JP3720533B2 - Phosphorescent fiber - Google Patents

Phosphorescent fiber Download PDF

Info

Publication number
JP3720533B2
JP3720533B2 JP14698697A JP14698697A JP3720533B2 JP 3720533 B2 JP3720533 B2 JP 3720533B2 JP 14698697 A JP14698697 A JP 14698697A JP 14698697 A JP14698697 A JP 14698697A JP 3720533 B2 JP3720533 B2 JP 3720533B2
Authority
JP
Japan
Prior art keywords
fiber
polymer
phosphorescent
afterglow
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14698697A
Other languages
Japanese (ja)
Other versions
JPH111824A (en
Inventor
和彦 田中
潤洋 中川
佳貫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP14698697A priority Critical patent/JP3720533B2/en
Publication of JPH111824A publication Critical patent/JPH111824A/en
Application granted granted Critical
Publication of JP3720533B2 publication Critical patent/JP3720533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は蓄光繊維に関し、耐久性および長期に亘る残光特性を有する蓄光繊維、とくに衣料用の蓄光繊維に関する。
【0002】
【従来の技術】
従来、繊維表面に蓄光蛍光体をコ−ティングさせた繊維はよく知られている。しかしながら、かかる繊維は表面にコ−ティングされた蓄光蛍光体が容易に脱落するので、洗濯耐久性に乏しく、衣料用途で耐久性が要求される分野では実用性が非常に低い。
一方、繊維を構成するポリマ−中に蓄光蛍光体を配合した蓄光繊維もよく知られている。しかしながら、かかる繊維も実用性の点で問題点を抱えている。すなわち、ポリマ−中に配合する従来の蓄光蛍光体の耐熱性が低く、該蓄光蛍光体をポリマ−中に配合させる場合には、ポリマ−の融点によって実際上の使用が制限されている。たとえば、ポリプロピレンやポリエチレン等の比較的融点の低いポリマ−に配合させる場合には支障はないが、染色性および耐熱性も含めた消費性能に劣り、衣料用途に適さない。
さらに、衣料用途に一般的に汎用されているポリエステル等の比較的融点の高いポリマ−中に配合させる場合には、配合させる際に熱によって蓄光蛍光体が分解して機能低下し、結果として蓄光蛍光体としての機能が発現しないことになる。
【0003】
また、従来の蓄光蛍光体は硬く、細かく粉砕できないことから粒径が大きくなり、蓄光蛍光機能を繊維に付与する量をポリマ−中に含有させると、この粒子が繊維表面に多量に露出して繊維表面が凹凸状となり、ケバ、断糸の多発等、繊維化工程性が劣ることとなる。さらにはガイド摩耗、ロ−ラ摩耗が激しい等の問題も生じる。
【0004】
【発明が解決しようとする課題】
上述の問題点を考慮して検討した結果、本発明により、蓄光蛍光粒子の熱による分解がなく、紡糸・延伸性が良好で、蓄光機能も高い蓄光繊維を提供することが可能となった。
【0005】
【課題を解決するための手段】
本発明は、平均粒径が0.3〜10μmの蓄光蛍光粒子を含有する繊維形成性ポリマ−(A)と、繊維形成性ポリマ−(B)とからなる複合繊維であって、該複合繊維は、
(i)繊維形成性ポリマ−(A)の融点または軟化点と、繊維形成性ポリマ−(B)の融点または軟化点との差が20〜100℃であること、
(ii)繊維形成性ポリマ−(B)が繊維表面の70%以上を占有していること、
(iii)繊維形成性ポリマ−(B)が繊維全体に対して20〜80重量%であること、
(iv)繊維形成性ポリマー(A)がナイロン6、繊維形成性ポリマー(B)がポリエチレンテレフタレート系ポリマーであること、
を特徴とする蓄光繊維である。
【0006】
【発明の実施形態】
本発明の基本的な考え方は、特定の粒子径を有する蓄光蛍光粒子を含有する繊維形成性ポリマ−が、他の繊維形成性ポリマ−によってできるだけ包囲されている構造の複合繊維とし、2種類の繊維形成性ポリマ−の融点差を特定値に規定することにより従来の欠点を解決することができたものである。
【0007】
本発明において使用される蓄光蛍光粒子はそれ自体公知のものであり、外部刺激により発光し、該外部刺激が停止した後もかなりの時間残光が肉眼で認められるものである。
たとえば、CaSrS:Bi(青色発光)、ZnS:Cu(緑色発光)、ZnCdS:Cu(黄色〜橙色発光)等の硫化物系蛍光体、ZnS:Cu等の硫化亜鉛系蓄光性蛍光体、特開平7−11250号公報に記載されているように、ユウロピウム等を賦活したアルカリ土類金属のアルミン酸塩を挙げることができる。
耐光性、化学的な安定性、持続的な蓄光性等の点でユウロピウム等を賦活したアルカリ土類金属のアルミン酸塩を使用することが好ましい。該蓄光蛍光体を構成するアルカリ土類金属としてはストロンチウム、バリウム、カルシウム等であり、具体的にはアルカリ土類金属塩とアルミナ、ユウロピウムを十分に混合した後、電気炉を用いて窒素−水素混合ガス気流中で焼成して得られたものを挙げることができる。
【0008】
かかる蓄光蛍光粒子の平均粒径は0.3〜10μmであることが必要である。該粒径が0.3μm未満であれば二次凝集が生じ易く、繊維化工程性が劣ることになり、また残光性も劣る。一方、10μmを越えると、後述する繊維の複合形態によっては繊維表面に該粒子が露出する可能性が高く、上述の断糸、ケバの多発、あるいはガイド等の摩耗が激しいなどの要因になる。また一般衣料用の単糸繊度の糸を得ることが困難となる。
したがって繊維化工程性、残光性の点を考慮すると蓄光蛍光粒子の粒径は0.3〜8.0μm、とくに0.5〜6.0μmの範囲が好ましい。
【0009】
さらに繊維中への該蓄光蛍光粒子の含有量は、ポリマ−(A)に基づいて1〜10重量%の範囲、とくに1〜8重量%の範囲であることが好ましい。かかる含有量が1重量%未満である場合には蓄光蛍光機能の発現効果が小さく、長時間の残光特性が得られない。一方、含有量が10重量%を越えると、含有させる粒子の粒径にもよるが該粒子を含有させるポリマ−(A)の流動性が低下し紡糸性が極端に悪化し、フィルタ−詰まり等のパック寿命が著しく短くなり繊維化工程性の安定性はなくなる。
【0010】
本発明においては、上述の蓄光蛍光粒子を含有させる繊維形成性ポリマ−(A)と、他方の繊維形成性ポリマ−(B)の融点差または軟化点差が20〜100℃であることが、紡糸性、延伸性の点で必要である。20〜80℃、とくに20〜60℃であることが好ましい。融点差がかかる範囲より外れると複合紡糸の際のポリマ−(A)とポリマ−(B)との溶融粘度バランスが悪くなり、満足な複合繊維を得ることができにくい。得られた複合繊維のポリマ−間の剥離が生じる場合もあり、耐久性の点で問題がある。
なお、本発明で規定する「融点または軟化点」とは、繊維化された繊維を構成する各ポリマ−の融点または軟化点を示すものである。
【0011】
ポリマ−(A)としては、融点または軟化点が230℃以下のものが好適である。融点または軟化点が230℃を越えるものは上述の蓄光蛍光粒子と溶融混合した場合に、その耐熱性に起因すると思われる分解ガスが発生し、前記の溶融混合が満足に行われない場合が生じる。好ましいポリマ−(A)としては、その融点または軟化点が140〜230℃のものである。該ポリマ−(A)の具体例としては、ナイロン6を挙げることができる
【0012】
本発明の複合繊維は、前記蓄光蛍光粒子を含有するポリマ−(A)およびポリマ−(B)より形成される。かかるポリマ−(B)は繊維形成可能であることは無論のこと、融点または軟化点が200℃以上のポリマ−であることが好ましい。該ポリマ−(B)は耐熱性を含む消費性能および繊維化の際の工程性を良好なものとするための重要な役割を担っており、曵糸性を考慮すると結晶性ポリマ−であることが好ましく、融点が280℃以下であることが好ましい。
【0013】
かかるポリマ−(B)としては実施例から明らかなようにポリエチレンテレフタレート系のポリエステルを挙げることができる。これらのポリマ−(B)中には蛍光増白剤、紫外線吸収剤、安定剤等の添加剤が含有されていてもよい。
【0014】
本発明においては、融点または軟化点差が20〜100℃の範囲となるようなポリマ−同士の組み合わせを適宜設定することができる。ポリマ−(A)/ポリマ−(B)の具体例としては、ナイロン6/ポリエチレンテレフタレ−トを挙げることができる。
【0015】
本発明の蓄光繊維は前記蓄光蛍光粒子を含有するポリマ−(A)およびポリマ−(B)が接合されている繊維であって、繊維表面の70%以上をポリマ−(B)が占有していること、および繊維全体に対してポリマ−(B)が20〜80重量%占有していることを特徴とする。
繊維中のポリマ−(B)が繊維表面の70%未満しか占有していない場合には、好ましい蓄光性、長期に亘る残光性を得ることができない。すなわち繊維表面層に存在するポリマ−(A)が多くなると、繊維表面層に存在する蓄光蛍光粒子の量が多くなり、該粒子が熱の影響を受けやすくなり、空気酸化等による熱分解を受けやすくなる。したがって、繊維表面を占有するポリマ−(B)は80%以上であることが好ましい。
【0016】
すなわち、蓄光蛍光粒子を含有するポリマ−(A)を繊維の表層となるように鞘部にし、ポリマ−(B)を芯部にした本発明の繊維の構成要件とは逆の構成にすると、得られる繊維の蓄光性、長期に亘る残光性は到底満足できるものではない。本発明においては、蓄光蛍光粒子を含有するポリマ−(A)がポリマ−(B)によって大部分被覆され、繊維表面に露出していないため、蓄光蛍光粒子の蓄光性、長期に亘る残光性を発現させる上からは好ましくない態様と考えられるが、意外にもこの点の不利は認められず、蓄光蛍光粒子の高温での分解といった弱点を十分に克服することができるのである。また、ポリマ−(A)中に含有されている蓄光蛍光粒子の粒径が大きく、ポリマ−(A)からなる繊維表面に該粒子に起因する凹凸が形成されていても、ポリマ−(B)によってポリマ−(A)からなる繊維表面が被覆されるので、本発明の繊維表面は平滑である。
【0017】
さらには本発明の蓄光繊維は実着用での耐久性にも優れている。すなわち繊維は通常長時間使用している過程で、曲げ、引っ張り、摩耗等の繰り返しと、洗濯、すすぎ等の繰り返しが行われるが、繊維表面に蓄光蛍光粒子が存在すると、必然的に該蓄光蛍光粒子が損傷、脱落し、蓄光性能を低下させてしまう。しかるに本発明においては、上述のようにポリマ−(B)がほとんど繊維表面を占有しているので、このような問題点はほとんど解消されるのである。
本発明の繊維構造は、繊維またはその用途である織編物等の繊維製品として使用した場合、耐熱性、寸法安定性を含む優れた消費性能、優れた蓄光性能、長期に亘る残光性を発揮する。さらに後述するがポリマ−(B)の染色が可能である。
【0018】
本発明の繊維は上述のようにポリマ−(B)が繊維全体に対して20〜80重量%を占有することも重要な因子である。ポリマ−(B)が20重量%未満であると、ポリマ−(B)が十分な繊維形成性を有していても複合した糸条の紡糸性および延伸性、さらには繊維物性は極端に低下し、実用性が失われてしまうことになる。これは蓄光蛍光粒子を含有するポリマ−(A)の繊維全体に対する割合が多くなり、曵糸性の劣るポリマ−(A)の性質が繊維全体の物性として現われるためと推察できる。一方、ポリマ−(B)が80重量%を越えると安定した複合形態の複合繊維構造の紡糸が困難となり、蓄光蛍光粒子を含有するポリマ−(A)が少なくなり、蓄光性、残光性が劣ることになる。したがって、ポリマ−(A)とポリマ−(B)の重量比は(A)/(B)=25:75〜75/25、とくに30/70〜70/30であることが好ましい。
【0019】
本発明の蓄光繊維の複合形態は上述のように、ポリマ−(B)が繊維表面の70%以上を占有している形態であれば、とくに制限されるものではなく、具体的にはポリマ−(A)を芯部、ポリマ−(B)を鞘部にした芯鞘構造型、ポリマ−(B)中にポリマ−(A)が複数の島状態で存在する海島構造型、中心からポリマ−(B)−ポリマ−(A)−ポリマ−(B)とする三層構造型、ポリマ−(B)中にポリマ−(A)がその一部を表面に露出して壺状乃至円形状をなして存在する構造型、ポリマ−(B)がポリマ−(A)によっていくつかのブロックに分割された構造型、ポリマ−(A)とポリマ−(B)との多層積層構造型などの複合形態を挙げることができる。溶融紡糸時における蓄光蛍光粒子の分解性および耐熱性などの消費性能を考慮すると、ポリマ−(A)がポリマ−(B)によって完全に被覆されてなる複合構造型が好ましい。
【0020】
また、本発明の繊維の断面形状は丸断面形状に制限されるものではなく、三〜八角等の多角形、三〜八葉等の多葉形等の異形断面形状であってもよい。また中実繊維であっても中空繊維であってもよい。
【0021】
本発明の繊維は主として衣料用途に使用されるが、衣料のみならず産業資材用途にも使用できる。衣料用途に使用する場合は繊度が8デニ−ル以下であることが好ましい。産業資材用途ではその繊度は制限されるものではなく、産業資材用途によって適宜設定することができる。
該繊維を得る方法はそれ自体公知の複合紡糸方法により製造することができる。具体的な繊維化手段としては2500m/分以下の速度で通常の紡糸を行い、その後延伸熱処理を行う方法で製造してもよいし、1500〜5000m/分の速度で紡糸し、延伸・仮撚加工を続いて行う方法でもよいし、5000m/分以上の高速で紡糸し、用途によっては延伸工程を省略する方法等、いずれでもよく任意の方法が採用される。
【0022】
本発明における「繊維」とは、フィラメント、ステ−プルあるいはこれらの糸条の撚糸、加工糸、紡績糸を総称するものである。また「繊維製品」とは本発明の繊維を含む織編物、不織布等を総称するものである。
【0023】
本発明の繊維はポリマ−(B)が繊維表面の大部分を占有していることから、ポリマ−(B)を染色することにより、衣料用途が幅広く展開できる。ポリマ−(B)がポリエステルであることから、分散染料またはカチオン染料で染色が可能である。
【0024】
本発明の蓄光繊維は上述のように、ポリマ−(B)によて繊維表面の大部分が占有されていることから、蓄光蛍光粒子の脱落、熱分解がなく、したがって優れた蓄光性、長期に亘る残光性が得られ、またポリマ−(B)の種類によっては耐熱性、耐アイロン性が優れ、さらには染色が可能であることから衣料用途への幅広い展開が可能である。該繊維を使用した繊維製品の具体例として、カ−テン、壁上、カ−ペット、レインコ−ト、夜間用作業衣、帽子、標識、ランプシェ−ド、造花、作業用ロ−プ、テント用ロ−プ、非常通路用カ−ペット等を挙げることができる。
【0025】
【実施例】
以下、実施例により本発明を詳述するが、本発明はこれら実施例により何等限定されるものではない。なお、実施例中の各物性値は以下の方法により測定算出された値である。
(1)ポリマ−の融点または軟化点(℃)
融点は、示差走査型熱量計(DSC)[メトラ−社、TC−2000型]を用い、昇温速度10℃/分にて測定し、吸熱ピ−クの発現温度を融点とした。
軟化点は、JIS K 7206−1982に準拠して測定した。
(2)蓄光蛍光粒子の粒径(μm)
粒度分布計により平均粒子径を算出した。
(3)残光特性
一定量の試料を約15時間暗闇中に保管して残光を消去した後、D65標準光源により200ルクスの明るさを10分間照射した。照射後、20時間経過した後の試料を肉眼で観察した。下記に示す評価基準により評価した。
評価基準:
◎:照射直後の残光と同じレベルの残光を肉眼で十分観察することができた。
○:照射直後の残光よりは劣るが、肉眼での残光は観察できた。
△:残光を肉眼でやっと観察することができた。
×:残光を肉眼で観察することはできなかった。
(4)洗濯耐久性
液温40℃の水1リットルに2gの割合で衣料用合成洗剤を添加溶解し、洗濯液とする。この洗濯液に浴比が1対30となるように試料および負荷布を投入して運転を開始する。5分間処理した後、運転を止め、試料および負荷布を脱水機で脱水し、次に洗濯液を液温40℃の新しい液に替えて同一の浴比で2分間濯ぎ洗いをした後脱水し、再び2分間のすすぎ洗いを行い風乾させた。これを50回繰り返した後の残光特性を上記の方法により観察した。
評価基準を以下に示す。
評価基準:
○:残光は肉眼で十分観察された。
△:残光は肉眼でまあまあ観察された。
×:残光は全く観察されなかった。
(5)熱安定性(乾熱収縮率でにて評価した。)
試料を枠周1.0mの検尺機を使用して4000デニ−ルのかせを作り、1/20g/デニ−ルの重りをかけてかせ長を測る。次に重りを外し、2つ折りにして150℃の乾燥機中に0.5mg/デニ−ルの荷重をかけて吊り下げ、30分間放置後取り出し、室温まで冷却後再び重りをかけてかせ長を測り、[(乾燥前の長さ−乾燥後の長さ)/乾燥前の長さ]の式により算出し、以下の評価を行った。
○:乾熱収縮率が20%未満
△:乾熱収縮率が20〜40%
×:乾熱収縮率が40%を越える
【0026】
実施例1
平均粒径5μmの蓄光蛍光粒子[根本特殊化学社製]を5重量%含有するナイロン6[宇部興産社製、1013BK−1、融点225℃][ポリマ−(A)]と、融点258℃のポリエチレンテレフタレ−ト[ポリマ−(B)]とを別々の押出機にて溶融し、複合紡糸装置を用いて、ポリマ−(A)が芯部を、ポリマ−(B)が鞘部を形成するように芯鞘型構造の繊維を、295℃で8孔のノズル孔より紡出し、1000m/分の速度で巻き取った。なお芯/鞘複合比は1/2 (重量比)であった。
ついでこの紡糸原糸を通常の延伸機でホットロ−ラ温度80℃、ホットプレ−ト温度150℃、倍率3.1倍で延伸を施し、150デニ−ル/8フィラメントの延伸糸を得た。
得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。
蓄光性、および残光の洗濯耐久性に優れ、耐熱性にも優れたものであった。
【0027】
比較例1
実施例1において、ナイロン6に代えてポリプロピレン(融点170℃)を使用した以外は同様にして芯鞘型構造の繊維を紡糸し、延伸を行った。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。残光の洗濯耐久性に優れており、耐熱性にも優れたものであったが、表1から明らかなように、残光特性は実施例のものより劣るものであった。
【0028】
実施例2
実施例1において、ポリエチレンテレフタレ−トに代えて5−ナトリウムスルホイソフタル酸2.5モル%変性ポリエチレンテレフタレ−ト(融点254℃)を使用し、複合比率をA/B=2/3(重量比)にした以外は同様にして芯鞘型構造の繊維を紡糸し、延伸を行った。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。蓄光性、および残光の洗濯耐久性に優れており、耐熱性にも優れたものであった。
【0029】
比較例2
比較例1において、鞘成分として融点が227℃のポリブチレンテレフタレ−トを使用した以外は同様にして芯鞘型構造の繊維を紡糸し、延伸を行った。紡糸温度は265℃、ホットロ−ラ温度は65℃で行った。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。残光の洗濯耐久性に優れており、耐熱性にも優れたものであったが、表1から明らかなように、残光特性は実施例のものより劣るものであった。
【0030】
実施例3
実施例1と同様にして、芯鞘型構造繊維を紡糸し、延伸を施して150デニ−ル/32フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。蓄光性、および残光の洗濯耐久性に優れており、耐熱性にも優れたものであった。
【0031】
比較例3
実施例3において、ナイロン6に代えて融点が170℃のポリプロピレンを使用し、複合形態を縦11層積層型(複合比A/B=1/3)にした以外は同様にして紡糸、延伸を施し150デニ−ル/32フィラメントの延伸糸を得た。繊維表面の73%をポリエチレンテレフタレ−トが占めていた。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。残光の洗濯耐久性に優れており、耐熱性にも優れたものであったが、表1から明らかなように、残光特性は実施例のものより劣るものであった。
【0032】
比較例4
蓄光蛍光粒子を含有させるポリマ−(A)として、融点が168℃のナイロン12を使用し、ポリマ−(B)としてイソフタル酸10モル%変性ポリブチレンテレフタレ−ト(融点203℃)を使用した以外は実施例1と同様にして紡糸、延伸を施し、150デニ−ル/8フィラメントの延伸糸を得た。紡糸温度は250℃、ホットロ−ラ温度は60℃で行った。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。残光の洗濯耐久性に優れ、耐熱性にも優れたものであったが、表1から明らかなように、残光特性は実施例のものより劣るものであった。
【0033】
実施例4
実施例1において、複合比率をA/B=1/1(重量比)にした以外は同様にして紡糸、延伸を施し、150デニ−ル/8フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。蓄光性、および残光の洗濯耐久性に優れ、耐熱性にも優れたものであった。
【0034】
比較例5
比較例1において、蓄光蛍光粒子を含有するポリプロピレンを鞘部に、ポリエチレンテレフタレ−トを芯部にした以外は同様にして紡糸、延伸を施して150デニ−ル/8フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。蓄光蛍光特性、残光特性は良好であったが、粒子含有ポリマ−が鞘部を構成しているがために、繊維化工程性は不良で断糸、毛羽が多発した。
【0035】
比較例6
比較例1において、複合比率をポリマ−(A)/ポリマ−(B)=1/5(重量比)とした以外は同様にして紡糸、延伸を施して150デニ−ル/8フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。熱安定性は良好であったが、ポリマ−(B)の複合比率が多いので蓄光蛍光特性、残光特性は不良であった。
【0036】
比較例7
比較例1において、複合比率をポリマ−(A)/ポリマ−(B)=5/1(重量比)とした以外は同様にして紡糸、延伸を施して150デニ−ル/8フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。ポリマ−(A)の複合比率が多いので蓄光蛍光特性、残光特性は良好であったが、繊維化工程性は不良であった。粘度低下により複合バランスが劣り、繊維化工程性は不良であった。
【0037】
比較例8
比較例1において、複合断面形態をサイドバイサイド型にした以外は同様にして紡糸、延伸を施して150デニ−ル/8フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。繊維表面の50%をポリマ−(A)が占めているので、繊維化工程性が悪く、熱安定性も今1歩であった。
【0038】
比較例9〜10
蓄光蛍光粒子を含有するポリプロピレン単独糸(比較例9)および蓄光蛍光粒子を含有するナイロン6(比較例10)を用いて紡糸、延伸を施し150デニ−ル/8フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。いずれも繊維化工程性が不良で、残光特性は良好であっても寸法安定性をはじめ消費性能に劣り実用的ではなかった。
【0039】
比較例11〜12
蓄光蛍光粒子を含有し、芯部を構成するポリマ−(A)と、鞘部を構成するポリマ−(B)とが同じ種類である芯鞘型複合繊維を紡糸、延伸し150デニ−ル/8フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。蓄光蛍光特性は良好であったが、繊維化工程性、熱安定性が悪く、衣料用途には不向きであった。
【0040】
比較例13
比較例12において、芯部を構成するポリマ−(A)を、融点が125℃のポリエチレンにした以外は同様にして紡糸、延伸を施し、150デニ−ル/8フィラメントの延伸糸を得た。得られた延伸糸を用いてメリヤス編の筒編地を作製し、筒編地の各評価を行った。結果を表1に示す。ポリマ−(A)とポリマ−(B)との融点差が大きいので蓄光蛍光特性が今1つの上、繊維化工程性も今1つであった。
【0041】
【表1】

Figure 0003720533
【0042】
【発明の効果】
本発明の蓄光繊維は長期に亘る残光特性ばかりでなく、染色性および耐熱性等の消費性能も優れており、衣料用途で非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phosphorescent fiber, and more particularly, to a phosphorescent fiber having durability and long-lasting afterglow characteristics, particularly a phosphorescent fiber for clothing.
[0002]
[Prior art]
Conventionally, a fiber having a phosphorescent material coated on the fiber surface is well known. However, since the phosphorescent phosphor coated on the surface of this fiber easily falls off, the washing durability is poor, and the practicality is very low in the field where durability is required for clothing use.
On the other hand, a phosphorescent fiber in which a phosphorescent phosphor is blended in a polymer constituting the fiber is also well known. However, such fibers also have problems in terms of practicality. That is, the heat resistance of the conventional phosphorescent substance blended in the polymer is low, and when the phosphorescent phosphor is blended in the polymer, the practical use is limited by the melting point of the polymer. For example, when blended with a polymer having a relatively low melting point such as polypropylene or polyethylene, there is no problem, but the consumption performance including dyeability and heat resistance is inferior, and it is not suitable for clothing use.
Furthermore, when blended in a polymer having a relatively high melting point such as polyester, which is generally used for clothing, the phosphorescent phosphor is decomposed by heat when blended, resulting in a decrease in function. The function as a phosphor is not expressed.
[0003]
In addition, since conventional phosphorescent phosphors are hard and cannot be finely pulverized, the particle size becomes large, and if the amount of phosphorescent fluorescent function added to the fiber is contained in the polymer, a large amount of these particles are exposed on the fiber surface. The fiber surface becomes uneven, resulting in inferior fiberizing process properties such as cracking and frequent yarn breakage. Furthermore, problems such as severe guide wear and roller wear also occur.
[0004]
[Problems to be solved by the invention]
As a result of considering the above-mentioned problems, the present invention has made it possible to provide a phosphorescent fiber that does not decompose the phosphorescent phosphor particles due to heat, has good spinning and stretching properties, and has a high phosphorescence function.
[0005]
[Means for Solving the Problems]
The present invention relates to a composite fiber comprising a fiber-forming polymer (A) containing phosphorescent fluorescent particles having an average particle size of 0.3 to 10 μm and a fiber-forming polymer (B), the composite fiber Is
(I) The difference between the melting point or softening point of the fiber-forming polymer (A) and the melting point or softening point of the fiber-forming polymer (B) is 20 to 100 ° C.
(Ii) the fiber-forming polymer (B) occupies 70% or more of the fiber surface;
(Iii) The fiber-forming polymer (B) is 20 to 80% by weight based on the whole fiber,
(Iv) The fiber-forming polymer (A) is nylon 6, and the fiber-forming polymer (B) is a polyethylene terephthalate polymer,
Is a phosphorescent fiber characterized by
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The basic idea of the present invention is that a fiber-forming polymer containing phosphorescent fluorescent particles having a specific particle diameter is a composite fiber having a structure in which it is surrounded as much as possible by another fiber-forming polymer. By defining the difference in melting point of the fiber-forming polymer to a specific value, the conventional drawbacks can be solved.
[0007]
The phosphorescent fluorescent particles used in the present invention are known per se, and emit light by an external stimulus, and afterglow for a considerable period of time after the external stimulus is stopped is recognized with the naked eye.
For example, sulfide phosphors such as CaSrS: Bi (blue light emission), ZnS: Cu (green light emission), ZnCdS: Cu (yellow to orange light emission), zinc sulfide-based phosphorescent phosphors such as ZnS: Cu, As described in Japanese Patent Laid-Open No. 7-11250, an alkaline earth metal aluminate activated with europium and the like can be given.
It is preferable to use an alkaline earth metal aluminate in which europium or the like is activated in terms of light resistance, chemical stability, sustained light storage, and the like. The alkaline earth metal constituting the phosphorescent phosphor is strontium, barium, calcium or the like. Specifically, after sufficiently mixing the alkaline earth metal salt with alumina and europium, nitrogen-hydrogen is used using an electric furnace. The thing obtained by baking in mixed gas stream can be mentioned.
[0008]
The average particle diameter of the phosphorescent fluorescent particles needs to be 0.3 to 10 μm. If the particle size is less than 0.3 μm, secondary aggregation is likely to occur, the fiber forming processability is inferior, and the persistence is also inferior. On the other hand, if it exceeds 10 μm, depending on the composite form of the fibers described later, there is a high possibility that the particles will be exposed on the fiber surface, causing the above-mentioned yarn breakage, frequent flaking, or severe wear of guides and the like. In addition, it is difficult to obtain a single yarn fineness yarn for general clothing.
Therefore, in consideration of fiber forming processability and afterglow characteristics, the particle diameter of the phosphorescent fluorescent particles is preferably in the range of 0.3 to 8.0 μm, particularly 0.5 to 6.0 μm.
[0009]
Further, the content of the phosphorescent fluorescent particles in the fiber is preferably in the range of 1 to 10% by weight, particularly 1 to 8% by weight based on the polymer (A). When the content is less than 1% by weight, the effect of the phosphorescent fluorescence function is small, and long-time afterglow characteristics cannot be obtained. On the other hand, when the content exceeds 10% by weight, although depending on the particle size of the particles to be contained, the fluidity of the polymer (A) containing the particles is lowered and the spinnability is extremely deteriorated. The pack life is significantly shortened and the stability of the fiberizing process is lost.
[0010]
In the present invention, the fiber-forming polymer (A) containing the above-described phosphorescent fluorescent particles and the other fiber-forming polymer (B) have a melting point difference or a softening point difference of 20 to 100 ° C. It is necessary in terms of the properties and stretchability. It is preferable that it is 20-80 degreeC, especially 20-60 degreeC. If the melting point difference is out of the range, the melt viscosity balance between the polymer (A) and the polymer (B) at the time of composite spinning deteriorates, and it is difficult to obtain a satisfactory composite fiber. Peeling between the polymers of the obtained composite fiber may occur, which is problematic in terms of durability.
The “melting point or softening point” defined in the present invention indicates the melting point or softening point of each polymer constituting the fiberized fiber.
[0011]
As the polymer (A), those having a melting point or softening point of 230 ° C. or less are suitable. When the melting point or softening point exceeds 230 ° C., when the above phosphorescent fluorescent particles are melt-mixed, a decomposition gas that may be caused by the heat resistance is generated, and the above-mentioned melt-mixing may not be performed satisfactorily. . Preferred polymers (A) have a melting point or softening point of 140-230 ° C. Specific examples of the polymer (A) include nylon 6.
The conjugate fiber of the present invention is formed from a polymer (A) and a polymer (B) containing the phosphorescent fluorescent particles. Of course, the polymer (B) is capable of forming fibers and is preferably a polymer having a melting point or softening point of 200 ° C. or higher. The polymer (B) plays an important role in improving the consumption performance including heat resistance and the processability during fiber formation, and is a crystalline polymer in consideration of the stringiness. The melting point is preferably 280 ° C. or lower.
[0013]
Examples of such a polymer (B) include polyethylene terephthalate-based polyester as is apparent from Examples. These polymers (B) may contain additives such as fluorescent brighteners, ultraviolet absorbers and stabilizers.
[0014]
In the present invention, a combination of polymers having a melting point or softening point difference in the range of 20 to 100 ° C. can be appropriately set. Specific examples of the polymer (A) / polymer (B) include nylon 6 / polyethylene terephthalate.
[0015]
The phosphorescent fiber of the present invention is a fiber in which the polymer (A) and polymer (B) containing the phosphorescent fluorescent particles are joined, and the polymer (B) occupies 70% or more of the fiber surface. And the polymer (B) occupies 20 to 80% by weight of the entire fiber.
When the polymer (B) in the fiber occupies less than 70% of the fiber surface, it is not possible to obtain preferable phosphorescence and long persistence. That is, when the polymer (A) present in the fiber surface layer increases, the amount of phosphorescent fluorescent particles present in the fiber surface layer increases, and the particles are easily affected by heat and are subject to thermal decomposition due to air oxidation or the like. It becomes easy. Therefore, the polymer (B) occupying the fiber surface is preferably 80% or more.
[0016]
That is, when the polymer (A) containing phosphorescent fluorescent particles is made into a sheath so as to be the surface layer of the fiber, and the constitutional requirements of the fiber of the present invention having the polymer (B) as the core are reversed, The phosphorescent properties of the fibers obtained and the afterglow over a long period of time are not satisfactory. In the present invention, the polymer (A) containing the phosphorescent fluorescent particles is mostly covered with the polymer (B) and is not exposed on the fiber surface. This is considered to be an unpreferable aspect from the viewpoint of the expression of light, but surprisingly, there is no disadvantage in this respect, and the weak point of decomposition of the phosphorescent fluorescent particles at high temperature can be sufficiently overcome. Further, even if the phosphorescent fluorescent particles contained in the polymer (A) have a large particle size and the fiber surface made of the polymer (A) has irregularities due to the particles, the polymer (B) Since the fiber surface made of the polymer (A) is covered by the above, the fiber surface of the present invention is smooth.
[0017]
Furthermore, the phosphorescent fiber of the present invention is excellent in durability when actually worn. That is, the fiber is normally used for a long time, and is repeatedly subjected to bending, pulling, abrasion, etc., and washing, rinsing, etc. However, if phosphorescent fluorescent particles are present on the fiber surface, the phosphorescent fluorescence is inevitably present. Particles are damaged and fall off, reducing the luminous performance. However, in the present invention, since the polymer (B) almost occupies the fiber surface as described above, such problems are almost eliminated.
The fiber structure of the present invention exhibits excellent consumption performance including heat resistance, dimensional stability, excellent phosphorescent performance, and long-lasting afterglow when used as a fiber product such as fiber or woven or knitted fabric that is used for the fiber structure. To do. As will be described later, the polymer (B) can be dyed.
[0018]
In the fiber of the present invention, as described above, it is also an important factor that the polymer (B) occupies 20 to 80% by weight based on the entire fiber. When the polymer (B) is less than 20% by weight, the spinnability and stretchability of the composite yarn, and further the physical properties of the fiber are extremely lowered even if the polymer (B) has sufficient fiber-forming properties. However, practicality will be lost. It can be inferred that this is because the ratio of the polymer (A) containing phosphorescent fluorescent particles to the whole fiber increases, and the property of the polymer (A) having poor spinnability appears as a physical property of the whole fiber. On the other hand, if the polymer (B) exceeds 80% by weight, it becomes difficult to spin a composite fiber structure having a stable composite form, the polymer (A) containing phosphorescent fluorescent particles is reduced, and phosphorescence and persistence are reduced. It will be inferior. Accordingly, the weight ratio of the polymer (A) to the polymer (B) is preferably (A) / (B) = 25: 75 to 75/25, particularly 30/70 to 70/30.
[0019]
The composite form of the phosphorescent fiber of the present invention is not particularly limited as long as the polymer (B) occupies 70% or more of the fiber surface as described above. Specifically, the polymer is not limited. A core-sheath structure type in which (A) is a core part and a polymer (B) is a sheath part, a sea-island structure type in which a polymer (A) exists in a plurality of island states in the polymer (B), and a polymer from the center (B) -Polymer (A) -Three-layer structure type (A) -Polymer (B). In the polymer (B), a part of the polymer (A) is exposed on the surface to form a bowl or circle. The existing structural type, the structural type in which the polymer (B) is divided into several blocks by the polymer (A), and the composite structure such as the multilayer laminated structural type of the polymer (A) and the polymer (B) The form can be mentioned. In consideration of consumption performance such as decomposability and heat resistance of the phosphorescent phosphor particles during melt spinning, a composite structure type in which the polymer (A) is completely covered with the polymer (B) is preferable.
[0020]
In addition, the cross-sectional shape of the fiber of the present invention is not limited to a round cross-sectional shape, and may be a polygonal shape such as a three-to-octagon, or a modified cross-sectional shape such as a multi-leaf shape such as a three to eight leaf. Further, it may be a solid fiber or a hollow fiber.
[0021]
The fiber of the present invention is mainly used for clothing, but can be used not only for clothing but also for industrial materials. When used for clothing, the fineness is preferably 8 denier or less. In the industrial material application, the fineness is not limited and can be appropriately set depending on the industrial material application.
The method for obtaining the fiber can be produced by a composite spinning method known per se. Specific fiberizing means may be produced by a method in which ordinary spinning is performed at a speed of 2500 m / min or less, followed by a drawing heat treatment, or spinning is carried out at a speed of 1500 to 5000 m / min, and drawing and false twisting. Any method may be employed, such as a method in which processing is performed subsequently, spinning at a high speed of 5000 m / min or more, and omitting the stretching step depending on the application.
[0022]
“Fiber” in the present invention is a generic term for filaments, staples, twisted yarns of these yarns, processed yarns, and spun yarns. “Fiber product” is a general term for woven and knitted fabrics, nonwoven fabrics and the like containing the fibers of the present invention.
[0023]
Since the polymer (B) occupies most of the fiber surface, the fiber of the present invention can be widely used for clothing by dyeing the polymer (B). Since the polymer (B) is a polyester, it can be dyed with a disperse dye or a cationic dye.
[0024]
As described above, the phosphorescent fiber of the present invention is largely occupied by the polymer (B) as described above, and therefore, the phosphorescent fluorescent particles do not fall off and are not thermally decomposed. Afterglow is obtained, and depending on the type of polymer (B), heat resistance and iron resistance are excellent, and further dyeing is possible, so that it can be widely applied to clothing. Specific examples of textile products using the fiber include curtains, on the walls, carpets, raincoats, night work clothes, hats, signs, lamp shades, artificial flowers, work ropes, and tents. Examples include ropes and emergency passage carpets.
[0025]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples. In addition, each physical property value in an Example is a value measured and calculated by the following method.
(1) Melting point or softening point of polymer (° C)
The melting point was measured using a differential scanning calorimeter (DSC) [Metra, TC-2000 type] at a heating rate of 10 ° C./min, and the endothermic peak expression temperature was taken as the melting point.
The softening point was measured according to JIS K 7206-1982.
(2) Particle size (μm) of phosphorescent fluorescent particles
The average particle size was calculated with a particle size distribution meter.
(3) Afterglow characteristics After a certain amount of the sample was stored in the dark for about 15 hours to erase the afterglow, it was irradiated with a brightness of 200 lux for 10 minutes with a D 65 standard light source. After irradiation, the sample after 20 hours was observed with the naked eye. Evaluation was made according to the following evaluation criteria.
Evaluation criteria:
A: The afterglow at the same level as the afterglow immediately after irradiation was sufficiently observed with the naked eye.
○: Although afterglow immediately after irradiation, the afterglow with the naked eye could be observed.
Δ: Afterglow was finally observed with the naked eye.
X: The afterglow could not be observed with the naked eye.
(4) Washing durability liquid Synthetic detergent for clothing is added and dissolved at a rate of 2 g in 1 liter of water at a temperature of 40 ° C. to obtain a washing liquid. A sample and a load cloth are put into this washing liquid so that the bath ratio is 1:30, and the operation is started. After processing for 5 minutes, the operation is stopped, the sample and the load cloth are dehydrated with a dehydrator, and then the washing liquid is replaced with a new liquid having a liquid temperature of 40 ° C. and rinsed at the same bath ratio for 2 minutes and then dehydrated. Rinse again for 2 minutes and air dry. The afterglow characteristic after repeating this 50 times was observed by the above method.
The evaluation criteria are shown below.
Evaluation criteria:
○: Afterglow was sufficiently observed with the naked eye.
Δ: Afterglow was observed with the naked eye.
X: No afterglow was observed.
(5) Thermal stability (Evaluated by dry heat shrinkage.)
Using a measuring instrument with a frame circumference of 1.0 m, make a skein of 4000 denier, apply a weight of 1/20 g / denier, and measure the length. Next, remove the weight, fold it in half and hang it in a dryer at 150 ° C with a load of 0.5 mg / denier, leave it for 30 minutes, take it out, cool it to room temperature, apply the weight again, and increase the length. Measured and calculated according to the formula [(length before drying−length after drying) / length before drying], and the following evaluation was performed.
○: Dry heat shrinkage rate is less than 20% Δ: Dry heat shrinkage rate is 20 to 40%
×: Dry heat shrinkage exceeds 40%.
Example 1
Nylon 6 [manufactured by Ube Industries, Ltd., 1013BK-1, melting point 225 ° C.] [polymer (A)] containing 5% by weight of phosphorescent fluorescent particles having an average particle diameter of 5 μm [manufactured by Nemoto Special Chemical Co., Ltd.], and a melting point of 258 ° C. Polyethylene terephthalate [polymer (B)] is melted in separate extruders, and using a composite spinning device, polymer (A) forms the core and polymer (B) forms the sheath. In this manner, the fiber having the core-sheath structure was spun from 8 nozzle holes at 295 ° C. and wound at a speed of 1000 m / min. The core / sheath composite ratio was 1/2 (weight ratio).
Subsequently, the spinning yarn was drawn with a normal drawing machine at a hot roller temperature of 80 ° C., a hot plate temperature of 150 ° C. and a magnification of 3.1 times to obtain a drawn yarn of 150 denier / 8 filament.
Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1.
It was excellent in phosphorescent property, afterglow washing durability, and heat resistance.
[0027]
Comparative Example 1
In Example 1, a fiber having a core-sheath structure was spun in the same manner except that polypropylene (melting point: 170 ° C.) was used instead of nylon 6, and stretched. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Although it was excellent in afterglow washing durability and heat resistance, as is apparent from Table 1, the afterglow characteristics were inferior to those of the examples.
[0028]
Example 2
In Example 1, instead of polyethylene terephthalate, 2.5 mol% modified polyethylene terephthalate (melting point 254 ° C.) of 5-sodium sulfoisophthalic acid was used, and the composite ratio was A / B = 2/3 ( A fiber having a core-sheath structure was spun and drawn in the same manner except that the weight ratio was changed. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. It was excellent in phosphorescent properties and afterglow washing durability, and was also excellent in heat resistance.
[0029]
Comparative Example 2
In Comparative Example 1, a core-sheath structure fiber was spun and drawn in the same manner except that polybutylene terephthalate having a melting point of 227 ° C. was used as the sheath component. The spinning temperature was 265 ° C. and the hot roller temperature was 65 ° C. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Although it was excellent in afterglow washing durability and heat resistance, as is apparent from Table 1, the afterglow characteristics were inferior to those of the examples.
[0030]
Example 3
In the same manner as in Example 1, the core-sheath type structural fiber was spun and drawn to obtain a drawn yarn of 150 denier / 32 filaments. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. It was excellent in phosphorescent properties and afterglow washing durability, and was also excellent in heat resistance.
[0031]
Comparative Example 3
In Example 3, instead of nylon 6, polypropylene having a melting point of 170 ° C. was used, and spinning and stretching were performed in the same manner except that the composite form was a vertical 11-layer laminated type (composite ratio A / B = 1/3). A drawn yarn of 150 denier / 32 filaments was obtained. Polyethylene terephthalate accounted for 73% of the fiber surface. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Although it was excellent in afterglow washing durability and heat resistance, as is apparent from Table 1, the afterglow characteristics were inferior to those of the examples.
[0032]
Comparative Example 4
Nylon 12 having a melting point of 168 ° C. was used as the polymer (A) containing phosphorescent fluorescent particles, and 10 mol% modified polybutylene terephthalate (melting point: 203 ° C.) was used as the polymer (B). Except for the above, spinning and drawing were performed in the same manner as in Example 1 to obtain a drawn yarn of 150 denier / 8 filament. The spinning temperature was 250 ° C and the hot roller temperature was 60 ° C. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Although it was excellent in afterglow washing durability and heat resistance, as is apparent from Table 1, the afterglow characteristics were inferior to those of the examples.
[0033]
Example 4
Spinning and drawing were performed in the same manner as in Example 1 except that the composite ratio was A / B = 1/1 (weight ratio) to obtain a drawn yarn of 150 denier / 8 filaments. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. It was excellent in phosphorescent property, afterglow washing durability, and heat resistance.
[0034]
Comparative Example 5
In Comparative Example 1, spinning and drawing were performed in the same manner except that polypropylene containing phosphorescent fluorescent particles was used as the sheath and polyethylene terephthalate was used as the core, to obtain 150 denier / 8 filament drawn yarn. It was. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. The phosphorescent fluorescence characteristics and afterglow characteristics were good, but the particle-containing polymer constituted the sheath, so the fiberization process was poor and the yarns were broken and fluffed frequently.
[0035]
Comparative Example 6
In Comparative Example 1, spinning and drawing were performed in the same manner except that the composite ratio was polymer (A) / polymer (B) = 1/5 (weight ratio), and a 150 denier / 8 filament drawn yarn was applied. Got. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Although the thermal stability was good, since the composite ratio of the polymer (B) was large, the phosphorescent fluorescence characteristics and afterglow characteristics were poor.
[0036]
Comparative Example 7
In Comparative Example 1, spinning and drawing were carried out in the same manner except that the composite ratio was set to polymer (A) / polymer (B) = 5/1 (weight ratio), and drawn yarn of 150 denier / 8 filaments. Got. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Since the composite ratio of the polymer (A) was large, the phosphorescent fluorescence characteristics and afterglow characteristics were good, but the fiberization processability was poor. The composite balance was inferior due to the decrease in viscosity, and the fiber forming processability was poor.
[0037]
Comparative Example 8
In Comparative Example 1, spinning and drawing were performed in the same manner except that the composite cross-sectional form was a side-by-side type, and a drawn yarn of 150 denier / 8 filament was obtained. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Since the polymer (A) accounts for 50% of the fiber surface, the fiberization processability is poor and the thermal stability is just one step away.
[0038]
Comparative Examples 9-10
Spinning and drawing were performed using polypropylene single yarn containing phosphorescent fluorescent particles (Comparative Example 9) and nylon 6 containing phosphorescent fluorescent particles (Comparative Example 10) to obtain drawn yarns of 150 denier / 8 filaments. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. In either case, the fiber forming processability was poor, and even afterglow characteristics were good, the dimensional stability and the consumption performance were inferior and were not practical.
[0039]
Comparative Examples 11-12
A core-sheath composite fiber containing phosphorescent fluorescent particles and having the same type of polymer (A) constituting the core and polymer (B) constituting the sheath is spun and drawn to 150 denier / An 8-filament drawn yarn was obtained. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Although the phosphorescent fluorescence characteristics were good, the fiber forming processability and thermal stability were poor, and it was unsuitable for clothing use.
[0040]
Comparative Example 13
In Comparative Example 12, spinning and drawing were performed in the same manner except that the polymer (A) constituting the core part was polyethylene having a melting point of 125 ° C. to obtain a drawn yarn of 150 denier / 8 filament. Using the obtained drawn yarn, a knitted tubular fabric was produced, and each evaluation of the tubular knitted fabric was performed. The results are shown in Table 1. Since the melting point difference between the polymer (A) and the polymer (B) is large, the phosphorescent fluorescence property is one more and the fiberizing process property is also one.
[0041]
[Table 1]
Figure 0003720533
[0042]
【The invention's effect】
The phosphorescent fiber of the present invention is excellent not only in long-lasting afterglow characteristics but also in consumption performance such as dyeability and heat resistance, and is very useful for clothing applications.

Claims (2)

平均粒径が0.3〜10μmの蓄光蛍光粒子を含有する繊維形成性ポリマ−(A)と、繊維形成性ポリマ−(B)とからなる複合繊維であって、該複合繊維は、(i)繊維形成性ポリマ−(A)の融点または軟化点と、繊維形成性ポリマ−(B)の融点または軟化点との差が20〜100℃であること、
(ii)繊維形成性ポリマ−(B)が繊維表面の70%以上を占有していること、
(iii)繊維形成性ポリマ−(B)が繊維全体に対して20〜80重量%であること、
iv )繊維形成性ポリマー(A)がナイロン6、繊維形成性ポリマー(B)がポリエチレンテレフタレート系ポリマーであること
を特徴とする蓄光繊維。
A composite fiber comprising a fiber-forming polymer (A) containing phosphorescent fluorescent particles having an average particle size of 0.3 to 10 μm and a fiber-forming polymer (B), wherein the composite fiber is (i ) The difference between the melting point or softening point of the fiber-forming polymer (A) and the melting point or softening point of the fiber-forming polymer (B) is 20 to 100 ° C.
(Ii) the fiber-forming polymer (B) occupies 70% or more of the fiber surface;
(Iii) The fiber-forming polymer (B) is 20 to 80% by weight based on the whole fiber,
( Iv ) The fiber-forming polymer (A) is nylon 6, and the fiber-forming polymer (B) is a polyethylene terephthalate polymer ,
Phosphorescent fiber characterized by
請求項1記載の蓄光繊維からなる繊維製品。A textile product comprising the phosphorescent fiber according to claim 1.
JP14698697A 1997-06-05 1997-06-05 Phosphorescent fiber Expired - Fee Related JP3720533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14698697A JP3720533B2 (en) 1997-06-05 1997-06-05 Phosphorescent fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14698697A JP3720533B2 (en) 1997-06-05 1997-06-05 Phosphorescent fiber

Publications (2)

Publication Number Publication Date
JPH111824A JPH111824A (en) 1999-01-06
JP3720533B2 true JP3720533B2 (en) 2005-11-30

Family

ID=15420043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14698697A Expired - Fee Related JP3720533B2 (en) 1997-06-05 1997-06-05 Phosphorescent fiber

Country Status (1)

Country Link
JP (1) JP3720533B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105743A (en) * 2000-09-25 2002-04-10 Asahi Kasei Corp Luminous fiber
CA2709182C (en) * 2007-12-14 2016-01-26 James G. Carlson Multi-component fibers

Also Published As

Publication number Publication date
JPH111824A (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US7338877B1 (en) Multicomponent fiber including a luminescent colorant
JP6545368B2 (en) Yarns and fabrics and textiles
US20140335354A1 (en) Polyester composite fiber with excellent heat-shielding property and coloration
JP3514333B2 (en) Textile products having phosphorescent fluorescence
JP2006265770A (en) Combined filament yarn or blended yarn or fabric containing nanofiber of polyphenylenesulfide
JP3720533B2 (en) Phosphorescent fiber
JPH04209824A (en) Dyeable polyolefinic fiber and its production
KR20020029640A (en) A nightglowing fiber having high brightness, the method for preparing the same and the knitted fabric made of the fiber
JP3312011B2 (en) High brightness luminescent fiber and method for producing the same
JPH09228149A (en) Luminous lightweight fiber and its production
JP6129608B2 (en) Polyester core-sheath type composite fiber excellent in permeation resistance and method for producing the same
JP4283000B2 (en) High brightness luminous fiber and high brightness luminous fabric
JP2003041434A (en) Polyamide fiber for clothes
JPH0370020B2 (en)
JP2012012749A (en) Core-sheath type polyester conjugate fiber
JP4789791B2 (en) Water-absorbing quick-drying polyester composite fiber and method for producing the same
JP2015007297A (en) Polyester fiber excellent in antistatic properties and woven knitted fabric of the same
JP2634072B2 (en) Fluorescent polyester filament non-woven fabric
JPH11107048A (en) Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same
JP2019065435A (en) Yarn, fabric and textile product
JP2002294520A (en) Luminous conjugated fiber
JP7117710B2 (en) Core-sheath type polyester composite fiber, false twist yarn of core-sheath type polyester composite fiber, woven and knitted fabric, and method for producing core-sheath type polyester composite fiber
JP2002339163A (en) Antimicrobial polyamide fiber with high laundering resistance and method for producing the same
JP2003239153A (en) Polyester thick and thin multifilament yarn, method for producing the same and woven knitted product
KR20040110010A (en) A self-luminate fiber with excellent strength and efficiency

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees