況の情報が、給湯時に燃焼状態にあった燃焼領域の数の情報を含み、上記制御手段は、給湯停止時点において、この燃焼領域の数に対応した総燃焼熱量を演算することを特徴とする。
請求項の発明は、請求項1〜のいずれかに記載の給湯装置において、上記制御手段は、外気温度にも対応して、上記継続燃焼時の総燃焼熱量を決定することを特徴とする。
請求項の発明は、請求項1〜のいずれかに記載の給湯装置において、上記配管は、熱交換部を通る受熱管と、受熱管の入口と出口にそれぞれ接続された給水管および給湯管と、受熱管と並列をなして給水管および給湯管に接続されたバイパス管とを備え、上記制御手段は、給水管からバイパス管を経て給湯管に入る入水温度にも対応して、上記継続燃焼時の総燃焼熱量を決定することを特徴とする。
請求項6の発明は、熱交換部と、この熱交換部に燃焼熱を供給する燃焼部と、熱交換部を通る給湯用の配管と、この配管内の水の流れを検出する検出手段と、この検出手段での水流検出に応答して上記燃焼部での燃焼を実行することにより給湯を行う制御手段とを備えた給湯装置において、上記制御手段は、上記検出手段による水流検出状態から水流非検出状態に切り替わった時点、すなわち給湯停止時点において、給湯時の燃焼状況の情報に応じて継続燃焼時間を演算し、上記給湯停止時点からこの継続燃焼時間だけ、所定の単位時間当たりの燃焼熱量で継続燃焼を行い、上記給湯時の燃焼状況の情報が、単位時間当たりの燃焼熱量,設定温度のいずれか一方または両者を含むことを特徴とする。
請求項7の発明は、熱交換部と、この熱交換部に燃焼熱を供給する燃焼部と、熱交換部を通る給湯用の配管と、この配管内の水の流れを検出する検出手段と、この検出手段での水流検出に応答して上記燃焼部での燃焼を実行することにより給湯を行う制御手段とを備えた給湯装置において、上記制御手段は、上記検出手段による水流検出状態から水流非検出状態に切り替わった時点、すなわち給湯停止時点において、給湯時の燃焼状況の情報に応じて継続燃焼時間を演算し、上記給湯停止時点からこの継続燃焼時間だけ、所定の単位時間当たりの燃焼熱量で継続燃焼を行い、上記制御手段は、外気温度にも対応して、上記継続燃焼時の継続燃焼時間を決定することを特徴とする。
請求項8の発明は、熱交換部と、この熱交換部に燃焼熱を供給する燃焼部と、熱交換部を通る給湯用の配管と、この配管内の水の流れを検出する検出手段と、この検出手段での水流検出に応答して上記燃焼部での燃焼を実行することにより給湯を行う制御手段とを備えた給湯装置において、上記制御手段は、上記検出手段による水流検出状態から水流非検出状態に切り替わった時点、すなわち給湯停止時点において、給湯時の燃焼状況の情報に応じて継続燃焼時間を演算し、上記給湯停止時点からこの継続燃焼時間だけ、所定の単位時間当たりの燃焼熱量で継続燃焼を行い、上記配管は、熱交換部を通る受熱管と、受熱管の入口と出口にそれぞれ接続された給水管および給湯管と、受熱管と並列をなして給水管および給湯管に接続されたバイパス管とを備え、上記制御手段は、給水管からバイパス管を経て給湯管に入る入水温度にも対応して、上記継続燃焼時の継続燃焼時間を決定することを特徴とする。
請求項の発明は、請求項1〜4,6,7のいずれかに記載の給湯装置において、上記配管は、熱交換部を通る受熱管と、受熱管の入口と出口にそれぞれ接続された給水管および給湯管と、受熱管と並列をなして給水管および給湯管に接続されたバイパス管とを備え、このバイパス管にバイパス弁が設けられており、上記制御手段は、上記検出手段で水流を検出した時に、上記熱交換部から出てきた湯の温度または前回の給湯停止からの経過時間に対応して、バイパス弁を制御することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。図1に示すように、給湯装置は、大きな燃焼能力(例えば、32号)を有するものであり、多数のフィン11を有する熱容量の大きな熱交換部10と、この熱交換部10に燃焼熱量を供給する燃焼部20(熱発生部)とを有している。燃焼部20は、3つの燃焼領域21,22,23を有している。ガス供給管30は、主管部35と、この主管部35から分岐した3つの分岐管部31,32,33を有している。主管部35には、主開閉弁45と比例弁46が設けられ、分岐管部31,32,33にはそれぞれ副開閉弁41,42,43が設けられている。
【0009】
給湯のための配管50は、熱交換部10を通る受熱管51と、この受熱管51の入口端に接続された給水管52と、受熱管51の出口端に接続された給湯管53とを有している。給湯管53には、水量制御弁54が設けられるとともに、その下流端には給湯栓55が設けられている。さらに配管50は、受熱管51と並列をなす2本のバイパス管56,57を有している。熱交換部10に近い方のバイパス管56と給水管52,給湯管53との接続点をP1,P2で示す。また、熱交換部10から遠い方のバイパス管57と給水管52,給湯管53との接続点をP3,P4で示す。このバイパス管57には、電磁開閉弁からなるバイパス弁58が設けられている。
【0010】
給水管52には、入水温度TINを検出するための入水温度センサTHINが設けられている。また、給湯管53には、熱交換部10と接続点P2との間において、熱交換部10の出口からの湯の温度TOUTを検出する出口温度センサTHOUTが設けられている。さらに、給湯管53には、接続点P4より下流側において出湯温度TMIXを検出するための出湯温度センサTHMIXと、配管50を流れる水の量すなわち出湯量を検出するフローセンサFL(水流を検出するための検出手段)が設けられている。
【0011】
本給湯装置は、更に、マイクロコンピュータを含む制御ユニット60(制御手段)と、この制御ユニット60にユーザー設定温度TSの情報を送るリモートコントローラ65とを備えている。制御ユニット60は、この設定温度TS、および上記検出温度TIN,TOUT,TMIX,フローセンサFLからの検出流量等に基づいて、点火機構,ガス供給のための弁41,42,43,45,46,水量制御弁54,バイパス弁58を制御するようになっている。
【0012】
なお、本給湯装置は、上記熱交換部10を通る風呂追焚用の配管や、上記給湯管53から風呂追焚用の配管に連なる湯張り管等を備えているが、本発明の要旨ではないので図示を省略する。
【0013】
上記構成をなす給湯装置において、制御ユニット60は、図2に示す制御ルーチンを実行する。詳述すると、フローセンサFLで検出される流量が、非常に低く設定された閾値を越えたか否か、換言すればユーザーが給湯栓55を開いて配管10に水が流れているか否かを判断する(ステップ101)。ここで肯定判断するまで待機する。肯定判断した時には、燃焼ランプをオンにして給湯制御を実行する(ステップ102)。この給湯制御では、最初に主開閉弁45と少なくとも1つの副開閉弁41〜43を開くとともに点火動作を行うことにより、燃焼部20での燃焼を開始する。そして、フローセンサFLで検出された流量と、温度センサTHINで検出された入水温度TINとリモートコントローラ65で設定されたユーザー設定温度TSに基づいてフィードフォワード制御成分を演算し、温度センサTHMIXで検出された出湯温度TMIXと設定温度TSに基づいてフィードバック制御成分を演算する。そして、このフィードフォワード制御成分にフィードバック制御成分を加算した制御値に基づいて、出湯温度TMIXが設定温度TSになるように、供給ガス量すなわち単位時間当たりの燃焼熱量を制御する。
【0014】
より詳しくは、要求する単位時間当たりの燃焼熱量が小さい場合には、燃焼部20において1つの燃焼領域21に対応する副開閉弁41を開き、他の副開閉弁42,43を閉じたままにして、この燃焼領域21でのみ燃焼を実行する(一面燃焼)。この状態で、比例弁46を制御することにより、第1の上限値まで、供給ガス量、ひいては単位時間当たりの燃焼熱量を無段階に制御する。
要求する単位時間当たりの燃焼熱量が第1の上限値を越える場合には、2つの副開閉弁41,42を開いて燃焼領域21,22での燃焼を実行する(二面燃焼)。そして、比例弁46の制御により、第2の上限値までの範囲で、供給ガス量を無段階で制御する。
要求する単位時間当たりの燃焼熱量が第2の上限値を越える場合には、全ての副開閉弁41〜43を開くとともに比例弁46を制御することにより、燃焼領域21〜23での燃焼を実行して(三面燃焼)、第3の上限値,すなわち最大燃焼能力までの範囲で、供給ガス量を無段階で制御する。
【0015】
要求する単位時間当たりの燃焼熱量が最大燃焼能力を越える場合には、水量制御弁54を絞り、出湯量を最大燃焼能力に見合った量に抑制する。
バイパス弁58は、通常の給湯制御では開いているが、設定温度が非常に高い場合例えば60°C以上の場合には閉じられる。なお、バイパス弁58の給湯制御の初期段階での開きタイミングについては後述する。
【0016】
上記給湯制御は、次のステップ103で、フローセンサFLでの検出流量が閾値を下回ると判断するまで、すなわちユーザーが給湯栓55を閉じることによって水流非検出状態に変わり、給湯が停止したと判断するまで継続される。ステップ103で水流検出せずと判断した時には、ステップ104に進む。ここでは、上記給湯制御時に三面燃焼であったか否かを判断する。ここで肯定判断した時には、主開閉弁45,副開閉弁41〜43を閉じて、燃焼状態を即座に停止する(残火燃焼時間ゼロ)。三面燃焼の場合には、十分な燃焼熱量が熱交換部10に付与されていて蓄熱量が大きいので、熱交換部10の熱容量(質量)が大きくても、十分な後沸きが期待でき、例えば1分後に所定温度以上(例えば60°C以上)にすることができるからである。
【0017】
上記ステップ104で否定判断した場合、すなわち、一面燃焼状態か二面燃焼状態と判断した時には、まず、燃焼ランプを消灯させて利用者に器具が正常動作しているとの安心感を与えてから、残火状態に入り、残火燃焼時間t0(継続燃焼時間)を演算する(ステップ105)。この残火燃焼時間t0は、燃焼領域の数に対応して設定される。一面燃焼状態と判断した場合には、二面燃焼状態と判断した場合よりも、残火燃焼時間t0が長くなる。例えば、一面燃焼状態の場合には0.8秒とし、二面燃焼状態の場合には0.5秒とする。
【0018】
残火燃焼時間t0は、TOUT(又はTS)に基づいて変えてもよい。つまり、1分経過後の温度をある温度範囲にしたいわけだから、TOUTが低い場合はt0を大きくTOUTが高い場合にはt0を小さくした方が好ましい。又、TOUTが高い場合にはt0を小さくしたいが、逆に時間の単位(1/100秒)が小さくなり、制御が難しくなるので、TOUTが高い場合にはステップ103でNOとなった後、比例弁を最小開度にしてからt0をカウントする方が好ましい。
【0019】
次に、上記残火燃焼時間t0だけ燃焼状態を継続する(ステップ106)。本実施形態では、給湯燃焼制御時に二面燃焼であった場合には、そのままの二面燃焼状態で第2の上限値または所定の供給ガス量(所定の単位時間当たりの燃焼熱量)にして、燃焼を延長継続する。また、給湯制御時に一面燃焼であった場合には、副開閉弁32を開いて二面燃焼状態にし、上記所定の供給ガス量で、燃焼を延長継続する。この説明から明らかなように、給湯制御時に一面燃焼,二面燃焼であった場合には、熱交換部10に付与される単位時間当たりの燃焼熱量が小さく蓄熱量が小さいので、後沸きが小さいが、この残火燃焼を実行して、熱交換部10に滞留している湯に燃焼熱量を加えることにより、この滞留湯の温度を所定温度以上(60°C以上)に上げることができるのである。給湯制御時に一面燃焼の場合と二面燃焼の場合とでは、熱交換部10の蓄熱量に差があるが、それに対応して残火燃焼時間t0を異ならせ、ひいては残火燃焼で付与される総燃焼熱量を異ならせたので、残火燃焼終了時点またはそれから所定時間例えば1分経過時点において、熱交換部10での滞留湯の温度を同等にすることができる。
【0020】
なお、給湯時に二面燃焼の場合には、上記と同様に二面燃焼で残火燃焼を行い、給湯時に一面燃焼の場合には、一面燃焼のまま残火燃焼を行ってもよい。ただし、給湯時に一面燃焼の場合には、上記の例よりも燃焼時間を長くし、給湯時に二面燃焼の場合よりも残火燃焼による総燃焼熱量を多くするのは勿論である。
【0021】
上記残火燃焼制御は、設定時間t0経過したと判断した時(ステップ107)に終了し、燃焼停止して(ステップ108)、ステップ101の待機状態に戻る。そして、ユーザーが再び給湯栓55を開くと、ステップ101で肯定判断して給湯制御(ステップ102)を開始する。
上述した熱交換部10の滞留湯の温度は放熱により徐々に低下するが、給湯再開が、所定時間以内例えば5分以内であれば、十分に暖かい温度を維持しているので、給湯初期にこの暖かい滞留湯を給湯栓55から吐出させることができる。したがって、ユーザーは、給湯初期のごく短い時間、すなわち滞留湯が給湯栓55に達するまでの時間だけ低温の湯または水を我慢するだけで、その後は暖かい湯を享受することができる。
【0022】
次に、給湯の初期段階の制御、特にバイパス弁58の制御を詳細に説明する。このバイパス弁58の制御について説明する前に、熱交換部10からの湯と、バイパス管56,57からの水との混合について予め説明しておく。バイパス弁58が閉じている状態では、熱交換部10からの湯とバイパス管56からの水の混合比はX:(1−X)である。
したがって、出湯温度TMIXは次式で表すことができる。
MIX=TOUT・X+TIN(1−X) ・・・(1)
また、バイパス弁58が開いている状態では、熱交換部10からの湯と2本のバイパス管56,57からの水の混合比はY:(1−Y)である。
したがって、出湯温度TMIXは次式で表すことができる。
MIX=TOUT・Y+TIN(1−Y) ・・・(2)
勿論、Y<Xであり、本実施例では、Y=0.45,X=0.7である。
【0023】
上記後沸き,残火燃焼の結果、滞留湯の温度は給湯停止から例えば1分経過時点でピークとなり、その後は放熱により徐々に低下する。本実施形態では、給湯停止から約5分経過時点でも、熱交換部10の滞留湯は設定温度に近い温度にある。給湯開始時点で、熱交換部10の滞留湯を出口温度センサTOUTで検出する。この出口温度TOUT(滞留湯温度)と設定温度TSと入水温度TINとに基づいて、バイパス弁58を早期に開くか否かを判断する。すなわち、上記(1)式と(2)式に基づいて、出湯温度TMIXを予想する。そして、設定温度TSに近い方の予想出湯温度TMIXを選択する。換言すれば、バイパス弁58を開くか閉じるかを選択する。そして、バイパス弁58を開く場合には、早期に(すなわち滞留湯が最初に接続点P4に達するまでの時間経過時点より前に)、バイパス弁58を開く。これにより、給湯開始直後の実際の出湯温度を、設定温度TSに近づけることができる。
【0024】
例を挙げて説明すると、給湯開始時点の滞留湯の温度TOUTが55°Cであり、入水温度TINが20°Cであり、設定温度TSが40°Cである場合、(1)式に基づく予想出湯温度TMIXは44.5°Cであり、(2)式に基づく予想出湯温度TMIXは39.25°Cである。設定温度TSに近いのは、(2)式に基づく予想出湯温度TMIXであるから、この場合には、バイパス弁58を上記のタイミングで開く。
同じ条件で設定温度TSが43°Cの場合には、設定温度TSに近いのは、(1)式に基づく予想出湯温度TMIXであるから、この場合には、バイパス弁58を上記のタイミングで開かず、滞留湯がすべて給湯栓55から出湯され、出湯温度が安定してからバイパス弁58を開く。なお、この場合、バイパス弁58の開動作に先立って、供給ガス量は予め増やしておく。
【0025】
本発明は上記実施形態に制約されず、種々の形態を採用することができる。例えば、給湯停止時に、残火燃焼による総燃焼熱量をどの程度にするかを、より精密な燃焼状況の情報、例えば給湯停止直前における実際の単位時間当たりの燃焼熱量(供給ガス量)に応じて無段階に決定してもよい。すなわち、実際の単位時間当たり給湯燃焼熱量が小さいほど残火燃焼による総燃焼熱量を大きくするのである。この単位時間当たりの燃焼熱量は、副開閉弁41〜43の開閉情報と、比例弁46の開度情報から得てもよいし、あるいは設定温度と入水温度と出湯量から演算してもよい。このようにすれば、より高精度に給湯停止時点から所定時間例えば1分経過時点での滞留湯の温度を一定にすることができる。総燃焼熱量が決定された場合、単位時間当たりの燃焼熱量の時間積分により、決定された総熱量熱量に達するまで(換言すれば限られた時間で)、残火燃焼を実行する。単位時間当たりの燃焼熱量は任意に決定できるが、常に一定であってもよいし、給湯停止時の単位時間当たりの燃焼熱量であってもよい。なお、残火燃焼による単位時間当たりの燃焼熱量が常に一定の場合には、総燃焼熱量の代わりに、直接残火燃焼時間を決定し、この決定された残火燃焼時間だけ残火燃焼を実行する。
同様に、残火燃焼をするか否かを、実際の単位時間当たりの給湯燃焼熱量に基づいて判断してもよい。例えば給湯燃焼熱量が閾値より高い場合には、残火燃焼をせず(残火燃焼時間ゼロ)、閾値より低い場合には、前述したと同様に給湯燃焼熱量に対応して残火燃焼をする。
【0026】
また、残火による総燃焼熱量または残火燃焼時間をどの程度にするかを、他の燃焼状況例えばユーザー設定温度に応じて決定してもよいし、このユーザー設定温度と上記給湯燃焼熱量に応じて決定してもよい。すなわち、ユーザー設定温度が高いほど、総燃焼熱量を多くしたり残火燃焼時間を長くするのである。
【0027】
また、残火による総燃焼熱量または残火燃焼時間をどの程度にするかを、給湯燃焼熱量,ユーザー設定温度のいずれか一方または両者と、外気温度に応じて決定してもよい。すなわち、外気温度が低いほど残火燃焼による総燃焼熱量を多くしたり、残火燃焼時間を長くして、放熱分を補償するのである。
【0028】
さらに、給湯用配管50がバイパス管56を備えている場合には、給湯燃焼熱量,ユーザー設定温度,外気温度のうちのいずれか1つまたは2つあるいは全ての情報に加えて、入水温度センサTHINで検出される入水温度TINにも対応して、残火による総燃焼熱量または残火燃焼時間をどの程度にするかを、決定してもよい。すなわち、入水温度TINが低いほど、残火燃焼による総燃焼熱量を多くしたり、残火燃焼時間を長くして、湯水混合による出湯温度の低下分を補償するのである。
【0029】
上記バイパス弁58の給湯制御の初期段階での開閉の選択は、(1)式に基づく予想出湯温度が設定温度から所定温度例えば3°C高い上限温度を越える場合には、上記比較をすることなくバイパス弁58の初期段階での開動作を決定し、安全を確保してもよいし、(2)式に基づく予想出湯温度が設定温度から所定温度例えば3°C低い下限温度を下回る場合には、上記比較をすることなくバイパス弁58の初期段階での閉じを決定し、利便性を追求してもよい。
【0030】
上記給湯初期のバイパス弁58の開閉の選択に際して、上記出口温度センサTHOUTの検出情報ではなく、給湯停止時の燃焼熱量(供給ガス量)と、外気温度と、給湯停止から給湯再開までの経過時間とから、滞留湯の温度を予想してもよい。
上記バイパス弁58の開閉の選択は、給湯停止から再給湯するまでの経過時間だけに基づいて行ってもよい。例えば、所定時間例えば3分経過前であれば、バイパス弁58を給湯初期段階で開き、3分経過後であればバイパス弁58を給湯初期段階では閉じておく。
バイパス弁58は、給湯時に原則として閉じにし、初期段階にのみ必要に応じて開くようにしてもよい。
【0031】
開閉式のバイパス弁の代わりに、水量制御式のバイパス弁例えば、ギアモータ駆動により開度を無段階で調節できるバイパス弁を用いてもよい。この場合には、給湯初期において出口温度TOUTと入水温度TINに応じてバイパス弁の開度を調節することにより、出湯温度を設定温度により一層近づけることができる。
【0032】
図1において、バイパス管57とバイパス弁58を省いて、バイパス管56からの水と熱交換部10からの湯を混合させるようにしてもよい。この場合には、湯水混合比は一定である。また、バイパス管56,57を省いてもよい。
特に燃焼能力の大きい給湯装置の場合には、無条件で残火燃焼を行ってもよいし、給湯時の燃焼状況に拘わらず一定の総燃焼熱量になるように残火燃焼を実行してもよい。
リモートコントローラ65に燃焼ランプを設け、給湯燃焼と残火燃焼を実行している時には、この燃焼ランプを点灯させてもよいし、給湯燃焼と残火燃焼のそれぞれに対応する燃焼ランプを設け、その点灯で対応する燃焼を表示してもよい。
【0033】
【発明の効果】
以上説明したように、請求項1、6の発明によれば、給湯停止後も継続して限られた時間だけ熱交換部を加熱することにより、給湯再開時の出湯特性を向上させることができる。しかも、給湯時の燃焼状況に応じた継続燃焼を行うことにより、給湯再開時の出湯特性を安定させることができる。
請求項の発明によれば、給湯停止からの放熱をも考慮した継続燃焼を行うことにより、給湯再開時の出湯特性をより一層安定させることができる。
請求項の発明によれば、バイパス管からの水の混合をも考慮した継続燃焼を行うことにより、給湯再開時の出湯特性をより一層安定させることができる。
請求項の発明によれば、給湯再開時のバイパス弁の制御により、上記継続燃焼の効果をより一層有効に活用してユーザーの好む出湯特性にすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係わる給湯装置の概略図である。
【図2】同給湯装置で実行される制御ルーチンを示すフローチャートである。
【符号の説明】
10 熱交換部
20 燃焼部
21〜23 燃焼領域
50 給湯用の配管
51 受熱管
52 給水管
53 給湯管
56,57 バイパス管
58 バイパス弁
60 制御ユニット(制御手段)
FL フローセンサ(検出手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot water supply apparatus that can improve re-hot water supply characteristics.
[0002]
[Prior art]
A typical hot water supply apparatus includes a heat exchange unit, a combustion unit, and a hot water supply pipe that passes through the heat exchange unit. The pipe is provided with detection means for detecting the flow of water. When the hot-water tap provided at the downstream end of the pipe is opened, this detection means detects the flow of water in the pipe. In response to this detection signal, the control means performs combustion in the combustion section and heats the heat exchange section. The water in the pipe is heated in the process of passing through this heat exchanging section to become hot water, and is discharged from the hot water tap.
The said control means controls the amount of combustion heat in a combustion part so that the tapping temperature becomes set temperature. Then, when the hot-water tap is closed and the detection means no longer detects the flow of water in the pipe, combustion in the combustion section is stopped. In this way, hot water supply is stopped.
[0003]
By the way, in the hot water supply apparatus, a phenomenon in which the temperature of hot water staying in the heat exchanging portion temporarily stops after the hot water supply is stopped, that is, a so-called post-boiling phenomenon occurs. This is because immediately after the hot water supply is stopped, the amount of heat stored in the heat exchange unit is transmitted to the hot water remaining in the heat exchange unit.
Recently, the hot water supply apparatus takes about 1 second from the start of re-heating to the start of heat transfer from the ignition to the heat exchanging unit. During this time, water only enters the hot water supply apparatus and is not heated. Recently, when this amount of heat is supplemented with the amount of heat generated by post-boiling, and the post-boiling phenomenon is actively used, the hot-water tap is opened within a predetermined time, for example, within 5 minutes after the hot water supply is stopped, so that hot water is supplied again. Has developed a hot water supply apparatus capable of discharging hot water having a temperature close to the set temperature even immediately after the start of reheating.
[0004]
[Problems to be solved by the invention]
However, in order to stabilize the hot water immediately after reheating within 5 minutes using the post-boiling phenomenon, the amount of heat in the heat exchanging portion stored at the time of stopping the hot water supply and the heat exchanging portion are stored. The relative relationship with the amount of hot water or water needs to be within an appropriate range. If the amount of stored heat is too large for the amount of stagnant hot water, the post-boiling will remarkably increase the temperature of the stagnant hot water, and if the amount of stored heat is too small for the amount of stagnant hot water, sufficient post-boiling will be obtained. Because it is not possible. For this reason, it is necessary to appropriately design the heat capacity (mass) of the heat exchange section and the amount of retained water (the diameter and length of the pipe passing through the heat exchange section).
In addition, when a hot water supply device having a large combustion capacity (combustion number), for example, a hot water supply device of No. 32 is used in a general household, if the set temperature is around 40 degrees, even if the hot water tap is fully opened, it burns at the maximum combustion capacity. It is not generated, and only 1/2 to 1/3 of the heat of combustion is generated. In this case, although the heat capacity of the heat exchanging part is large, only a part of the heat exchange part is heated, so that the post-boiling is small and the hot water immediately after reheating cannot be brought close to the set temperature.
[0005]
[Means for Solving the Problems]
  The invention of claim 1 includes a heat exchange part, a combustion part for supplying combustion heat to the heat exchange part, a hot water supply pipe passing through the heat exchange part, and a detecting means for detecting the flow of water in the pipe. In the hot water supply apparatus provided with the control means for supplying hot water by executing combustion in the combustion section in response to detection of the water flow by the detection means, the control means is configured to detect the water flow from the water flow detection state by the detection means. At the time of switching to the detection state, that is, at the time of hot water supply stop, the total combustion heat amount is determined according to the information of the combustion status at the time of hot water supply, and continuous combustion is performed from the hot water supply stop time until the total combustion heat amount is reached. To do.
[0007]
  Claim2The invention of claim1In the hot water supply apparatus described above, the information on the combustion state at the time of hot water supply includes one or both of the amount of combustion heat per unit time and the set temperature.
  Claim3The invention of claim1In the hot water supply apparatus according to claim 1, the combustion section has a plurality of combustion regions that can be controlled independently of combustion, and the information on the combustion state at the time of hot water supply indicates the number of combustion regions in the combustion state at the time of hot water supply. The control means includes a total number corresponding to the number of combustion regions when hot water supply is stopped.Combustion heatIs calculated.
  Claim4The invention of claim 1 to claim 13In the hot water supply apparatus according to any one of the above, the control means corresponds to the outside air temperature, and is adapted for the continuous combustion.Total combustion heatIt is characterized by determining.
  Claim5The invention of claim 1 to claim 14In the hot water supply apparatus according to any one of the above, the pipe includes a heat receiving pipe that passes through the heat exchange section, a water supply pipe and a hot water supply pipe connected to an inlet and an outlet of the heat receiving pipe, respectively, and a water supply pipe in parallel with the heat receiving pipe And a bypass pipe connected to the hot water supply pipe, and the control means corresponds to the incoming water temperature that enters the hot water supply pipe from the water supply pipe through the bypass pipe.Total combustion heatIt is characterized by determining.
  The invention of claim 6 includes a heat exchange part, a combustion part for supplying combustion heat to the heat exchange part, a hot water supply pipe passing through the heat exchange part, and a detecting means for detecting the flow of water in the pipe. In the hot water supply apparatus comprising a control means for performing hot water supply by executing combustion in the combustion section in response to detection of the water flow by the detection means, the control means is configured to detect a water flow from a water flow detection state by the detection means. At the time of switching to the non-detection state, that is, at the time of hot water supply stop, the continuous combustion time is calculated according to the information on the combustion status at the time of hot water supply, and the amount of combustion heat per predetermined unit time from the hot water supply stop time by this continuous combustion time The combustion information at the time of hot water supply includes one or both of the amount of combustion heat per unit time and the set temperature.
  The invention of claim 7 includes a heat exchange part, a combustion part for supplying combustion heat to the heat exchange part, a hot water supply pipe passing through the heat exchange part, and a detecting means for detecting the flow of water in the pipe. In the hot water supply apparatus comprising a control means for performing hot water supply by executing combustion in the combustion section in response to detection of the water flow by the detection means, the control means is configured to detect a water flow from a water flow detection state by the detection means. At the time of switching to the non-detection state, that is, at the time of hot water supply stop, the continuous combustion time is calculated according to the information on the combustion status at the time of hot water supply, and the amount of combustion heat per predetermined unit time from the hot water supply stop time by this continuous combustion time The control means determines the continuous combustion time at the time of the continuous combustion corresponding to the outside air temperature.
  The invention of claim 8 includes a heat exchanging part, a combustion part for supplying combustion heat to the heat exchanging part, a hot water supply pipe passing through the heat exchanging part, and a detecting means for detecting the flow of water in the pipe. In the hot water supply apparatus comprising a control means for performing hot water supply by executing combustion in the combustion section in response to detection of the water flow by the detection means, the control means is configured to detect a water flow from a water flow detection state by the detection means. At the time of switching to the non-detection state, that is, at the time of hot water supply stop, the continuous combustion time is calculated according to the information on the combustion status at the time of hot water supply, and the amount of combustion heat per predetermined unit time from the hot water supply stop time by this continuous combustion time The above piping is connected to the heat receiving pipe passing through the heat exchange section, the water supply pipe and the hot water supply pipe connected to the inlet and the outlet of the heat receiving pipe, respectively, and the water receiving pipe and the hot water supply pipe in parallel with the heat receiving pipe. Connected buy And a scan line, said control means also supports the incoming water temperature entering the hot water supply pipe through the bypass pipe from the water supply pipe, and determines the continuous burning time at the continuous burning.
  Claim9The invention of claim1-4, 4, 7In the hot water supply apparatus according to any one of the above, the pipe includes a heat receiving pipe that passes through the heat exchange section, a water supply pipe and a hot water supply pipe connected to an inlet and an outlet of the heat receiving pipe, respectively, and a water supply pipe in parallel with the heat receiving pipe And a bypass pipe connected to the hot water supply pipe, and the bypass pipe is provided with a bypass valve, and the control means detects the water flow from the heat exchange section when the detection means detects a water flow. The bypass valve is controlled corresponding to the temperature or the elapsed time since the previous hot water supply stop.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the hot water supply device has a large combustion capacity (for example, No. 32), and has a large heat capacity heat exchange unit 10 having a large number of fins 11, and the heat exchange unit 10 generates a combustion heat amount. It has the combustion part 20 (heat generation part) to supply. The combustion unit 20 has three combustion regions 21, 22 and 23. The gas supply pipe 30 has a main pipe part 35 and three branch pipe parts 31, 32, 33 branched from the main pipe part 35. The main pipe portion 35 is provided with a main on-off valve 45 and a proportional valve 46, and the branch pipe portions 31, 32, 33 are provided with sub-open / close valves 41, 42, 43, respectively.
[0009]
A pipe 50 for hot water supply includes a heat receiving pipe 51 that passes through the heat exchanging unit 10, a water supply pipe 52 connected to the inlet end of the heat receiving pipe 51, and a hot water supply pipe 53 connected to the outlet end of the heat receiving pipe 51. Have. The hot water supply pipe 53 is provided with a water amount control valve 54, and a hot water tap 55 is provided at the downstream end thereof. Further, the pipe 50 has two bypass pipes 56 and 57 in parallel with the heat receiving pipe 51. Connection points between the bypass pipe 56 closer to the heat exchange unit 10, the water supply pipe 52, and the hot water supply pipe 53 are indicated by P1 and P2. Further, connection points between the bypass pipe 57 far from the heat exchanging unit 10, the water supply pipe 52, and the hot water supply pipe 53 are indicated by P3 and P4. The bypass pipe 57 is provided with a bypass valve 58 composed of an electromagnetic opening / closing valve.
[0010]
In the water supply pipe 52, the incoming water temperature TINWater temperature sensor TH for detecting waterINIs provided. Further, the hot water supply pipe 53 has a temperature T of hot water from the outlet of the heat exchange unit 10 between the heat exchange unit 10 and the connection point P2.OUTOutlet temperature sensor THOUTIs provided. Further, the hot water supply pipe 53 has a tapping temperature T on the downstream side of the connection point P4.MIXHot water temperature sensor TH for detectingMIXAnd a flow sensor FL (detection means for detecting the water flow) for detecting the amount of water flowing through the pipe 50, that is, the amount of tapping water.
[0011]
The hot water supply apparatus further includes a control unit 60 (control means) including a microcomputer, and a user set temperature TSAnd a remote controller 65 for sending the information. The control unit 60 controls the set temperature TS, And the detected temperature TIN, TOUT, TMIXBased on the detected flow rate from the flow sensor FL, the ignition mechanism, the valves 41, 42, 43, 45, 46 for supplying the gas, the water amount control valve 54, and the bypass valve 58 are controlled.
[0012]
The hot water supply apparatus includes a bath retreat pipe that passes through the heat exchanging unit 10, a hot water pipe that extends from the hot water supply pipe 53 to the bath retreat pipe, and the like. Since it is not, illustration is omitted.
[0013]
In the hot water supply apparatus configured as described above, the control unit 60 executes a control routine shown in FIG. More specifically, it is determined whether or not the flow rate detected by the flow sensor FL has exceeded a very low threshold value, in other words, whether the user has opened the hot water tap 55 and water is flowing through the pipe 10. (Step 101). Wait until an affirmative decision is made here. When the determination is affirmative, the combustion lamp is turned on to execute hot water supply control (step 102). In this hot water supply control, first, the main on-off valve 45 and at least one sub on-off valve 41 to 43 are opened and an ignition operation is performed to start combustion in the combustion unit 20. The flow rate detected by the flow sensor FL and the temperature sensor THINWater temperature T detected atINAnd user set temperature T set by remote controller 65SThe feedforward control component is calculated based on the temperature sensor THMIXTapping temperature T detected inMIXAnd set temperature TSThe feedback control component is calculated based on Based on the control value obtained by adding the feedback control component to the feedforward control component, the tapping temperature TMIXIs set temperature TSThus, the amount of supplied gas, that is, the amount of combustion heat per unit time is controlled.
[0014]
More specifically, when the required amount of combustion heat per unit time is small, the sub-open / close valve 41 corresponding to one combustion region 21 is opened in the combustion unit 20 and the other sub-open / close valves 42 and 43 are kept closed. Thus, combustion is performed only in the combustion region 21 (one-sided combustion). In this state, by controlling the proportional valve 46, the supply gas amount, and thus the combustion heat amount per unit time, are continuously controlled up to the first upper limit value.
When the requested amount of combustion heat per unit time exceeds the first upper limit value, the two sub-open / close valves 41 and 42 are opened to perform combustion in the combustion regions 21 and 22 (two-sided combustion). Then, by controlling the proportional valve 46, the supply gas amount is controlled steplessly within a range up to the second upper limit value.
When the requested amount of combustion heat per unit time exceeds the second upper limit value, combustion is performed in the combustion regions 21 to 23 by opening all the sub on-off valves 41 to 43 and controlling the proportional valves 46. Thus, the amount of supplied gas is controlled steplessly within a range up to the third upper limit value, that is, the maximum combustion capacity.
[0015]
If the required amount of combustion heat per unit time exceeds the maximum combustion capacity, the water amount control valve 54 is throttled to suppress the amount of hot water to an amount commensurate with the maximum combustion capacity.
The bypass valve 58 is open in normal hot water supply control, but is closed when the set temperature is very high, for example, 60 ° C. or higher. The opening timing of the bypass valve 58 at the initial stage of hot water supply control will be described later.
[0016]
In the next hot water supply control, in the next step 103, until it is determined that the flow rate detected by the flow sensor FL is lower than the threshold value, that is, when the user closes the hot water tap 55, the water flow is not detected and it is determined that the hot water supply has stopped. Continue until When it is determined in step 103 that the water flow is not detected, the process proceeds to step 104. Here, it is determined whether or not the three-side combustion was performed during the hot water supply control. When an affirmative determination is made here, the main on-off valve 45 and the sub on-off valves 41 to 43 are closed to immediately stop the combustion state (zero aftercombustion combustion time). In the case of three-sided combustion, since a sufficient amount of combustion heat is imparted to the heat exchange unit 10 and the heat storage amount is large, even if the heat capacity (mass) of the heat exchange unit 10 is large, sufficient post-boiling can be expected. This is because the temperature can be set to a predetermined temperature or higher (for example, 60 ° C. or higher) after one minute.
[0017]
When a negative determination is made in step 104 above, that is, when it is determined that the one-side combustion state or the two-side combustion state, firstly, the combustion lamp is turned off to give the user a sense of security that the appliance is operating normally. , Afterfire state, afterfire combustion time t0(Continuous combustion time) is calculated (step 105). This afterfire combustion time t0Is set corresponding to the number of combustion regions. When it is determined that the one-side combustion state is present, the after-burning combustion time t is greater than when the two-side combustion state is determined.0Becomes longer. For example, in the case of the one-side combustion state, the time is 0.8 seconds, and in the case of the two-side combustion state, the time is 0.5 seconds.
[0018]
Afterfire combustion time t0TOUT(Or TS). In other words, we want to keep the temperature after 1 minute within a certain temperature range.OUTT is low0TOUTT is high0It is preferable to decrease the value. TOUTT is high0However, since the unit of time (1/100 second) becomes smaller and control becomes difficult, TOUTIf NO is high in step 103, the proportional valve is set to the minimum opening and t0It is preferable to count.
[0019]
Next, the afterfire combustion time t0Only the combustion state is continued (step 106). In the present embodiment, in the case of two-sided combustion during hot water supply combustion control, the second upper limit value or a predetermined supply gas amount (combustion heat amount per predetermined unit time) is set in the two-sided combustion state as it is, Continue to extend combustion. Further, in the case of one-side combustion at the time of hot water supply control, the auxiliary on-off valve 32 is opened to make a two-side combustion state, and the combustion is continued to be extended with the predetermined supply gas amount. As is clear from this explanation, in the case of one-side combustion or two-side combustion at the time of hot water supply control, the amount of combustion per unit time applied to the heat exchanging unit 10 is small and the amount of stored heat is small, so the after boiling is small. However, since this afterfire combustion is performed and the amount of combustion heat is added to the hot water staying in the heat exchanging section 10, the temperature of the staying hot water can be raised to a predetermined temperature or higher (60 ° C or higher). is there. There is a difference in the amount of heat stored in the heat exchanging unit 10 between the case of single-sided combustion and the case of two-sided combustion during hot water supply control.0And, as a result, the total amount of combustion heat applied in the afterfire combustion is made different, so that the temperature of the staying hot water in the heat exchanging unit 10 is made equal at the end of the afterfire combustion or at a predetermined time, for example, 1 minute thereafter. can do.
[0020]
In the case of two-sided combustion during hot water supply, afterfire combustion may be performed by two-sided combustion in the same manner as described above, and in the case of one-sided combustion during hot water supply, afterfire combustion may be performed with one-sided combustion. However, in the case of one-side combustion during hot water supply, it is a matter of course that the combustion time is made longer than that in the above example, and the total amount of heat of combustion due to afterfire combustion is increased compared to the case of two-side combustion during hot water supply.
[0021]
The after-fire combustion control is performed at a set time t.0When it is determined that the time has elapsed (step 107), the process is terminated (step 108), and the process returns to the standby state of step 101. When the user opens the hot-water tap 55 again, an affirmative determination is made at step 101 and hot-water supply control (step 102) is started.
The temperature of the accumulated hot water in the heat exchanging unit 10 described above gradually decreases due to heat dissipation, but if the resumption of hot water supply is within a predetermined time, for example, within 5 minutes, a sufficiently warm temperature is maintained. Warm staying hot water can be discharged from the hot water tap 55. Therefore, the user can enjoy the hot water only after having to endure the low temperature hot water or the water only for a very short time at the beginning of the hot water supply, that is, the time until the staying hot water reaches the hot water tap 55.
[0022]
Next, control in the initial stage of hot water supply, particularly control of the bypass valve 58 will be described in detail. Before describing the control of the bypass valve 58, the mixing of hot water from the heat exchange unit 10 and water from the bypass pipes 56 and 57 will be described in advance. In a state where the bypass valve 58 is closed, the mixing ratio of hot water from the heat exchange unit 10 and water from the bypass pipe 56 is X: (1-X).
Therefore, tapping temperature TMIXCan be expressed as:
TMIX= TOUT・ X + TIN(1-X) (1)
In the state where the bypass valve 58 is open, the mixing ratio of hot water from the heat exchange unit 10 and water from the two bypass pipes 56 and 57 is Y: (1-Y).
Therefore, tapping temperature TMIXCan be expressed as:
TMIX= TOUT・ Y + TIN(1-Y) (2)
Of course, Y <X, and in this embodiment, Y = 0.45 and X = 0.7.
[0023]
As a result of the post-boiling and after-burning combustion, the temperature of the staying hot water peaks, for example, when 1 minute has passed since the hot water supply was stopped, and then gradually decreases due to heat dissipation. In this embodiment, the staying hot water in the heat exchange unit 10 is at a temperature close to the set temperature even when about 5 minutes have elapsed since the hot water supply was stopped. At the start of hot water supply, the accumulated hot water in the heat exchange unit 10 is discharged from the outlet temperature sensor T.OUTDetect with. This outlet temperature TOUT(Still water temperature) and set temperature TSAnd incoming water temperature TINBased on the above, it is determined whether or not the bypass valve 58 is opened early. That is, based on the above formulas (1) and (2), the tapping temperature TMIXExpect. And set temperature TSExpected hot water temperature T nearerMIXSelect. In other words, whether to open or close the bypass valve 58 is selected. When the bypass valve 58 is opened, the bypass valve 58 is opened early (that is, before the time when the accumulated hot water first reaches the connection point P4). As a result, the actual hot water temperature immediately after the start of hot water supply is set to the set temperature T.SCan be approached.
[0024]
Explaining with an example, the temperature T of the accumulated hot water at the start of hot water supplyOUTIs 55 ° C and the incoming water temperature TINIs 20 ° C and set temperature TSIs 40 ° C, expected hot water temperature T based on equation (1)MIXIs 44.5 ° C, and the expected tapping temperature T based on equation (2)MIXIs 39.25 ° C. Set temperature TSIs close to the expected hot water temperature T based on equation (2).MIXTherefore, in this case, the bypass valve 58 is opened at the above timing.
Set temperature T under the same conditionsSWhen the temperature is 43 ° C, the set temperature TSIs close to the expected hot water temperature T based on equation (1).MIXTherefore, in this case, the bypass valve 58 is not opened at the above timing, and all the accumulated hot water is discharged from the hot-water tap 55 and the bypass valve 58 is opened after the hot water temperature is stabilized. In this case, the supply gas amount is increased in advance prior to the opening operation of the bypass valve 58.
[0025]
The present invention is not limited to the above embodiment, and various forms can be adopted. For example, when the hot water supply is stopped, how much the total combustion heat amount due to the afterburning combustion is determined according to more precise information on the combustion state, for example, the actual combustion heat amount (supply gas amount) immediately before the hot water supply stop. It may be determined steplessly. That is, the smaller the actual amount of hot water supply combustion heat per unit time, the greater the total amount of heat generated by afterfire combustion. The amount of combustion heat per unit time may be obtained from the opening / closing information of the auxiliary opening / closing valves 41 to 43 and the opening information of the proportional valve 46, or may be calculated from the set temperature, the incoming water temperature, and the amount of hot water. In this way, it is possible to make the temperature of the accumulated hot water constant at a predetermined time, for example, 1 minute after the hot water supply is stopped, with higher accuracy. When the total heat of combustion is determined, afterfire combustion is performed until the determined total heat of heat is reached (in other words, in a limited time) by time integration of the heat of combustion per unit time. Although the amount of combustion heat per unit time can be determined arbitrarily, it may always be constant, or may be the amount of combustion heat per unit time when hot water supply is stopped. When the amount of combustion heat per unit time due to afterfire combustion is always constant, instead of the total amount of combustion heat, the afterfire combustion time is determined directly, and afterfire combustion is performed for this determined afterfire combustion time. To do.
Similarly, whether or not to perform afterfire combustion may be determined based on the actual amount of hot water combustion heat per unit time. For example, when the hot water combustion heat quantity is higher than the threshold value, no afterfire combustion is performed (zero aftercombustion combustion time). When the hot water combustion heat quantity is lower than the threshold value, afterfire combustion is performed according to the hot water combustion heat quantity as described above. .
[0026]
Further, how much the total combustion heat amount or the afterfire combustion time due to the afterfire is set may be determined according to other combustion conditions, for example, the user set temperature, or according to the user set temperature and the hot water combustion heat amount. May be determined. That is, the higher the user set temperature, the greater the total combustion heat amount and the longer the afterfire combustion time.
[0027]
Moreover, you may determine how much the total combustion calorie | heat amount by the afterfire or the afterfire combustion time is made according to either one or both of hot water supply combustion calorie | heat amount, user setting temperature, and external temperature. That is, the lower the outside air temperature is, the more the total amount of heat generated by the afterburning combustion is increased, or the afterburning combustion time is lengthened to compensate for the heat radiation.
[0028]
Further, in the case where the hot water supply pipe 50 includes the bypass pipe 56, in addition to any one, two, or all of the hot water combustion heat quantity, the user set temperature, and the outside air temperature, the incoming water temperature sensor TH.INWater temperature T detected byINCorresponding to the above, it may be determined how much the total combustion heat amount or the afterfire combustion time by the afterfire is set. That is, the incoming water temperature TINThe lower the is, the more the total amount of heat generated by the after-burning combustion is increased, and the time for the after-burning combustion is lengthened to compensate for the decrease in the temperature of the hot water due to the mixing of hot and cold water.
[0029]
The selection of opening / closing in the initial stage of hot water supply control of the bypass valve 58 is performed by comparing the above when the expected hot water temperature based on the formula (1) exceeds the upper limit temperature higher than the set temperature by a predetermined temperature, for example, 3 ° C. The opening operation at the initial stage of the bypass valve 58 may be determined to ensure safety, or when the expected hot water temperature based on the formula (2) is lower than the lower limit temperature that is lower than the set temperature by a predetermined temperature, for example, 3 ° C. May decide to close the bypass valve 58 in the initial stage without making the above comparison, and may pursue convenience.
[0030]
When selecting the opening and closing of the bypass valve 58 in the initial stage of hot water supply, the outlet temperature sensor THOUTThe temperature of staying hot water may be predicted from the amount of combustion heat (supply gas amount) when hot water supply is stopped, the outside air temperature, and the elapsed time from hot water supply stop to hot water supply restart.
The selection of opening and closing of the bypass valve 58 may be performed based only on the elapsed time from the stop of hot water supply to the reheating of hot water. For example, if a predetermined time, for example, 3 minutes has elapsed, the bypass valve 58 is opened at the initial stage of hot water supply, and if 3 minutes have elapsed, the bypass valve 58 is closed at the initial stage of hot water supply.
The bypass valve 58 may be closed in principle when hot water is supplied, and may be opened as necessary only in the initial stage.
[0031]
Instead of the on-off type bypass valve, a water amount control type bypass valve, for example, a bypass valve whose opening degree can be adjusted steplessly by driving a gear motor may be used. In this case, the outlet temperature T at the initial stage of hot water supplyOUTAnd incoming water temperature TINBy adjusting the opening degree of the bypass valve according to this, the tapping temperature can be made closer to the set temperature.
[0032]
In FIG. 1, the bypass pipe 57 and the bypass valve 58 may be omitted, and water from the bypass pipe 56 and hot water from the heat exchange unit 10 may be mixed. In this case, the hot / cold water mixing ratio is constant. Further, the bypass pipes 56 and 57 may be omitted.
In particular, in the case of a hot water supply apparatus with a large combustion capacity, afterfire combustion may be performed unconditionally, or afterfire combustion may be performed so that a constant total combustion heat amount is obtained regardless of the combustion state at the time of hot water supply. Good.
The remote controller 65 is provided with a combustion lamp, and when performing hot water combustion and afterfire combustion, this combustion lamp may be turned on, or provided with combustion lamps corresponding to hot water combustion and afterfire combustion, The corresponding combustion may be displayed by lighting.
[0033]
【The invention's effect】
  As explained above, claim 1, 6According to this invention, the hot water discharge characteristic at the time of resuming hot water supply can be improved by heating the heat exchanging portion for a limited time continuously after the hot water supply is stopped. In addition, by performing continuous combustion according to the combustion state at the time of hot water supply, it is possible to stabilize the hot water discharge characteristics when hot water supply is resumed.
  Claim7According to this invention, by performing the continuous combustion considering the heat radiation from the hot water supply stop, the hot water discharge characteristic at the time of restarting the hot water supply can be further stabilized.
  Claim8According to this invention, by performing the continuous combustion in consideration of the mixing of water from the bypass pipe, it is possible to further stabilize the hot water discharge characteristic when the hot water supply is resumed.
  Claim9According to this invention, by controlling the bypass valve when hot water supply is resumed, the effect of the continuous combustion can be more effectively utilized to obtain the hot water characteristics preferred by the user.
[Brief description of the drawings]
FIG. 1 is a schematic view of a hot water supply apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a control routine executed by the hot water supply apparatus.
[Explanation of symbols]
10 Heat exchange section
20 Combustion section
21-23 Combustion region
50 Piping for hot water supply
51 Heat receiving pipe
52 Water supply pipe
53 Hot water supply pipe
56,57 Bypass pipe
58 Bypass valve
60 Control unit (control means)
FL flow sensor (detection means)

Claims (9)

熱交換部と、この熱交換部に燃焼熱を供給する燃焼部と、熱交換部を通る給湯用の配管と、この配管内の水の流れを検出する検出手段と、この検出手段での水流検出に応答して上記燃焼部での燃焼を実行することにより給湯を行う制御手段と備えた給湯装置において、
上記制御手段は、上記検出手段による水流検出状態から水流非検出状態に切り替わった時点、すなわち給湯停止時点において、給湯時の燃焼状況の情報に応じて総燃焼熱量を決定し、上記給湯停止時点からこの総燃焼熱量に達するまで継続燃焼を行うことを特徴とする給湯装置。
A heat exchange section, a combustion section for supplying combustion heat to the heat exchange section, a hot water supply pipe passing through the heat exchange section, a detection means for detecting the flow of water in the pipe, and a water flow in the detection means In a hot water supply apparatus provided with control means for performing hot water supply by executing combustion in the combustion section in response to detection,
The control means determines the total amount of combustion heat according to the information on the combustion state at the time of hot water supply at the time when the water flow detection state by the detection means is switched to the water flow non-detection state, that is, at the time of hot water supply stop. A hot water supply device that performs continuous combustion until the total amount of heat of combustion is reached.
上記給湯時の燃焼状況の情報が、単位時間当たりの燃焼熱量,設定温度のいずれか一方または両者を含むことを特徴とする請求項に記載の給湯装置。The hot water supply apparatus according to claim 1 , wherein the information on the combustion state at the time of hot water supply includes one or both of the amount of combustion heat per unit time and the set temperature. 上記燃焼部は、独立して燃焼制御可能な複数の燃焼領域を有しており、上記給湯時の燃焼状況の情報が、給湯時に燃焼状態にあった燃焼領域の数の情報を含み、上記制御手段は、給湯停止時点において、この燃焼領域の数に対応した総燃焼熱量を演算することを特徴とする請求項に記載の給湯装置。The combustion section has a plurality of combustion regions that can be controlled independently, and the information on the combustion state at the time of hot water supply includes information on the number of combustion regions in the combustion state at the time of hot water supply, and the control The hot water supply apparatus according to claim 1 , wherein the means calculates a total amount of heat of combustion corresponding to the number of combustion regions at the time of stopping hot water supply. 上記制御手段は、外気温度にも対応して、上記継続燃焼時の総燃焼熱量を決定することを特徴とする請求項1〜のいずれかに記載の給湯装置。The hot water supply apparatus according to any one of claims 1 to 3 , wherein the control means determines a total amount of heat of combustion at the time of the continuous combustion in correspondence with an outside air temperature. 上記配管は、熱交換部を通る受熱管と、受熱管の入口と出口にそれぞれ接続された給水管および給湯管と、受熱管と並列をなして給水管および給湯管に接続されたバイパス管とを備え、
上記制御手段は、給水管からバイパス管を経て給湯管に入る入水温度にも対応して、上記継続燃焼時の総燃焼熱量を決定することを特徴とする請求項1〜のいずれかに記載の給湯装置。
The pipe includes a heat receiving pipe passing through the heat exchange section, a water supply pipe and a hot water supply pipe connected to the inlet and the outlet of the heat receiving pipe, respectively, and a bypass pipe connected in parallel to the heat receiving pipe and the water supply pipe and the hot water supply pipe. With
It said control means also supports the incoming water temperature entering the hot water supply pipe through the bypass pipe from the water supply pipe, according to any one of claims 1 to 4, characterized in that to determine the total amount of combustion heat at the time of the continuous burning Water heater.
熱交換部と、この熱交換部に燃焼熱を供給する燃焼部と、熱交換部を通る給湯用の配管と、この配管内の水の流れを検出する検出手段と、この検出手段での水流検出に応答して上記燃焼部での燃焼を実行することにより給湯を行う制御手段とを備えた給湯装置において、A heat exchange section, a combustion section for supplying combustion heat to the heat exchange section, a hot water supply pipe passing through the heat exchange section, a detection means for detecting the flow of water in the pipe, and a water flow in the detection means In a hot water supply apparatus provided with control means for performing hot water supply by executing combustion in the combustion section in response to detection,
上記制御手段は、上記検出手段による水流検出状態から水流非検出状態に切り替わった時点、すなわち給湯停止時点において、給湯時の燃焼状況の情報に応じて継続燃焼時間を演算し、上記給湯停止時点からこの継続燃焼時間だけ、所定の単位時間当たりの燃焼熱量で継続燃焼を行い、  The control means calculates a continuous combustion time according to information on a combustion state at the time of hot water supply when the water flow detection state by the detection means is switched from a water flow detection state to a water flow non-detection state, that is, at the time of hot water supply stop. During this continuous combustion time, continuous combustion is performed with a predetermined amount of combustion heat per unit time,
上記給湯時の燃焼状況の情報が、単位時間当たりの燃焼熱量,設定温度のいずれか一方または両者を含むことを特徴とする給湯装置。The hot water supply apparatus characterized in that the information on the combustion state at the time of hot water supply includes one or both of the heat of combustion per unit time and the set temperature.
熱交換部と、この熱交換部に燃焼熱を供給する燃焼部と、熱交換部を通る給湯用の配管と、この配管内の水の流れを検出する検出手段と、この検出手段での水流検出に応答して上記燃焼部での燃焼を実行することにより給湯を行う制御手段とを備えた給湯装置において、A heat exchange section, a combustion section for supplying combustion heat to the heat exchange section, a hot water supply pipe passing through the heat exchange section, a detection means for detecting the flow of water in the pipe, and a water flow in the detection means In a hot water supply apparatus provided with control means for performing hot water supply by executing combustion in the combustion section in response to detection,
上記制御手段は、上記検出手段による水流検出状態から水流非検出状態に切り替わった時点、すなわち給湯停止時点において、給湯時の燃焼状況の情報に応じて継続燃焼時間を演算し、上記給湯停止時点からこの継続燃焼時間だけ、所定の単位時間当たりの燃焼熱量で継続燃焼を行い、  The control means calculates a continuous combustion time according to information on a combustion state at the time of hot water supply when the water flow detection state by the detection means is switched from a water flow detection state to a water flow non-detection state, that is, at the time of hot water supply stop. During this continuous combustion time, continuous combustion is performed with a predetermined amount of combustion heat per unit time,
上記制御手段は、外気温度にも対応して、上記継続燃焼時の継続燃焼時間を決定することを特徴とする給湯装置。  The said control means determines the continuous combustion time at the time of the said continuous combustion corresponding to external temperature, The hot water supply apparatus characterized by the above-mentioned.
熱交換部と、この熱交換部に燃焼熱を供給する燃焼部と、熱交換部を通る給湯用の配管と、この配管内の水の流れを検出する検出手段と、この検出手段での水流検出に応答して上記燃焼部での燃焼を実行することにより給湯を行う制御手段とを備えた給湯装置において、A heat exchange section, a combustion section for supplying combustion heat to the heat exchange section, a hot water supply pipe passing through the heat exchange section, a detection means for detecting the flow of water in the pipe, and a water flow in the detection means In a hot water supply apparatus provided with control means for performing hot water supply by executing combustion in the combustion section in response to detection,
上記制御手段は、上記検出手段による水流検出状態から水流非検出状態に切り替わった時点、すなわち給湯停止時点において、給湯時の燃焼状況の情報に応じて継続燃焼時間を演算し、上記給湯停止時点からこの継続燃焼時間だけ、所定の単位時間当たりの燃焼熱量  The control means calculates a continuous combustion time according to information on a combustion state at the time of hot water supply when the water flow detection state by the detection means is switched from a water flow detection state to a water flow non-detection state, that is, at the time of hot water supply stop. The amount of combustion heat per unit time for this continuous combustion time で継続燃焼を行い、Continue burning at
上記配管は、熱交換部を通る受熱管と、受熱管の入口と出口にそれぞれ接続された給水管および給湯管と、受熱管と並列をなして給水管および給湯管に接続されたバイパス管とを備え、The pipe includes a heat receiving pipe passing through the heat exchange section, a water supply pipe and a hot water supply pipe connected to the inlet and the outlet of the heat receiving pipe, respectively, and a bypass pipe connected in parallel to the heat receiving pipe and the water supply pipe and the hot water supply pipe. With
上記制御手段は、給水管からバイパス管を経て給湯管に入る入水温度にも対応して、上記継続燃焼時の継続燃焼時間を決定することを特徴とする給湯装置。  The said control means determines the continuous combustion time at the time of the said continuous combustion corresponding to the incoming water temperature which enters into a hot water supply pipe through a bypass pipe from a water supply pipe, The hot water supply apparatus characterized by the above-mentioned.
上記配管は、熱交換部を通る受熱管と、受熱管の入口と出口にそれぞれ接続された給水管および給湯管と、受熱管と並列をなして給水管および給湯管に接続されたバイパス管とを備え、このバイパス管にバイパス弁が設けられており、
上記制御手段は、上記検出手段で水流を検出した時に、上記熱交換部から出てきた湯の温度または前回の給湯停止からの経過時間に対応して、バイパス弁を制御することを特徴とする請求項1,2,3,4,6,7のいずれかに記載の給湯装置。
The pipe includes a heat receiving pipe passing through the heat exchange section, a water supply pipe and a hot water supply pipe connected to the inlet and the outlet of the heat receiving pipe, respectively, and a bypass pipe connected in parallel to the heat receiving pipe and the water supply pipe and the hot water supply pipe. The bypass pipe is provided with this bypass pipe,
When the water flow is detected by the detection means, the control means controls the bypass valve in accordance with the temperature of the hot water coming out of the heat exchange unit or the elapsed time since the previous hot water supply stop. The hot water supply device according to any one of claims 1, 2 , 3 , 4 , 6 , and 7 .
JP05891598A 1998-02-24 1998-02-24 Hot water supply method and hot water supply apparatus Expired - Fee Related JP3922788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05891598A JP3922788B2 (en) 1998-02-24 1998-02-24 Hot water supply method and hot water supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05891598A JP3922788B2 (en) 1998-02-24 1998-02-24 Hot water supply method and hot water supply apparatus

Publications (2)

Publication Number Publication Date
JPH11241864A JPH11241864A (en) 1999-09-07
JP3922788B2 true JP3922788B2 (en) 2007-05-30

Family

ID=13098130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05891598A Expired - Fee Related JP3922788B2 (en) 1998-02-24 1998-02-24 Hot water supply method and hot water supply apparatus

Country Status (1)

Country Link
JP (1) JP3922788B2 (en)

Also Published As

Publication number Publication date
JPH11241864A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP2689797B2 (en) Instant hot water heater
JP3683400B2 (en) Combined water heater
JP3922788B2 (en) Hot water supply method and hot water supply apparatus
JP3161165B2 (en) Water heater
JP2004347196A (en) Hot water supply system
JP3834421B2 (en) One can multi-channel water heater and control method thereof
JP3854700B2 (en) Hot water control device for hot water heater of bypass mixing system
JP3859811B2 (en) Hot water combustion equipment
JP2643865B2 (en) Automatic bath equipment
JP2909417B2 (en) Water heater
KR930010243B1 (en) Combustion control method for gas boiler
JP3872864B2 (en) Hot water combustion equipment
JP3908330B2 (en) Hot water combustion equipment
JP2921177B2 (en) Water heater with bath kettle
JP3947274B2 (en) Water heater
JP2867758B2 (en) Operation control method of bath kettle with water heater
JP4029249B2 (en) Circulating water heating control method and circulating water heating control device
JP2921198B2 (en) Operation control method of bath kettle with water heater
JP3098730B2 (en) Water heater
JP3026761B2 (en) Water heater
JP2861521B2 (en) Operation control method of bath kettle with water heater
JP3133701B2 (en) Water heater
JP2946862B2 (en) Operation control method of bath kettle with water heater
JPH11166765A (en) Bath hot water supply device
JPH01277137A (en) Temperature control device in hot water-circulating heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees