JP3719789B2 - 通信端末装置及び中継装置 - Google Patents

通信端末装置及び中継装置 Download PDF

Info

Publication number
JP3719789B2
JP3719789B2 JP26449696A JP26449696A JP3719789B2 JP 3719789 B2 JP3719789 B2 JP 3719789B2 JP 26449696 A JP26449696 A JP 26449696A JP 26449696 A JP26449696 A JP 26449696A JP 3719789 B2 JP3719789 B2 JP 3719789B2
Authority
JP
Japan
Prior art keywords
address
data
fanp
information
physical network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26449696A
Other languages
English (en)
Other versions
JPH10112730A (ja
Inventor
健 斉藤
由彰 高畠
幹生 橋本
幸男 釜谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26449696A priority Critical patent/JP3719789B2/ja
Priority to EP19970117278 priority patent/EP0835037A3/en
Priority to US09/036,197 priority patent/US6751221B1/en
Publication of JPH10112730A publication Critical patent/JPH10112730A/ja
Priority to US10/830,020 priority patent/US7466705B2/en
Application granted granted Critical
Publication of JP3719789B2 publication Critical patent/JP3719789B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40052High-speed IEEE 1394 serial bus
    • H04L12/40058Isochronous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/283Processing of data at an internetworking point of a home automation network
    • H04L12/2832Interconnection of the control functionalities between home networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2838Distribution of signals within a home automation network, e.g. involving splitting/multiplexing signals to/from different paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40052High-speed IEEE 1394 serial bus
    • H04L12/40065Bandwidth and channel allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40052High-speed IEEE 1394 serial bus
    • H04L12/40117Interconnection of audio or video/imaging devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/161Implementation details of TCP/IP or UDP/IP stack architecture; Specification of modified or new header fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/168Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP] specially adapted for link layer protocols, e.g. asynchronous transfer mode [ATM], synchronous optical network [SONET] or point-to-point protocol [PPP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/169Special adaptations of TCP, UDP or IP for interworking of IP based networks with other networks 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities
    • H04L12/282Controlling appliance services of a home automation network by calling their functionalities based on user interaction within the home
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2816Controlling appliance services of a home automation network by calling their functionalities
    • H04L12/2821Avoiding conflicts related to the use of home appliances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L2012/2847Home automation networks characterised by the type of home appliance used
    • H04L2012/2849Audio/video appliances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5619Network Node Interface, e.g. tandem connections, transit switching
    • H04L2012/5623Network design, dimensioning, topology or optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5638Services, e.g. multimedia, GOS, QOS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5638Services, e.g. multimedia, GOS, QOS
    • H04L2012/5665Interaction of ATM with other protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5638Services, e.g. multimedia, GOS, QOS
    • H04L2012/5665Interaction of ATM with other protocols
    • H04L2012/5667IP over ATM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5685Addressing issues

Description

【0001】
【発明の属する技術分野】
本発明は、ホームネットワーク環境を構築するネットワークシステムに関する
【0002】
【従来の技術】
近年、マルチメディアという言葉に代表されるように、電子機器のデジタル化が急速に進行している。この傾向は、まずオフィス環境で始まっている。
【0003】
具体的には、まずハードウエアとしては、パソコンの導入、OA機器のデジタル化、及びそれらのネットワーク化という形で進行している。また、ソフトウエアとして、ホストによる(あるいはライトサイジングされてパソコン等に移行されつつある)基幹業務や、ワープロ、表計算などのソフトウエア、あるいはWWW等のインターネットアプリケーション等、その発展はとどまるところを知らない。
【0004】
この動きは、家庭においても見られる。即ち、家庭においても、AV機器のデジタル化(DVD、デジタルVTR、デジタルビデオカメラ等)や、放送のデジタル化、あるいはOCN等のインターネットアクセス等の形で、デジタル化の進行は着実に進んでいる。
【0005】
オフィス環境と同様に、これらの波はネットワーク化へと今後向かっていくことが考えられる。即ち、情報・通信・放送といった種々の分野の技術がデジタル化によって束ねられ、ネットワーク化によって、相互乗り入れを始めていくと言われている。
【0006】
このためのネットワーク技術としては種々の候補が有る。例えば、イーサネットは、オフィス環境にて圧倒的な実績を持っており、家庭でのパソコンネットワークにおいても、その最有力候補であろう。また、ATMも有力な候補である。これは、インフラの構築側(電話会社やCATV等)が、高速、リアルタイム、広帯域といったATMの特徴に注目し、この技術を使ってインフラを構築していこうというのが一般的な動きであるからである。
【0007】
これらの候補に加えて、最近IEEE1394なるネットワーク技術(バス技術)が注目を集めている。これは、高速、リアルタイム(QOS保証)、プラグアンドプレイ等の数々の注目すべき特徴を持っており、特にAV業界から、デジタルAV機器同士の接続法式の最有力候補として、業界から大変な注目を集めている。これにひきづられる様に、パソコンなどのコンピュータ業界も、この技術への注目が集まりはじめた。
【0008】
当初は、家庭向けのデジタル機器の普及に伴い、それらの機器の相互接続が、ユーザの好み・要望により、これらの数々のネットワーク技術により実現されていくだろう。このようにして、徐々に家庭内にデジタルネットワークの雛形が誕生していく。
【0009】
その次の段階として、これらのデジタルネットワークを相互に接続したいという要求が出て来る。例えば、1階の応接間の1394ネットワークに接続されたAV機器と、2階の部屋の1394ネットワークに接続されたAV機器とを、相互接続して、例えばダビング等、協調動作をさせようというような場合である。
【0010】
【発明が解決しようとする課題】
しかしながら、これを実現するには、以下のような大きな問題がある。
【0011】
(1)1394ネットワークは大規模化に適していない。たとえば、ケーブル長が4.5mに制限されており、部屋をまたがった配線を行うのは困難である。また、1394のプラグアンドプレイ機能には、これにともなう副作用として、誰かが1394に接続、あるいは離脱すると、一瞬通信が途絶えるという特性を持つ。部屋をまたがって1394を配線しようとすると、別の部屋での挙動が、そのまた別の部屋に「通信断」となって現れるため不便である。
【0012】
(2)1394間の相互接続プロトコル/方式である「1394ブリッジ」の仕様の検討/標準化が1394の標準化委員会である1394TAにて開始されている。しかし、その仕様は、スケーラビリティを要求し、呼設定の概念なども取り込むなど、非常に複雑なものになる事が予想され、時間もまたかかるものと予想される。
【0013】
(3)家庭内のネットワークは1394ばかりであるとは考えられないので、種々のネットワークを相互に接続するような方式で家庭内ネットワークを構築する事が望ましい。ところが、そのようなアーキテクチャの提案はまだない。
【0014】
(4)種々のネットワークの相互接続技術としては、インターネットプロトコルがある。しかし、この方式は、その設定、管理、維持が素人には難しく、サーバの管理なども伴うので、端末数も多いとは言えない家庭向けの方式としては、現在のままでは適用しにくい。
【0015】
本発明は、以上の問題点を解決することを目的とする。
【0016】
【課題を解決するための手段】
本発明の通信端末装置は、1または複数の物理ネットワークを介して相手端末装置へ情報データを送信する際、少なくとも、その相手端末装置のIPアドレス情報と物理ネットワークに依存するヘッダ若しくはチャネル情報を含む制御メッセージを送信する第1の送信手段と、
この第1の送信手段で送信された制御メッセージに呼応した、前記相手端末装置までの情報データを送信するための経路が設定された旨を通知する応答メッセージを受信する第1の受信手段と、
この第1の受信手段で前記応答メッセージが受信されたとき、少なくとも前記ヘッダ若しくはチャネル情報を含む情報データを前記IPアドレス情報に対応するプロトコルレイヤより上位のレイヤパケットにて前記相手端末装置に送信する第2の送信手段と、
を具備することにより、複数の物理ネットワークが相互接続された環境において、任意の遠方のネットワーク(送信ノードが属さない物理ネットワーク)に属する受信ノード(相手端末装置)に対して、任意のデータの送信を行うことが可能となる。すなわち、隣接するノード(具体的には、送信ノードが属する物理ネットワークにおける仮想コネクション、あるいは同期チャネル等の終端ノード)に対し、後にデータを送付するヘッダ情報(ATM、IEEE1394等のパケットを主体とする伝送方式を用いた物理ネットワークのとき)、あるいは、チャネル情報(STM、HFC等チャネルの概念を持つ伝送方式を用いた物理ネットワークのとき)と、データを受け取るべきノードのIPアドレスを通知することにより、該隣接するノードに、今後このヘッダ情報若しくはチャネル情報を有した情報の転送先は、該データを受け取るべきノードのIPアドレスであることを通知することが可能である。また、このアドレスをIPアドレスとすることにより、複数種類の物理ネットワークが相互接続されている環境においても、共通して利用できるアドレス体系とすることが出来、伝送方式の異なる物理ネットワークに属したノードに対しても、データの送信や制御メッセージの送信を行うことが可能となる。また、データを受け取るべきノードからの確認信号(ACK)を受け付けた後に、データの送信を行うことで、途中ノードにおけるコネクション設定が完了した旨を認識することが可能となり、データの送信の開始が可能となる。また、途中ノードのコネクション設定が完了していれば、送信するデータはIPパケットに限定する必然性はなく、MPEG映像や音声など、生のデータの送信が可能となる。
【0017】
また、本発明の通信端末装置は、1または複数の物理ネットワークを介して相手端末装置へ情報データを送信する際、少なくとも、その相手端末装置のIPアドレス情報と物理ネットワークに依存するヘッダ若しくはチャネル情報と通信リソース量を含む制御メッセージを送信する第1の送信手段と、
この第1の送信手段で送信された制御メッセージに呼応した、前記相手端末装置までの情報データを送信するための経路が設定された旨を通知する応答メッセージを受信する第1の受信手段と、
この第1の受信手段で前記応答メッセージが受信されたとき、少なくとも前記ヘッダ若しくはチャネル情報を含む情報データを前記相手端末装置に送信する第2の送信手段と、
を具備することにより、複数の物理ネットワークが相互接続された環境において、任意の遠方のネットワーク(送信ノード(送信元の通信端末装置)が属さない物理ネットワーク)に属する受信ノードに対して、特定の通信品質のコネクションを両ノード間に設定した上で、データの送信を行うことが可能となる。すなわち、隣接するノード(具体的には、送信ノードが属する物理ネットワークにおける仮想コネクション、あるいは同期チャネル等の終端ノード)に対し、後にデータを送付するヘッダ若しくはチャネル情報と、データを受け取るべきノードのIPアドレスと、確保すべき通信リソース量を通知することにより、該隣接するノードに、今後このヘッダ情報を有した情報の転送先は、該データを受け取るべきノードのIPアドレスであることを通知することが可能である。また、このアドレスをIPアドレスとすることにより、複数種類の物理ネットワークが相互接続されている環境においても、共通して利用できるアドレス体系とすることが出来、伝送方式の異なる物理ネットワークに属したノードに対しても、データの送信や制御メッセージの送信を行うことが可能となる。また、確保すべき通信リソース量を申告することで、伝送方式の異なる、複数種類の物理ネットワークが相互接続されている環境においても、隣接ノードに対して該確保すべき通信リソース量を通知することが可能となり、もって、該隣接ノードも、そこから先のコネクション設定に必要な該確保すべき通信リソース量を知り、これをフォワードし、最終受信ノードまでのコネクション設定を行うことが可能となる。また、データを受け取るべきノードからの確認信号を受け付けた後に、データの送信を行うことで、途中ノードにおけるコネクション設定が、該確保すべき通信リソースを確保した上で完了した旨を認識することが可能となり、データの送信の開始が可能となる。
【0018】
また、デジタル映像およびまたはデジタル音声を受信する第2の受信手段をさらに具備し、
前記第2の送信手段は、前記第2の受信手段で受信されたデジタル映像およびまたはデジタル音声を所定の物理ネットワークの伝送フォーマットに整合して、前記相手端末装置に送信することにより、デジタル衛星放送やCATVのセットトップボックスのように生の、あるいはMPEG符号化等をされた映像/音声データを受信し、これを特定の受信ノードまで該データをフォワードする必要があるノードにおいて、これを、物理ネットワークのフォーマットに合わせた上でこれを行うことが可能となる。
【0019】
また、圧縮されたデジタル映像およびまたはデジタル音声を受信する第2の受信手段をさらに具備し、
前記第2の送信手段は、前記第2の受信手段で受信された圧縮されたデジタル映像およびまたはデジタル音声を伸長し、前記相手端末装置に送信することにより、デジタル衛星放送やCATVのセットトップボックスのようにMPEG等の符号化方式で符号化された映像/音声データを受信し、これを特定の受信ノードまで、デコードされた映像/音声データをフォワードする必要があるノードにおいて、これを行うことが可能となる。このようにすることにより、通常大きな負荷が予想されるMPEG等のデコード機能、伸長機能を該送信ノードに集中させることが可能となり、受信ノード側にこのような機能を配備する必要がなくなるというメリットもある。
【0020】
本発明の中継装置は、互いにデータリンクレイヤ方式の相異なる少なくとも2つの物理ネットワークを接続し、一方の物理ネットワークからの受信データを他方の物理ネットワークへ送信する中継装置において、
前記一方の物理ネットワークから、少なくとも、データ送信先の端末装置の第1のアドレス情報と前記一方の物理ネットワークに依存する第1のヘッダあるいはチャンネル情報を含む第1の制御メッセージを受信する受信手段と、
この受信手段で前記第1の制御メッセージを受信したとき、少なくとも、前記第1のアドレス情報から求められる前記他方の物理ネットワークに依存する第2のヘッダ若しくはチャネル情報と前記第1のアドレス情報を含む第2の制御メッセージを前記他方の物理ネットワークに送信する第1の送信手段と、
前記受信手段で前記第1の制御メッセージを受信したとき、前記第1のヘッダ若しくはチャネル情報と前記第2のヘッダ若しくはチャネル情報の対応関係を記憶する記憶手段と、
前記一方の物理ネットワークから、前記第1のヘッダ若しくはチャネル情報を含むデータを受信したとき、その第1のヘッダ若しくはチャネル情報に対応する第2のヘッダ若しくはチャネル情報を前記記憶手段に記憶された対応関係から求め、それを前記受信データに付加して前記他方の物理ネットワークに送信する第2の送信手段と、
を具備することにより、ATMとIEEE1394バスのように互いにデータリンクレイヤ方式の相異なる2つ以上のネットワークを相互接続するに際して、前段の隣接ノードから、後にデータの配送されてくる第1の物理ネットワーク(一方の物理ネットワーク)のヘッダ若しくはチャネル情報と、その宛先ノードの宛先(第1のアドレス情報)を知ることができ、これらの情報から、第2の物理ネットワーク(他方の物理ネットワーク)において使用されるヘッダ若しくはチャネル情報と、宛先アドレス(第1のアドレス情報)との対応関係を隣接ノードに知らせることができるとともに、第1の物理ネットワーク上のヘッダ若しくはチャネル情報のみを参照することにより、第2の物理ネットワークのヘッダ若しくはチャネル情報をつけた上で、該データの配送を行うことが可能となり、パケット毎にネットワークレイヤ処理部での処理が必要ないこともあいまって、大幅な処理の高速化が、異種ネットワーク間においても可能となる。
【0021】
また、本発明の中継装置は、少なくとも2つの物理ネットワークを接続し、一方の物理ネットワークからの受信データを他方の物理ネットワークへ送信する中継装置において、
前記一方の物理ネットワークから、少なくとも、データ送信先の端末装置の第1のアドレス情報と、前記一方の物理ネットワークに依存する第1のヘッダ若しくはチャネル情報を含む第1の制御メッセージを受信する受信手段と、
この受信手段で前記第1の制御メッセージを受信したとき、少なくとも、前記第1のアドレス情報から求められる前記他方の物理ネットワークに依存する第2のヘッダ若しくはチャネル情報と前記第1のアドレス情報を含む第2の制御メッセージを前記他方の物理ネットワークに送信する第1の送信手段と、
前記受信手段で前記第1の制御メッセージを受信したとき、前記第1のヘッダ若しくはチャネル情報と前記第2のヘッダ若しくはチャネル情報の対応関係を記憶する記憶手段と、
前記一方の物理ネットワークから、前記第1のヘッダ若しくはチャネル情報を含むデータを受信したとき、その第1のヘッダ若しくはチャネル情報に対応する第2のヘッダ若しくはチャネル情報を前記記憶手段に記憶された対応関係をから求め、それを前記受信データに付加して前記他方の物理ネットワークに送信する第2の送信手段と、
前記第2の送信手段で送信されるデータの伝送フォーマットを前記一方の物理ネットワークの伝送フォーマットから前記他方の物理ネットワークの伝送フォーマットに変換する変換手段と、
を具備することにより、2つ以上の物理ネットワークを相互接続するに際して、前段の隣接ノードから、後にデータの配送されてくる第1の物理ネットワーク(他方の物理ネットワーク)へのヘッダ若しくはチャネル情報と、その宛先ノードの宛先(第1のアドレス情報)を知ることができ、これらの情報から、第2の物理ネットワーク(他方の物理ネットワーク)において使用されるヘッダ若しくはチャネル情報と、宛先アドレス(第1のアドレス情報)との対応関係を隣接ノードに知らせることができるとともに、物理ネットワークのヘッダ若しくはチャネル情報のみを参照することにより、該第2の物理ネットワークのヘッダ情報をつけた上で、該データの配送を行うことが可能となり、パケット毎にネットワークレイヤ処理部での処理が必要ないこともあいまって、大幅な処理の高速化が、異種ネットワーク間においても可能となる。また、隣接ノードとの間で、後に転送されるデータの属性によって、その転送フォーマットが第1の物理ネットワークと、第2の物理ネットワークとの間で異なる場合に、適切な処置(フォーマット変換)を施すことが可能となる。
【0022】
また、前記変換手段は、前記第2の送信手段にて送信されるMPEGデータの伝送フォーマットを、前記一方の物理ネットワークのMPEGデータの伝送フォーマットから前記他方の物理ネットワークのMPEGデータの伝送フォーマットに変換することにより、隣接ノードとの間で、後に転送されるMPEGデータの転送フォーマットが、物理ネットワークの種別によって、異なる場合(例えば、ATM網とIEEE1394バスとを相互接続する場合の、MPEGoverATMとMPEGover1394のような場合)において、適切な処置(フォーマット変換など)を施すことが可能となる。
【0023】
また、本発明の中継装置は、少なくとも2つの物理ネットワークを接続し、一方の物理ネットワークからの受信データを他方の物理ネットワークへ送信する中継装置において、
前記一方の物理ネットワークから、少なくとも、データ送信先の端末装置のIPアドレス情報と、前記一方の物理ネットワークに依存する第1のヘッダ若しくはチャネル情報を含む第1の制御メッセージを受信する受信手段と、
この受信手段で前記第1の制御メッセージを受信したとき、少なくとも、前記IPアドレス情報から求められる前記他方の物理ネットワークに依存する第2のヘッダ若しくはチャネル情報と前記IPアドレス情報を含む第2の制御メッセージを前記他方の物理ネットワークに送信する第1の送信手段と、
前記受信手段で前記第1の制御メッセージを受信したとき、前記第1のヘッダ若しくはチャネル情報と前記第2のヘッダ若しくはチャネル情報の対応関係を記憶する記憶手段と、
前記一方の物理ネットワークから、前記第1のヘッダ若しくはチャネル情報を含むデータを受信したとき、その第1のヘッダ若しくはチャネル情報に対応する第2のヘッダ若しくはチャネル情報を前記記憶手段に記憶された対応関係をから求め、それを前記受信データに付加して前記他方の物理ネットワークに送信する第2の送信手段と、
を具備し、前記第1のヘッダ若しくはチャネル情報を含むデータは、前記IPレイヤより上位のレイヤパケットであることにより、2つ以上の物理ネットワークを相互接続するに際して、前段の隣接ノードから、後にデータの配送されてくる第1の物理ネットワークのヘッダ若しくはチャネル情報と、その宛先ノードの宛先IPアドレスを知ることができ、これらの情報から、第2の物理ネットワークにおいて使用されるヘッダ若しくはチャネル情報と、宛先IPアドレスとの対応関係を隣接ノードに知らせることができるとともに、該物理ネットワークのヘッダ若しくはチャネル情報のみを参照することにより、該第2の物理ネットワークのヘッダ若しくはチャネル情報をつけた上で、該データの配送を行うことが可能となり、パケット毎にネットワークレイヤ処理部での処理が必要ないこともあいまって、大幅な処理の高速化が、異種ネットワーク間においても可能となる。また、前記データの最終宛先は、IPアドレスを用いる事により、複数種類の物理ネットワークが相互接続されている環境においても、共通して利用できるアドレス体系とすることが出来、伝送方式の異なる物理ネットワークを相互接続するような場合においても、データや制御メッセージのフォワーディングを行うことが可能となる。また、該中継装置のデータリンクレイヤにおけるコネクション設定が完了していれば、該中継装置におけるIP処理の必然性がなくなるため、送信するデータはIPパケットに限定する必然性はなく、MPEG映像や音声など、生のデータの送信が可能となる。
【0024】
また、本発明の中継装置は、第1の物理ネットワークであるIEEE1394バスと、第2の物理ネットワークを接続し、一方の物理ネットワークからの受信データを他方の物理ネットワークへ送信する中継装置において、
前記一方の物理ネットワークから、少なくとも、データ送信先の端末装置の第1のアドレス情報と、前記一方の物理ネットワークに依存する第1のヘッダ若しくはチャネル情報を含む第1の制御メッセージを受信する受信手段と、
この受信手段で前記第1の制御メッセージを受信したとき、少なくとも、前記第1のアドレス情報から求められる前記他方の物理ネットワークに依存する第2のヘッダ若しくはチャネル情報と前記第1のアドレス情報を含む第2の制御メッセージを前記他方の物理ネットワークに送信する第1の送信手段と、
前記受信手段で前記第1の制御メッセージを受信したとき、前記第1のヘッダ若しくはチャネル情報と前記第2のヘッダ若しくはチャネル情報の対応関係を記憶する記憶手段と、
前記一方の物理ネットワークから、前記第1のヘッダ若しくはチャネル情報を含むデータを受信したとき、その第1のヘッダ若しくはチャネル情報に対応する第2のヘッダ若しくはチャネル情報を前記記憶手段に記憶された対応関係をから求め、それを前記受信データに付加して前記他方の物理ネットワークに送信する第2の送信手段と、
を具備することにより、1394バス同士、もしくは1394バスと任意の物理ネットワークが相互接続された環境において、任意の遠方のネットワーク(送信ノードが属さない物理ネットワーク)に属する受信ノードに対して、任意のデータの送信を行うことが可能となる。即ち、IEEE1394バス同士、もしくはIEEE1394バスと他の任意の物理ネットワークとを相互接続させた相互接続ネットワークにおいて、第1の物理ネットワークであるIEEE1394バス側の隣接ノードから、後にデータの配送されてくる第1の物理ネットワークのヘッダ情報である宛先ノードIDやチャネル番号と、その宛先ノードの宛先アドレス(IPアドレスなどのネットワークレイヤアドレスでも良いし、1394アドレスやMACアドレスなどのデータリンクレイヤアドレスでも良い)を知ることができ、これらの情報から、第2の物理ネットワークにおいて使用されるヘッダ若しくはチャネル情報(第2の物理ネットワークにおける仮想コネクション識別子、あるいは宛先ノードID、チャネル番号、もしくはMACアドレス等)と、宛先アドレス(第1のアドレス情報)との対応関係を第2の物理ネットワーク側の隣接ノードに知らせることができるとともに(あるいは、逆に第2の物理ネットワーク側からの情報を第1の物理ネットワーク側に通知)、一方の物理ネットワークのヘッダ若しくはチャネル情報(チャネル番号、宛先ノードID、仮想コネクション識別子、MACアドレス等)のみを参照することにより、もう一方の物理ネットワークのヘッダ若しくはチャネル情報(チャネル番号、宛先ノードID、仮想コネクション識別子、MACアドレス等)をつけた上(変換した上)で、該データの配送を行うことが可能となり、大幅な処理の高速化が、1394バスと、他の任意の物理ネットワーク間においても可能となる。
【0025】
また、前記第2の物理ネットワークは、IEEE1394バスとは異なる物理ネットワークであることにより、IEEE1394バス同士を相互接続しようとした場合に、その中間に位置される伝送方式として、例えば長距離やQOS(通信品質)の確保に優れたATMや、コストに優れたイーサネット等、その用途にあわせた任意の伝送方式を採用する事が可能となり、相互接続環境の柔軟性の向上を図る事が出来るようになる。
【0026】
また、前記IEEE1394バスにおいて転送される前記ヘッダ若しくはチャネル情報は、IEEE1394バスの同期チャネル番号であることにより、中継装置においては、IEEE1394バスの同期チャネル番号から、第2の物理ネットワーク(他方)のヘッダ若しくはチャネル情報(仮想コネクション識別子、同期チャネル番号、あるいはMACアドレスなど)に直接変換する事(あるいはその逆)が可能となり、特に通信品質を要求するデータの配送等の場合のようにデータリンクレイヤスイッチングでエンド=エンドのデータ配送が望まれるような場合に、IEEE1394バスの同期チャネルを用い、チャネル番号を仮想コネクション識別子(例えばATMのVPI/VCIの様に)用いる事ができることにより、これを実現する事が可能となる。
【0027】
また、前記一方の物理ネットワークはIEEE1394バスであり、前記第2の物理ネットワークはイーサネットまたはトークンリングまたはFDDIであり、前記第2の物理ネットワークに依存するヘッダ若しくはチャネル情報はMACアドレスであることにより、MACアドレスの値を元にした対応テーブル、変換テーブルを用意して、1394バス側のヘッダ値とその属性、通信品質などを認識すること、あるいは逆に1394バスのヘッダ情報の値を基にしたテーブルを用意して、第2の物理ネットワーク(他方の物理ネットワーク)側のヘッダ情報(第2の物理ネットワークに依存するヘッダ若しくはチャネル情報)の値とその属性、通信品質などを認識する事が可能となり、もって、対向したネットワーク側に該データのフォワーディングをデータリンクレイヤ処理のみで行う事が可能となり、高速なフォワーディング処理が可能となる。もって、第2の物理ネットワークの伝送方式として、MACアドレスを用いる種々のフレーム方式を用いる事が可能となる。
【0028】
また、前記第2の物理ネットワークはATMネットワークであり、前記第2の物理ネットワークに依存するヘッダ若しくはチャネル情報はVPI/VCIであることにより、VPI/VCIの値を基にした対応テーブル、変換テーブルを用意して、1394バス側のヘッダ値とその属性、通信品質などを認識すること、あるいは逆に1394バスのヘッダ情報の値を元にしたテーブルを用意して、VPI/VCIの値(第2の物理ネットワークに依存するヘッダ若しくはチャネル情報)とその属性、通信品質などを認識する事が可能となり、もって、対向したネットワーク側に該データのフォワーディングをデータリンクレイヤ処理のみで行う事が可能となり、高速なデータフォワーディングが可能となる。もって、第2の物理ネットワーク(他方の物理ネットワーク)の伝送方式として、ATMを用いる事が可能となる。
【0029】
また、前記一方の物理ネットワークはIEEE1394バスであり、前記第2の物理ネットワークは無線ネットワークであり、前記第2の物理ネットワークに依存するヘッダ若しくはチャネル情報は無線パケットの宛先データリンクレイヤアドレスあるいは仮想識別子であることにより、宛先データリンクレイヤアドレス、もしくは仮想識別子の値を元にした対応テーブル、変換テーブルを用意して、1394バス側のヘッダ値とその属性、通信品質などを認識すること、あるいは逆に1394バスのヘッダ情報の値を元にしたテーブルを用意して、第2の物理ネットワーク側のヘッダ情報の値とその属性、通信品質などを認識する事が可能となり、もって、対向したネットワーク側に該データのフォワーディングをデータリンクレイヤ処理のみで行う事が可能となり、高速なデータフォワーディングが可能となる。また、伝送媒体として無線を用いる事により、1394バス同士の相互接続の様に、相異なるネットワーク同士の接続を、中間媒体を無線とする事が可能となり、長距離の配線や、両ネットワーク間に壁などの障害がある場合に物理的に配線レスの相互接続を行う事が可能となる。
【0030】
また、請求項5、6、9、16に記載の中継装置において、前記第1のアドレス情報は、IPアドレスであることにより、複数種類の物理ネットワークが相互接続されている環境においても、共通して利用できるアドレス体系とすることができ、伝送方式の異なる物理ネットワークを相互接続するような場合においても、データや制御メッセージのフォワーディングを行うことが可能となる。
【0031】
また、本発明の中継装置は、少なくとも2つの物理ネットワークを接続し、一方の物理ネットワークからの受信データを他方の物理ネットワークへ送信する中継装置において、
前記一方の物理ネットワークから、少なくとも、データ送信先の端末装置の第1のMACアドレス情報と、前記一方の物理ネットワークに依存する第1のヘッダ情報を含む第1の制御メッセージを受信する受信手段と、
この受信手段で前記第1の制御メッセージを受信したとき、少なくとも、前記第1のMACアドレス情報から求められる前記他方の物理ネットワークに依存する第2のヘッダ情報と前記第1のMACアドレス情報を含む第2の制御メッセージを前記他方の物理ネットワークに送信する第1の送信手段と、
前記受信手段で前記第1の制御メッセージを受信したとき、前記第1のヘッダ情報と前記第2のヘッダ情報の対応関係を記憶する記憶手段と、
前記一方の物理ネットワークから、前記第1のヘッダ情報を含むデータを受信したとき、その第1のヘッダ情報に対応する第2のヘッダ情報を前記記憶手段に記憶された対応関係をから求め、それを前記受信データに付加して前記他方の物理ネットワークに送信する第2の送信手段と、
を具備することにより、2つ以上の物理ネットワークを相互接続されたブリッジ網において、前段の隣接ノードから、後にデータの配送されてくる第1の物理ネットワーク(一方の物理ネットワーク)のヘッダ情報(第1の物理ネットワークにおける宛先MACアドレス)と、その宛先ノードの宛先(第1のアドレス情報:最終宛先MACアドレス)を知ることができ、これらの情報から、第2の物理ネットワーク(他方の物理ネットワーク)において使用されるヘッダ情報(第2の物理ネットワークにおける宛先MACアドレス)と、宛先アドレス(第1のアドレス情報:最終宛先MACアドレス)との対応関係を隣接ノードに知らせることができるとともに、該物理ネットワークのヘッダ情報(第1の物理ネットワークにおける宛先MACアドレス)のみを参照することにより、該第2の物理ネットワークのヘッダ情報(MACアドレス)をつけた上(変換した上)で、該データの配送を行うことが可能となり、大幅な処理の高速化が、異種ネットワーク間においても可能となる。ここで、MACアドレスは論理的な値、すなわち、仮想コネクション識別子として用いてもよい。
【0032】
また、前記第1および第2の制御メッセージは、データパケット転送のために確保すべき通信リソース量を含み、前記受信手段で前記第1の制御メッセージを受信したとき、前記通信リソース量に基づき前記他方の物理ネットワーク上に通信リソースを確保することにより、中継装置内においても、該通信リソースを確保することが可能になるとともに、伝送方式の異なる、複数種類の物理ネットワークが相互接続されている環境においても、隣接ノード間で、確保すべき通信リソース量を通知することが可能となり、もって、該隣接ノードも、そこから先のコネクション設定に必要な該確保すべき通信リソース量を知り、これをフォワードし、最終受信ノードまでのコネクション設定を行うことが可能となる。(MACによる接続の場合、)ブリッジ網の環境においても、送信ノード(通信端末装置)と受信ノード(送信端末装置)の間で帯域等の通信リソースの確保が行えるようになる。即ち、該中継装置内においても、該通信リソースを確保することが可能になるとともに、ブリッジ網の環境においても、隣接ノード間で、確保すべき通信リソース量を通知することが可能となり、もって、該隣接ノードも、そこから先のコネクション設定に必要な該確保すべき通信リソース量を知り、これをフォワードし、最終受信ノードまでのコネクション設定を行うことが可能となる。(1394による接続の場合、)前記第1および第2の制御メッセージは、データパケット転送のために確保すべき通信リソース量を含み、前記受信手段で前記第1の制御メッセージを受信したとき、前記通信リソース量に基づき前記他方の物理ネットワーク上に通信リソースを確保することにより、1394バスと、他の任意の物理ネットワークが相互接続された環境においても、送信ノードと受信ノードの間で帯域等の通信リソースの確保が行えるようになる。即ち、該中継ノード装置内においても、該通信リソースを確保することが可能になるとともに、相互接続網の環境においても、隣接ノード間で、確保すべき通信リソース量を通知することが可能となり、もって、該隣接ノードも、そこから先のコネクション設定に必要な該確保すべき通信リソース量を知り、これをフォワードし、最終受信ノードまでのコネクション設定を行うことが可能となる。
【0033】
また、前記第1および第2の制御メッセージは、前記データパケットにて転送されるデータの属性情報を含むことにより、隣接ノードとの間で、後に転送されるデータの属性、例えばMPEG映像であるとか、音声の符号化方式といったものの伝送が可能となり、もって、該ノードにおいて、おのおのの物理ネットワークにおける該データの伝送フォーマットが異なるような場合(例えば、ATM網とIEEE1394バスとを相互接続する場合の、MPEGoverATMとMPEGover1394のような場合)において、適切な処置(フォーマット変換など)を施すことが可能となる。
【0034】
また、本発明のネットワーク間接続ケーブルは、第1のネットワークケーブルと、第1の中継装置と、第3のケーブルと、第2の中継装置と、第2のネットワークケーブルとがこの順に接続されて構成されるネットワーク間接続ケーブルであって、
前記第3のケーブルは、第1およびまたは第2のネットワークケーブルよりも長く、前記第1および第2の中継装置は、請求項5記載の中継装置であり、例えば、前記第1および第2のネットワークケーブルは、IEEE1394バスケーブルであることにより、1394バス間のケーブル(第3のケーブル)の長さを、任意の長さにする事が可能となり、ケーブル長が4.5mと標準により規定されている1394バスの相互接続を、この制約に縛られずに行う事が出来、互いに遠方に離れた1394バス同士の接続が極めて容易になる。また、第1の1394バスから第2の1394バスまでの接続を行うケーブルが一体型となっているため、ユーザにとって「単なる長大ケーブルの両端を、相互接続したい1394バスにそれぞれつなげば、相互接続が簡単にできる」、「コネクタのはめ間違いがない」、「収容が簡単」等のメリットをも生む事が可能である。また、第3のケーブルの両端に接続された第1および第2の中継装置により、1394バス同士の相互接続環境において、任意の他方のネットワーク(送信ノードが属さない物理ネットワーク)に属する受信ノード、あるいは他方のネットワークに相互接続された任意の物理ネットワークに対して、任意のデータの送信を行うことが可能となる。
【0035】
また、前記第1のネットワークケーブルと前記第1の中継装置、前記第1の中継装置と前記第3のケーブル、前記第3のケーブルと前記第2の中継装置、前記第2の中継装置と前記第2のネットワークケーブルのうちの少なくとも1組は着脱自在であることにより、ケーブル長の変更、あるいは両中継ノード装置間に、更に新たな中継ノードを加えて、1394バスの相互接続環境の大規模化を図る事が可能となる。
【0036】
また、前記第1および第2の中継装置は、第1のネットワークケーブル、第2のネットワークケーブルからそれぞれ電力供給を受けることにより、IEEE1394ケーブルに含まれる電力供給線を通した電源供給を、前記中継ノードは受ける事ができ、もって該中継ノード装置自体に電源供給を行う必要がなくなり、単なるケーブル接続に慣れたユーザが、現在のケーブル接続と同じ感覚で、これを用いる事ができるようになる。
【0037】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0038】
(第1の実施形態)
図1は、本発明の第1の実施形態に係る通信ネットワークの構成例を示したもので、例えば、CATV網とそれに接続された家庭宅内のネットワークから構成されるものである。
【0039】
図1に示すように、本実施形態の通信ネットワークシステムは、ビデオサーバ101、番組案内配信サーバ(以降、案内サーバとも呼ぶ)102、局内ATMバックボーン網110、セルスイッチルータ(CSR)103、アクセスATM網111、NIU(Network Interface Unit)104、第1のIEEE1394バス112、1394コネクタ105、第2のIEEE1394バス113、映像端末106からなる。これらの全体の系(あるいは、この系を構成する装置の内、少なくとも一部の装置群)はインターネットに加入しているものとする。
【0040】
ビデオサーバ101、案内サーバ102、局内ATMバックボーン網110、セルスイッチルータ103までがCATVヘッドエンドの設備であり、CATV局内に位置している。また、ここまではIP(インターネットプロトコル)サブネットNaに属しているものとする。
【0041】
ビデオサーバ101は、案内サーバ102からの制御を受け、指定されたアドレスに対して、指定されたビデオの配信を行う。この指定されるアドレスとは、IPアドレスであってもよい。
【0042】
案内サーバ102は、Webベース、即ちHTTPによる番組案内をインターネットを通して配信している。リクエストされた番組について、その内容、属性、配信先などをビデオサーバ101に通知し、これを制御する機能も有する。また、ユーザの認証や課金などを行う機能も備わっているものとする。
【0043】
局内ATMバックボーン網110は、CATV局内のバックボーンを構成しているATM網である。
【0044】
セルスイッチルータ103は、例えば特願平第07−058196号で紹介されている装置であり、IP処理部とATMスイッチを内部に有する。後述するFANP(Flow Attribute Notification Protocol)を用いる事により、隣接するFANPノード(FANPを処理する事のできるノード)間でプロトコル交換を行い、処理を進める。具体的には、隣接FANPノード同士で、同セルスイッチルータを起点(終点)とするデータリンクレイヤコネクション情報(ATMのVPI/VCI等)を交換し、内部で両コネクションをATMスイッチで結合し、ATMスイッチングを行う事になる。
【0045】
なお、本発明はこのFANPについて、特願平第07−058196号に紹介されているFANPの機能を強化、修正した物となっている。よって、前記の文献では、FANPのバージョン番号は「1」となっているが、本実施形態におけるFANPのバージョン番号は、改良版の意味を含めて「2」であるものとして、以下の記述を行う。
【0046】
アクセスATM網111は、CATV局と家庭とを結ぶものとする。具体的には、この部分はデータリンク方式がATMであればよく、FTTH(FiberTo The Home)、HFC(Hybrid Fiber Coax)、
同軸ケーブル、ADSL(Asymetric Digital Subscriber Line)等、加入者線の形態は特に問わない。
【0047】
NIU104、2つの1394バス112、113、1394コネクタ105、
映像端末106は、家庭内に設置される装置あるいはネットワークである。
【0048】
NIU104は、アクセスATM網111の終端機能と、家庭内のネットワークとの相互接続を行う。後述するように、このノードもFANPノードである。
【0049】
2つの1394バス112、113は、IEEE1394なる高速バスで構成された家庭内ネットワークである。図1では、第1の1394バス112にはNIU104、1394コネクタ105のみが、第2の1394バス113には1394コネクタ105と映像端末106のみが接続された図となっているが、実際には他にPC、プリンタ、DVD、その他いろいろなデジタルデバイスが接続されていてもかまわない。
【0050】
1394コネクタ105は、2つ(あるいはそれ以上)の1394バス同士を接続する機能をもつ装置である。また、本実施形態における1394コネクタ105はFANPノードでもある。詳細は後述する。
【0051】
映像端末106は、ビデオ受信機能、及びIP処理機能を有した端末である。
【0052】
ここで、セルスイッチルータ103、それに家庭内の端末群は1つのIPサブネットに属するものとする。即ち、各家庭に1つ(あるいはそれ以上)の
IPサブネットが与えられているものとする。本実施形態では、このIPサブネットに与えられているサブネットアドレスをNbとする。
【0053】
また、図1のように、ビデオサーバ101のIPアドレスはNa.1、案内サーバ102はNa.2、セルスイッチルータ103の局内ATMバックボーン網110側のインタフェースのIPアドレスはNa.3、アクセスATM網111側のインタフェースのIPアドレスはNb.4であるとする。また、NIU104のIPアドレスはNb.3、1394コネクタ105はNb.2、映像端末106はNb.1であるとする。ここで、NIU104、1394コネクタ105は、ネットワークインタフェースを複数有しているにもかかわらず、IPアドレスを1つのみ有していてもよい。
【0054】
図2に、IPサブネットNa側のアドレス、即ち、局内ATMバックボーン網110内のIPアドレスとデータリンクレイヤアドレス(ATMアドレス)の対応を記す。ここで、局内ATMバックボーン網110のATMアドレスプレフィックスはAaであるとする。
【0055】
同様にして、図3に、IPサブネットNb側のアドレスの対応を記す。
【0056】
ここで、アクセスATM網111のATMアドレスプレフィックスはAb、第1の1394バス112のバスIDはBb、第2の1394バス113のバスIDはBaである。
【0057】
各1394バスにつながる端末には、2つの1394アドレスが存在する。1つは、バスリセットの前後で値が変わらないEUI64と呼ばれるアドレス、もうひとつは、バスリセットの前後で値が変わる可能性の有るノードIDである。ここで、ノードIDとは、(バスID、物理ID)の表現形式にて表現される。
【0058】
次に、図1の全体の系のビデオ伝送における動作を、図4に示すフローチャートを参照して説明する。
【0059】
まず、映像端末106は、案内サーバ102から送られて来る番組案内を受信する(ステップS401)。
【0060】
この番組案内は、例えば、HTML(Hyper Text Markup Language)で作成されており、伝送プロトコルはHTTP(HyperText transfer Protocol)を用いる。すなわち、映像端末106はWeb端末(ブラウザ)となっており、番組案内自身はIP(インターネットプロトコル)を通して送られて来る。
【0061】
まず、一般のIPパケットが伝送されてくる仕組みについて、全体の系のそれぞれについて説明する。ここで、一般のIPパケットとは、ユーザや装置が特に指定したフロー(一連の互いに意味のあるIPパケットの集合。例えば特定のビデオストリーム等)ではない、ベストエフォート伝送を行うIPパケットのことである。
【0062】
図5に示すように、案内サーバ102とセルスイッチルータ103との間は、IPパケット伝送のためのVC(仮想コネクション)501があらかじめ張られている。また、同様のVC503、502がそれぞれ案内サーバ102とビデオサーバ101間、ビデオサーバ101とセルスイッチルータ103間にも張られている。これらのVCは、特に(FANPにより)指定のない場合は、このVCを通してIPパケットを転送するためのデフォルトで張られているVCのことである。このVCを以降は「デフォルトVC」と呼ぶ。
【0063】
デフォルトVCは、局内ATMバックボーン網110内のATM−ARP(ATM−Address Resolution Protocol)等により確立されたものであってもよい。これについて以下に説明する。
【0064】
案内サーバ102は、映像端末106に向けてのIPパケット(番組案内パケット)を送出するのに際し、局内ATMバックボーン網110内でATM−ARPをかける。ATM−ARPサーバは図中には図示していない。
【0065】
映像端末106のIPアドレスをNb.1とする。映像端末106は、CATV局内のIPサブネットNaではなく、サブネットNbに属しているため(図1参照)、この解決アドレス(ATMアドレス)はサブネットNbに向かうルータのアドレス、すなわち、セルスイッチルータ103のアドレス(ATMアドレス)となる。
【0066】
案内サーバ102は、解決ATMアドレスに向けてのATMコネクションが既に張られている(VC501)ことを検出すると、該IPパケットを該VC501を介して送出する。
【0067】
セルスイッチルータ103は、このIPパケットをデフォルトVC501を介して受信する。
【0068】
図6は、セルスイッチルータ103の内部構成例を示したものである。図6に示すように、セルスイッチルータ103は、IP/FANP処理部およびスイッチ制御部601、ATMスイッチ部602からなる。
【0069】
IP/FANP処理部およびスイッチ制御部601は、受信したIPパケットやFANPパケットを処理する機能と、FANP処理結果にしたがって、ATMスイッチ部602の設定を制御する機能を有する。ちなみに、接続されるATMネットワークからのVCのうち後述するようにデフォルトVCとよばれる、IPパケット転送のための初期から張られているVC501、502については、そのVCの終端点は、常に内部のIP/FANP処理部およびスイッチ制御部601となる。
【0070】
ATMスイッチ部602は、ATMスイッチから構成される。ATMスイッチの出力ポートのうち、少なくとも1つはIP/FANP処理部およびスイッチ制御部601になっている。
【0071】
さて、デフォルトVCを通ってきたIPパケットについては、必ずその両端のノードのIP処理部(IP/FANP処理部およびスイッチ制御部601)にパケットがフォワードされる様に設定されている。
【0072】
セルスイッチルータ103のIP処理部(IP/FANP処理部およびスイッチ制御部601)は、受信したIPパケットが映像端末106行きであることを確認(該IPパケットの宛先IPアドレスが映像端末106のIPアドレスNb.1である事を確認)すると、内部のIPルーチングテーブルに従ってルーチングを行い、出力物理ポートを決定する。
【0073】
セルスイッチルータ103は、出力物理ポートにおいて、どのVCに入れて該IPパケットを送出するかを決定すべく、ATM−ARPをアクセスATM網111に対して行う。なお、図1には、ここでのATM−ARPサーバの図示も省略されている。
【0074】
ATM−ARPは、アクセスATM網111全体に対して行われ、最終的にはNIU104のATMアドレスが解決される。
【0075】
ここで、解決されるATMアドレスはNIU104のものであり、映像端末106のものではない。即ち、このアドレス解決はプロキシ解決、即ち代理解決となっている。これは、ATM網と(例えばイーサネットや、
本実施形態の1394網112、113の様な)他の網とが相互接続されているような場合、ATM網内部からのアドレス解決要求に対して解決されるアドレスはATMアドレスであるべきであるが、解決対象の端末がATM網上に存在するとは限らないので、この場合はNIU104のATMアドレスが解決される。
【0076】
以下に示すように、本実施形態におけるシステムにおいては、後述の様に、セルスイッチルータ103、NIU104、1394コネクタ105がFANPノードであり、ARPはそれぞれこのノードで一時終端され、代理応答される。即ち時系列的には、図7に示すように、順次アドレス解決が行われていく。
【0077】
(ステップS701) セルスイッチルータ103からアクセスATM網111へ、映像端末106のアドレスのアドレス解決要求。
【0078】
(ステップS702) これを受信したNIU104から、第1の1394バス112へ、映像端末106のアドレスのアドレス解決要求。
【0079】
(ステップS703) これを受信した1394コネクタ105から第2の1394バス113へ、映像端末106のアドレスのアドレス解決要求。
【0080】
(ステップS704) 映像端末106から1394コネクタ105へのアドレス解決(解決アドレスは映像端末106の1394アドレス)。
【0081】
(ステップS705) 1394コネクタ105からNIU104へのアドレス解決(解決アドレスは1394コネクタ105の1394アドレス)。
【0082】
(ステップS706) NIU104から、セルスイッチルータ103へのアドレス解決(解決アドレスはNIU104のATMアドレス)。
【0083】
以上の手続きが終了すると、IPパケットを送出するシーケンスにはいる(ステップS707、ステップS708、ステップS709)。
【0084】
図7に示した手順では、端から順にアドレス解決を行っていき、すべてのデータリンクレイヤアドレスが解決した時点でIPパケットの送信を開始する方式であるが、図8に示すように、各ホップ毎にアドレス解決を行っていき、解決すると、順次該IPパケットをフォワーディングしていく方式も考えられる。
【0085】
さて、セルスイッチルータ103は、解決されたATMアドレス(NIU104のATMアドレス)から、このATMアドレスとの間に確立されたATM−VC(デフォルトVC901)が存在するかどうかを確認する。もし、確立されていない場合は確立する(図9参照)。
【0086】
その後、セルスイッチルータ103は、VC901を通してIPパケットを送信する。このIPパケットはNIU104に到達する。
【0087】
図10にNIU104の内部構成例を示す。図10に示すように、NIU104は、ATM物理レイヤ処理部1001、ATM/AAL処理部1002、第1のMUX/DEMUX1003、IP/FANP処理部1004、第2のMUX/DEMUX1005、1394リンク処理部1006、1394物理処理部1007、ATM/1394乗せ換え部1008、ATM制御部1009、1394制御部1010から構成される。
【0088】
ATM物理レイヤ処理部1001は、外部からのATM伝送路を終端し、ATMの物理レイヤ処理を行って、ATMセルを隣のATM/AAL処理部1002にフォワードする機能と、ATM/AAL処理部1002からのATMセル流に対してATM物理レイヤ処理を施し、外部に送出する機能を有する。
【0089】
ATM/AAL処理部1002は、ATM物理レイヤ処理部1001から受信したATMセル流についてATMレイヤ処理、およびAAL処理を施して、必要に応じて、AAL−SDU(AAL−Service Data Unit:IPパケット、MPEGフレーム等)を取り出し、後述する機構にしたがって、これをVCIの値などを参考にして、第1のMUX/DEMUX1003を介して、IP/FANP処理部1004、ATM/1394乗せ換え部1008、又はATM制御部1009(シグナリングパケット等)に対して送出する。また、第1のMUX/DEMUX1003からのデータ(IPパケット、MPEGフレーム等)について、これにAAL(ATM Adaptation Layer)処理を加えてATMセル化し、更にATMレイヤ処理を施して隣のATM物理レイヤ処理部1001に送出する機能を有する。
【0090】
第1のMUX/DEMUX1003は、ATM/AAL処理部1003からのデータを、VCIの値などに基づいてIP/FANP処理部1004とATM/1394乗せ換え部1008、およびATM制御部1009に分岐させる機能と、
IP/FANP処理部1004とATM/1394乗せ換え部1008、それにATM制御部1009からのデータをATM/AAL処理部1002に集線させる機能とを有する。
【0091】
IP/FANP処理部1004は、ATM側、1394側それぞれからのIPパケットや、FANPパケットを終端し、IP処理、およびFANP処理を施す機能を有する。よって、ATM側、および1394側からのデフォルトVC(後述するように1394側についてはアシンクロナスチャネル)からのIPパケット(FANPパケットなども含む)は、この処理部1004にフォワードされてくることになる。また、IPアドレスからデータリンクアドレス(ATMアドレス、1394アドレス)へのアドレス解決などの一連のARP手順もこの部分の機能であるとする。
【0092】
IP/FANP処理部1004では、IPヘッダの宛先IPアドレスに従って、パケットのルーチング処理(該IPパケットをどの物理ポートに送出するかを決定する処理)は行うが、一般のルータと違って、この部分でいわゆるIPルーチングプロトコルの処理は行わない。
【0093】
第2のMUX/DEMUX1005は、IP/FANP処理部1004とATM/1394乗せ換え部1008からのデータを集線して、隣の1394リンク処理部1006に送出する機能と、1394リンク処理部1006からのデータをチャネル番号などを参照して、IP/FANP処理部1004とATM/1394乗せ換え部1008に分岐送出する機能を有する。
【0094】
1394リンク処理部1006と、1394物理処理部1007は、それぞれIEEE1394のリンクレイヤの処理と物理レイヤの処理を行う。即ち、第2のMUX/DEMUX1005からのデータを後述する1394制御部1010と協調して、1394リンク処理部1006が受信し、これを1394のフレーム化等を行い、1394リンクに送出する機能と、逆に1394リンクからの1394フレーム(同期、非同期両方を含む)を、1394制御部1010と協調して1394の各レイヤ処理を行った後に第2のMUX/DEMUX1005に送出する機能を有する。
【0095】
ATM/1394乗せ換え部1008は、ATM側からのデータと1394側からのデータを、お互いのフォーマットに合わせた上で、データリンク変換して、フォワーディングする機能を有している。ここを通るデータについては、前述のIP/FANP処理部804を通過することなく、ATM側と1394側との間を流通することになる。これにより、IPパケット、MPEGフレーム等、情報の種類によらず、IP/FANP処理部1004によるIP/FANPレイヤ処理を受けることなくデータのフォワーディングが、ATMのVPI/VCIや1394のチャネル番号等を通して、ATM/1394乗せ換え部1008を通して直接できることとなり、大幅な処理の簡略化や処理時間の向上を期待することができる。また、IP/FANP処理部1004の処理の軽減を図ることも可能となる。
【0096】
ATM制御部1009は、ATM関連部分の制御や、シグナリング処理等を行うものである。
【0097】
1394処理部1010は、主にIEEE1394のトランザクションレイヤ処理とシリアルバス管理を行うものである。IP/FANP処理部1004から/への必要なデータについて、上記処理を行って1394リンク処理部1007とデータのやり取りを行う等の機能を有する。
【0098】
さて、以降では図7の手順に従って説明を行う。
【0099】
NIU104は、ATM側で確立されたデフォルトVC(図9の901)から入力されたデータのうち、受信されたIPパケットについては、あらかじめ内部のIP/FANP処理部1004にフォワードされる設定となっている。
【0100】
当初、NIU104(実際には、NIU104のみでなく、1394コネクタ105等のFANPノードも)は、第11図のようなルーチングテーブルを内部に有しており、どのIP端末がどの方向の物理ポートに存在するかについての情報を持っている。これは、IP端末それぞれについて、ソースルーチングを行う際のルーチングテーブルを持っているような形(1つ1つのIPアドレスについて、ルーチングテーブルに登録されている)となっている。また、ラーニングブリッジのように、該ノードのIP/FANP処理部1004を通過するIPパケットのうち、該ルーチングテーブルに登録されていないIPアドレスが検出された場合には、これを該ルーチングテーブルに次々と登録していくようにしてもよい。また、一定時間、IPパケットの通過が確認されないIPアドレスについては、これをルーチングテーブルから消去するようになっていてもよい。
【0101】
さて、図7のステップS701の処理手順を説明する。図12に示すように、NIU104のIP/FANP処理部1004では、受信したパケットがARP要求であり(ステップS1201)、また該ARP要求されたIPアドレスが自分のIPアドレスではなく(ステップS1202)、かつ内部に持っているルーチングテーブルに該IPアドレスが登録されていないこと確認すると(ステップS1203)、これを自分の持つ他の物理ポート、例えば、本実施形態では、図1の第1の1394バス(ネットワーク)112の物理ポートに対してこのARP要求をフォワードする(ステップS1204)。このとき送出するARP要求パケットの送出元アドレスには自分(NIU104)の1394アドレスを書いておくものとする。
【0102】
図13に、NIU104から第1の1394バス112に対して送出されるARP要求のフレーム/パケットフォーマットの一例を示す。このように、ARP要求は、ARPパケットが1394フレームにカプセル化される形で非同期チャネル、すなわち、図9の902に送出される。
【0103】
このARP要求は、第1の1394バス112へブロードキャストされるように送出されるため、1394フレームの宛先IDには「バスID=ローカルバス、
物理ID=放送」、あるいは「バスID=自分の属しているバスのID、物理ID=放送」の形で送出される。送出元IDには、自分のノードIDを入れておく。 なお、1394バス同士が1394トレードアソシエーションで今後標準化が進むとみられる1394ブリッジを介して相互接続される場合は、1394内においては本発明の方法を使う代わりに、宛先IDとして、全ての1394バスに向かって送出する「放送バスID」を使用して、ARPをかける方法も考えられる。この場合は、直接宛先の1394アドレスが解決されるので、1394の内部プロトコル(例えば、IEC1883等)で宛先端末まで同期チャネルの予約を行ってもよい。
【0104】
図13の説明に戻り、1394のデータ部には、LLC/SNAP領域に続いて、ARPパケットが入る。カプセル化されるARPパケットについては、ハードウエア種別として、IEEE1394の番号が、プロトコル種別としてはIP、
そして長さ表示と、該パケットがARP要求である旨がARPヘッダに記述される。また、データ部には、自分の2つの1394アドレス、具体的には、EUI64と呼ばれるバスリセット前後で不変のID(ハードウエアベンダが工場出荷時に焼き込んでおくID)と、その時点での1394アドレス空間におけるアドレス(ノードIDおよびメモリ/レジスタ番地)を記述しておいてもよい(例えば、NIU104の場合、EUI64がE4でノードIDが(Bb、2)が入る)。
【0105】
更に、自分(NIU104)のIPアドレスも記述しておく。未解決の宛先1394アドレスについては、ダミー値が入り、宛先IPアドレス(解決要求IPアドレスNb.1)のみが入る。
【0106】
図13に示したような1394フレームが、非同期チャネルを通じて、第1の1394バス112に送出される。このフレームは、第1の1394バス112に接続する全てのノードが受け取ることになる。このうち、LLC/SNAPを理解できない端末や、IP処理機能、FANP処理機能を持たない端末は、即座にこのフレームを廃棄する。また、IP処理機能を持っている端末でも、ルータ機能、あるいはFANP機能を持っておらず、かつ、自分のIPアドレスがARPの解決要求IPアドレスでない場合も、これを無視する。
【0107】
第1の1394バス112において、該IPアドレス(Nb.1)を持っているIP端末はない。また、FANP機能を持っているのは1394コネクタ105である。
【0108】
図14は、1394コネクタ105の内部構成例を示したものである。図14に示すように、1394コネクタ105は、第1の1394物理処理部1401、第1の1394リンク処理部1402、第1のMUX−DEMUX1403、IP/FANP処理部1404、第2のMUX−DEMUX1405、第2の1394リンク処理部1406、第2の1394物理処理部1407、1394スイッチ部1408、第1の1394制御部1409、第2の1394制御部1410からなる。
【0109】
第1の1394物理処理部1401、第1の1394リンク処理部1402、第1の1394制御部1409は、それぞれ第1の1394バス112側のIEEE1394の物理レイヤ、リンクレイヤ、トランザクションレイヤ/シリアルバス管理の各機能を果たし、第1のMUX−DEMUX1403を通して、1394のチャネル番号や宛先IDの値から、同期チャネルや非同期チャネルからのデータのフォワーディングをIP/FANP処理部1404、または1394スイッチ部1408と双方向で行う。
【0110】
第2の1394物理処理部1407、第2の1394リンク処理部1406、第2の1394制御部1410についても、説明は同様である。
【0111】
IP/FANP処理部1404については、図10のNIU104におけるIP/FANP処理部1004と同様の機能を有する。よって、詳細な説明は省略する。
【0112】
1394スイッチ部1408は、第1のMUX−DEMUX1403と、第2のMUX−DEMUX1405間で、IP/FANP処理部1404における処理を伴わずに、直接複数の1394ポート間でデータのやりとりを行うための装置である。片側の1394バスから、もう片側の1394バスに乗り換える場合のバッファの役割を果たす。また、必要な場合、例えばMPEGストリームのタイムスタンプの押し直しの様な処理も行う。その際は、片側の1394バスのチャネル番号の値から、直接属性、宛先物理ポート、変換後のチャネル番号等の対応関係を記した図19に示すような対応テーブルを用意する。
【0113】
図7のステップS702の処理手順を説明する。
【0114】
1394コネクタ105に到着したIPパケットは、LLC/SNAPの解析を受けた後で、ここでも内部のIP/FANP処理部1404にフォワードされる設定となっている。
【0115】
図12と同様に、IP/FANP処理部1404では、受信したIPパケットがARP要求であり、また該ARP要求されたIPアドレスが自分のIPアドレスではなく、かつ内部に持っているルーチングテーブルに該IPアドレスが登録されていないこと確認すると(ステップS1201〜ステップS1203)、これを自分の持つ他の物理ポート、本実施形態では、第2の1394バス113の物理ポートに対してこのARP要求をフォワードする(ステップS1204)。このとき送出するARP要求パケットの送出元アドレスには自分(1394コネクタ105)の第2の1394バス113側の1394アドレスE2/(Ba、2)を書いておくものとする。
【0116】
このARP要求も第2の1394バス113上を放送される。これを受信した映像端末106は、これが自分あてのARP要求であることを認識し、ARP応答を返す(図7のステップS704)。
【0117】
その際は、図15に示すように、ARPパケット内の送信元アドレスと宛先アドレスとを入れ替え、自分のIPアドレス(Nb.1)と1394アドレス(E1/Ba、1)を入れた上で、ARP応答パケットを生成する。そして、宛先アドレスを(Ba、2)、すなわち、1394コネクタ105として、1394フレームを生成し、これを第2の1394バス113の非同期チャネル(図9の903)に送出する。
【0118】
これを受信した1394コネクタ105は、内部のルーチングテーブルに、第2の1394バスの側にIP端末Nb.1が存在することを登録するとともに、映像端末106のIPアドレス(Nb.1)と、図11に示すように、1394アドレスとの対応表も内部のARPテーブルに登録する(図12のステップS1205〜ステップS1206)。ここで、ARPテーブルとルーチングテーブルとは一体のものであっても良い。図11は、一体となったものを示してある。
【0119】
1394コネクタ105は、映像端末106に対するARP要求が第1の1394バスの側からNIU104よりきていたのを認識しているため、これへのARP応答を引き続き返す(図7のステップS705および図12のステップS1207)。その際は、応答1394アドレスとして、1394コネクタ105の1394アドレス(E3/Bb、1)を答えるものとする。つまり、これも代理応答である。
【0120】
NIU104も同様にARPの代理応答(即ち、解決ATMアドレスとして、NIU104自身のATMアドレスAb.1を記載した上で)をアクセスATM網111を介してセルスイッチルータ103に送出する(図7のステップS706および図12のステップS1207)。その際は、VC901を用いる。
【0121】
この時点で、1394コネクタ105には、第2の1394バスの側に映像端末106のIPアドレス(Nb.1)が存在することが、内部のルーチングテーブル上に登録され、その1394アドレス(映像端末106の1394アドレス(E1/Ba、1))が内部のARPテーブルに登録されている。また、ARP要求パケットの処理の際に、第1の1394バス112の側にNIU104のIPアドレスNb.3と、その1394アドレス(E4/Bb、2)も、ルーチングテーブルとARPテーブルにそれぞれ登録される(図3参照)。
【0122】
また、NIU104には、第1の1394バスの側に映像端末106のIPアドレス(Nb.1)が存在することが、内部のルーチングテーブル上に登録され、その1394アドレスとしては、代理応答のため、1394コネクタ105の1394アドレス(第1の1394バスの側の1394アドレス(E3/Bb.1))が内部のARPテーブルに登録されている。また、ARP要求パケットの処理の際に、アクセスATM網111の側にセルスイッチルータ103のIPアドレスNb.4と、そのATMアドレスも、ルーチングテーブルとARPテーブルにそれぞれ登録される(図3参照)。
【0123】
また、セルスイッチルータ103には、アクセスATM網111の側に映像端末106のIPアドレス(Nb.1)が存在することが、内部のルーチングテーブル上に登録され、そのATMアドレスとしては、代理応答のため、NIU104のATMアドレスAb.1が内部のARPテーブルに登録される(図3参照)。 この時点で、セルスイッチルータ103は映像端末106宛のIPパケットの送出が行えることになる。即ち、セルスイッチルータ103は、NIU104との間に確立されたデフォルトVC(この時点で確立されていなかったら、確立する)901を通して、該IPパケットを送出する。
【0124】
デフォルトVCはNIU104のIP/FANP処理部1004に接続されるように確立される。
【0125】
このIPパケットはNIU104に到達するとIP/FANP処理部1004に運ばれる。ここで、IP/FANP処理部1004は、ルーチングテーブルを参照し、宛先IPアドレスであるNb.1が第1の1394バス112の側にあることを認識し、内部のARPテーブルを参照してその1394アドレス(実際には1394コネクタ105の1394アドレスBb.1)を認識して、該IPパケットを、1394コネクタ105宛の1394フレームにカプセル化し、これを非同期チャネルを介して第1の1394バス112に送出する。
【0126】
図16は、1394バス上に送出されるIPパケットのフォーマットを示したものである。図16に示したように、基本的にはIPパケットは1394の非同期チャネルに送出され、1394の非同期フレームにカプセル化される。
【0127】
1394の非同期チャネルを介して1394コネクタ105に飛んできたIPパケット、FANPパケットなどは、LLC/SNAPヘッダの参照の上、IP/FANP処理部1404に接続されるようにあらかじめ設定されているため、このIPパケットは1394コネクタ105に到達するとIP/FANP処理部1404に運ばれる。ここで、IP/FANP処理部1404は、ルーチングテーブルを参照し、宛先IPアドレスであるNb.1が第2の1394バス113の側にあることを認識し、内部のARPテーブルを参照してその1394アドレス(Ba、1)を認識して、該IPパケットを、映像端末106宛の1394フレームにカプセル化し、これを非同期チャネルを介して第2の1394バス113に送出する。
【0128】
こうして、該IPパケットは映像端末106に到達する(図7のステップS707〜ステップS709、および図4のステップS401)。
【0129】
以降案内サーバ102から送出される映像端末106宛のパケットは、ARP手順を踏むことなく、映像端末106までルーチングされることが可能である。
【0130】
映像端末106では、これらのIPパケットを通じて送られてくる番組案内を映像端末106上のブラウザを通じて表示する。ユーザは、このブラウザを通して、見たい番組のリクエスト等を行う。このリクエストも、IP/HTTPを用いて行われる(図4のステップS402)。もちろん、ユーザが使われている通信プロトコルが何であるか、等ということを意識する必要はない。
【0131】
その後、案内サーバ102とユーザ(映像端末106)間で、ユーザ認証、課金手続き等、映像サービスを行うにあたっての種々の制御手続きを行う(図4のステップS403)。この制御手続きもIP/HTTPを使って行われる。
【0132】
これらの手続きが終了すると、映像配信のための手続きにはいる。まず、案内サーバ102からビデオサーバ101に対して番組送信のための制御信号が送られる(図4のステップS404)。この制御信号には、どの番組をどれだけの時間、誰に対して送るか等の映像送信に関わる基本的な情報がやりとりされる。この制御信号のやりとりは、案内サーバ102とビデオサーバ101間のデフォルトVC203を介して行われる。これは、案内サーバのCGI等を通して行われてもよい。また、JAVA等の言語を用いて、手続きが直接ビデオサーバ101に対して行われる場合もある。
【0133】
つづいて、ビデオサーバ101と映像端末106間で、映像伝送に先立って必要な手続きが交換される。例えば、符号化方式の確認や、受信可能な帯域の値の確認等を行う(図4のステップS405)。これらのやりとりは、これまで説明してきたのと同様に、IP/HTTPを通じて行われてもよい。ビデオサーバ101と映像端末106間で合意がとれると、ビデオサーバから映像端末へ向かって、帯域を保証するデータリンクコネクションを確立する手順にはいる。
【0134】
次に、この手順を図17、図18を参照して説明する。
【0135】
映像端末106(IPアドレスNb.1)に対して一定の帯域(例えば4Mbps)で映像の送付を行う場合を考える。ビデオサーバ101は、IPアドレスNb.1についてアドレス解決を行い(ステップS1701)、その解決アドレスであるセルスイッチルータ103との間に4Mbpsの帯域を持ったATMコネクションを確立すべく、セルスイッチルータ103との間にATM呼設定を行う(ステップS1702)。
【0136】
ここで、呼設定の場合に必要な細かなパラメータについては、あらかじめ適当な値がビデオサーバの側に設定されており、それをそのまま利用するものとする。
【0137】
呼設定が完了し、ビデオサーバ101とセルスイッチルータ103間に4MbpsのATMコネクション2101が確立すると、ビデオサーバ101は、このATMコネクション2101を使って、FANPで決められた処理を開始する。
【0138】
このように、FANPノード間で、ある特有のフローの伝送のために確立したデータリンクコネクションを専用データリンクコネクションと呼ぶ。
【0139】
FANPは、データリンクのあるコネクション(のID)と、そのコネクションを通して送付する情報との関係を隣接ノードに通知するためのプロトコルであり、以下にその手順を具体的に説明する。なお、本発明では、従来のFANPの機能に改良を加えたもので、以下、これを拡張されたFANPの機能と呼ぶことがある。
【0140】
以下、必要な場合(改良を加えた箇所)については、詳細な説明を付加する。
【0141】
図17のステップS1703では、まず最初に、ビデオサーバ101は、図21に示すように、確立したATMコネクション2101を通して、VCID交換メッセージのやりとりを行う。このメッセージのやりとりを通じて、両端の装置はVCID(後述)の値の意味付けを共有する。これをFANPのVCIDの交換メッセージのやり取りを通じて行う(図22参照)。
【0142】
図20に、ここで交換されるメッセージのフォーマットの一例を示す。このメッセージのフォーマットは、ATM−LANにおけるARPパケットのフォーマットとほぼ同様である。ハードウエアタイプにはATM、プロトコル種別としてIP、送信者IPアドレスとしてはビデオサーバ101のIPアドレス、ターゲットIPアドレスとしては映像端末106のIPアドレス、VCID(仮想コネクションID)としては、ビデオサーバ101のグローバルユニークなアドレス(ATMボードのMACアドレス)と、ビデオサーバ101が適当に定めたシーケンス番号が付与される。
【0143】
VCIDは、ATMではVCの両端でVPI/VCIが一般に異なるため、VCの両端のノードで共通に認識できる識別子である。
【0144】
また、VCID交換メッセージについては、ACK、NACKも用意されており、これはオペレーションコードによって区別する。ACK/NACKについては、図22に示すように、デフォルトVC502を通じて配送される。ここで、ACKが返れば両端の装置間でVCIDの値に合意が成立したことを意味する。NACKが返れば、合意にいたらなかったことを意味する。
【0145】
FANPノードがルータである場合は、ACKのメッセージは単にオペレーションコードの値が変更されるのみで返送される。FANPノードがルータでない場合についての説明は後述する。
【0146】
VCIDについて合意がとれると、ビデオサーバ101は、次にフロー交換メッセージのやりとりを図22に示すように開始する。
【0147】
本発明では、このフロー交換メッセージを通して、次段のノードに対して専用データリンクコネクションの確保を申請する。即ち、このフロー交換メッセージに宛先IPアドレス、確保してもらいたい帯域、通信属性等の情報を付与して次段のFANPノードに送付し、こうして次段のFANPノードに対象とする端末へのエンドエンドのコネクションの設定を申請する。
【0148】
FANPノードは、必要な隣接ノード間で次々に要求された条件を満たすデータリンクコネクション(専用データリンクコネクション)を確保し、その専用データリンクコネクションと、前段から通知された専用データリンクコネクションを互いに関連付ける。この関連付けは、VCIテーブル上に行われる。この関連付けが行われた後は、VPI/VCIの値の参照のみで、その予約帯域、属性(中を流れるデータがMPEG映像である、等)、出力ポート、出力ヘッダ(VPI/VCI)等の値がインプリシットに分かることになる。
【0149】
これを宛先端末(本実施例では映像端末106)まで次々と行い、最終的にエンド=エンドのコネクションを確立する。
【0150】
図23にフロー交換メッセージのフォーマットの一例を示す。このフロー交換メッセージのオペレーションコードの部分で、フロー交換メッセージのタイプを示す。
【0151】
フロー交換メッセージには、オファーメッセージ(オペレーションコード=1)、
リダイレクトメッセージ(オペレーションコード=2)、エラーメッセージ(オペレーションコード=3)、リリースメッセージ(オペレーションコード=4)、リリースACKメッセージ(オペレーションコード=5)、ペンディングメッセージ(オペレーションコード=6)がある。詳細は、特願平第07−058196号に記載されている。
【0152】
本実施形態では、VCIDタイプには「1」が固定的にはいる。VCIDタイプ=1の時は、VCIDには、ESI(エンドシステムID、通常はエンドシステムのMACアドレス)とシーケンス番号がはいる。
【0153】
このVCIDは、「このVC(同期チャネル)は、両端のFANPノードでVCIDの値で呼びましょう」という合意した値という意味がある(なお、VCIDの表現方式に異なる方式が登場した場合、他の値が割り当てられる)。
【0154】
フローIDタイプは、フローIDの表現方式を指定する。ここで、フローとは、ある特定の意味を持った情報(特定の送信元から特定の宛先に向けて送信される特定の互いに意味のある情報の集まり。例えば、映像情報を納めた一連のパケット群等)のことである。フローIDは、あるフローを一意に識別するためのIDである。フローIDについての詳細は後述する。
【0155】
他のパラメータはオプションであり、TLV(タイプ、長さ、変数)ベースの記述がなされる。本実施形態では、通信品質情報と、エンド・エンドACK(e−ACK)、通信属性が入る。
【0156】
通信品質情報は、確立するコネクションに要求する通信品質の値が入る。この値としては、例えばIETFのint−servのTスペックの値などが入ってもよい。本実施形態では、必要な帯域の値である4Mbpsを意味する値が入れば良い。
【0157】
e−ACKフラグは、最終地点から送信地点までのACK信号の送信を要請するためのフラグである。このエンド=エンドのACK信号は、送信装置(本実施形態の場合、ビデオサーバ101)が、最終地点(本実施形態の場合、映像端末106)までの間でコネクション確立に成功したかどうかを知るための目安となる。
【0158】
ビデオサーバ101は、図22に示すように、フロー交換メッセージのうち、オファーメッセージを隣接FANPノードであるセルスイッチルータ103に送付する。このメッセージの送付は、ビデオサーバ101からセルスイッチルータ103間のデフォルトVC502を通して運ばれる。
【0159】
このメッセージには、図24に示すように、オファーメッセージである旨のオペレーションコード、VCID、フローID、通信属性、通信品質(帯域情報)、e−ACKフラグが含まれる。後者の3つについては、TLV形式にて表現されるオプションである。
【0160】
VCIDには、ビデオサーバ101のMACアドレスとビデオサーバ101が付与するシーケンス番号が入る。
【0161】
フローIDについては後述するが、基本的に宛先IPアドレスの値などが入る。
【0162】
通信属性には、送付するデータがMPEGストリームである旨が入る。
【0163】
帯域情報には、該映像ストリームの帯域(本実施例の場合4Mbps)、e−ACKフラグは、エンド=エンドのACKをビデオサーバ101が要求するため、オンとなっている。
【0164】
これを受信した隣接FANPノードであるセルスイッチルータ103は、該パケットをIP/FANP処理部601で処理する。
【0165】
e−ACKフラグを見て、送信側がエンド=エンドのコネクションの確保を要求していることが理解できる。そこで、エンド=エンドのコネクションの確立を図るため、FANPメッセージの宛先IPアドレス(映像端末106)方向へのフォワードと、送信側(ビデオサーバ101)へ「コネクションの確立まで(あるいは処理負荷が下がるまで)少し待ってほしい」旨を通知するためのペンディングメッセージを定義する(図25参照)。
【0166】
ペンディングメッセージには、対応するオファーメッセージが有していたVCIDとフローIDが付与されて転送される。
【0167】
ペンディングメッセージを受信したビデオサーバ101は、先に送出したオファーメッセージに対する返答をしばらくの間待つことになる。
【0168】
また、セルスイッチルータ103は、このFANPメッセージを映像端末106の方向にフォワードして、エンド=エンドのデータリンクコネクションを確立し、オファーメッセージを映像端末106の方向に向かって送出しようとする。
【0169】
このとき、映像端末106の解決アドレスはNIU104のATMアドレスであるため、NIU104との間に該オファーメッセージに記入された帯域(4Mbps)でATMコネクションを確立する(図17のステップS1704)。すなわち、図21に示すように、デフォルトVC901に加えて、映像伝送用のATMコネクション2102が確立される。
【0170】
このATMコネクション2102が確立すると、ビデオサーバ101の場合と同様にATMコネクション2102を通して、セルスイッチルータ103は、VCID交換メッセージを送出する(図17のステップS1705)。なお、このATMコネクション2102を介して送られたデータは、NIU104のIP/FANP処理部1004に送られるような設定にしておく。
【0171】
これを受信したNIU104は、FANPメッセージの宛先IPアドレスが自分ではなく、映像端末106(IPアドレス=Nb.1)に向けられていることを、このVCID交換メッセージから知る。もし、今後送付されてくるFANPメッセージ(オファーメッセージなど)が、映像端末106のIPアドレス(Nb.1)に宛てて出されるとすると、NIU104のIP/FANP処理部1004においては、IPパケットのプロトコル種別や、ポート番号まで確認しなければ、それがFANPパケットであることが確認できず、よってFANP処理が行えない、あるいはFANP処理を行おうとすると、IP/FANP処理部1004宛のパケット全てについてプロトコル種別やポート番号の確認をしなければいけないことになる。
【0172】
これを避けるために、隣接FANPノードであるセルスイッチルータ103に対して、隣接FANPノードは映像端末106ではなくて、NIU104であることを通知する。そこで、VCID交換メッセージ中のターゲットIPアドレスの所に、自分のIPアドレス(Nb.3)を入れて、プロポーズメッセージのACKを送り返す(図20参照)。
【0173】
このようにすることで、セルスイッチルータ103は、映像端末106に向かうルーチング経路で、次段のFANPノードは映像端末106ではなく、NIU104(IPアドレス=Nb.3)であることを知ることができるようになり、該VCIDの値についての、後のFANPメッセージ(つまり、映像端末106に向けてのFANPメッセージ)は、NIU104に対して送れば良いことを認識できる。
【0174】
この後、フロー交換メッセージのオファーメッセージをセルスイッチルータ103はNIU104に送る。よって、ARPテーブルの検索より、このオファーメッセージは、デフォルトVC901を通して送られることになる。このオファーメッセージの宛先IPアドレスはNIU104のIPアドレスNb.3である。
【0175】
NIU104は、フローIDの部分を見ることによって、最終のターゲットIPアドレス(映像端末106のIPアドレス)を知ることが可能である(フローIDについては後述)。その他、通信属性、通信品質、e−ACKフラグなどがそのままフォワードされる。
【0176】
これにより、映像端末106への4Mbpsのコネクション設定が必要であると認識したNIU104は、内部のルーチングテーブルを参照して、映像端末106が第1の1394バス112の方向にあることを認識し、第1の1394バス上に4Mbpsのアイソクロナス(同期)チャネルの確立を行う。
【0177】
これは、NIU104がアイソクロナスリソースマネージャのレジスタを適当に設定し、帯域の確保と、チャネル番号の確保を順次行うことによって、これを行うこととなる(図17のステップS1706)。
【0178】
次に、NIU104は、VCID交換メッセージの送付を行うが(図17のステップS1707)、これにはいくつかの方法がある。
【0179】
第1の方法は、1394の独自プロトコルで1394コネクタ105に対して、
先に獲得した同期チャネルの番号を通知して、これをIP/FANP処理部1404に接続するようにあらかじめ設定しておく方法である。あるいは、確立した同期チャネルは、デフォルトでIP/FANP処理部1404につながるようになっていてもよい。また、LLC/SNAPヘッダを参照して、これでIP/FANPのパケットであることが認識され、その後IP/FANP処理部1404に転送されるようになっていてもよい。
【0180】
FANPノードは、IP/FANP処理部1404では、入力パケットがIPパケットか、FANPパケットかの区別を行い、FANPパケットならば、FANP処理を行うようになっていてもよい。
【0181】
つづいて、図26に示すようなVCID交換メッセージを該同期チャネルに送出する。このVCID交換メッセージを受信した1394コネクタ105のIP/FANP処理部1404は、そのACKメッセージに自分のIPアドレス(Nb.2)を入れて非同期チャネルを通してNIU104に送り返す。
【0182】
図18に示すシーケンスは、第1の方法に従って、図17に示したシーケンスをより詳細に示したものである。
【0183】
第2の方法は、VCID交換メッセージを非同期チャネルを使って、1394コネクタ105に向かって送出する方法である。映像端末106の解決アドレスは1394コネクタ105の1394アドレスとなっている。このVCID交換メッセージが1394コネクタ105のIP/FANP処理部1404に到達する様にしておく。その一つの方法として、VCID交換メッセージは自動的にIP/FANP処理部1404に到達するようにあらかじめ設定しておく方法がある。2つ目の方法は、NIU104が、1394コネクタ105の1394アドレスからRARP等を行い、1394コネクタ105のIPアドレスNb.2をあらかじめ調べ、このIPアドレスNb.2に向かってVCID交換メッセージを送付する方法である。
【0184】
第3の方法は、LLC/SNAPで該メッセージがIP/FANP処理部1404に運ばれるような設定になっている場合である。これを受け取った1394コネクタ105は、NIU104の場合と同様に、自分のIPアドレスをVCID交換メッセージのACKに加えてNIU104に送り返す。こうしてNIU104も、映像端末106へつながる次段のFANPノードは1394コネクタ105(IPアドレス=Nb.2)であることを認識でき、以降のFANPパケット(フロー交換メッセージ)を直接映像端末106に送るのではなく、1394コネクタ105に対して送ることができるようになる。
【0185】
その後の1394コネクタ105での動作は、先のNIU104での動作に準ずる。すなわち、フロー交換メッセージを受信して、4Mbpsの帯域の確保を映像端末106との間に確立する必要を認識する。前段のFANPノードであるNIU104に対してはペンディングメッセージを送出し、映像端末106に対しては、第2の1394バス113上に4Mbpsの同期チャネルとそのチャネル番号を確保し(図17のステップS1708)、先に記述したのと同様の方法で、映像端末106に向かってVCID交換メッセージを送出する(図17のステップS1709)。
【0186】
映像端末106は、該VCID交換メッセージ(プロポーズメッセージ)については、その受け入れが可能な場合、ACK(プロポーズACK)を送り返す。そして、非同期チャネルを介してFANPのフロー交換メッセージを受信し、これが自分あてのメッセージであることを認識する。通信属性のフィールドより、中のデータがMPEGストリームであることを認識してもよいが、これには他の方法も考えられる。一例として、映像端末106は、フローIDの値から、これからこのチャンネルを通ってやってくるデータの属性を知ることができるようになっていてもよい。
【0187】
例えば、ポート番号の何番から何番までは、MPEG2のトランスポートストリームである、等の情報をあらかじめインプリシットに入れておくことにより、これを行うことが可能である。また、e−ACKフラグが立っていることから、送信端末(即ちビデオサーバ101)に対して、FANPメッセージを受け入れたとのエンド=エンドのACKメッセージを送信する必要があることも知る。
【0188】
受け入れが可能な場合は、フロー交換メッセージのやりとりとして、図27に示すようなリダイレクトメッセージを前段の1394コネクタ105に対して送り返す。
【0189】
リダイレクトメッセージは、第2の1394バス113の非同期チャネルを使って、1394コネクタ105宛に送られる。
【0190】
図27に示すように、リダイレクトメッセージには、VCIDとフローIDの値が入っており、これを受信した1394コネクタ105は、自分が先に送ったどのオファーメッセージに対するリダイレクトであるのかを認識することができる。
【0191】
また、エンド=エンドACK信号を、このリダイレクトメッセージに含め、後述するように、これ(エンド=エンドACK)を受け取ったFANPノードが上流にリダイレクトメッセージを送信する場合に、やはりそのリダイレクトメッセージのエンド=エンドACK信号を立てて送信する、という方式を用いる事も可能である。
【0192】
このようにして、最終端末(本実施形態では映像端末106)から、送信端末(ビデオサーバ101)に対して、エンド=エンドのACKを返す事が可能になる。なお、すべてのリダイレクトメッセージに、このエンド=エンドACKを乗せる必要はなく、例えば下流からこれを受けた場合のみ、これを上流にも送信する、といった方式が可能である。
【0193】
リダイレクトメッセージを受信した1394コネクタ105は、先に送出したオファーメッセージが受け入れられたと解釈する。この時点で、1394コネクタ105は、今後、第1の1394バス112の同期チャネル2103から例えばMPEG映像が入力されてき、更にそれを第2の1394バス113の同期チャネル2104に送出しなければいけない、ということを認識する。そこで、IP/FANP処理部1404は、第1のMUX−DEMUX1403について、同期チャネル2103からのデータは1394スイッチ部1408にフォワードするように、また、1394スイッチ部1408では、データリンクレイヤ処理のみ(即ち1394バス間での1394フレームのスイッチング)でこのデータを第2のMUX−DEMUX1405に送出すべく必要な設定(内部キューの初期化や、図19の対応テーブルの設定など)を行う。
【0194】
また、第2のMUX−DEMUX1405に対し、第2の1394バス113の同期チャネル2104に送出するように設定する。
【0195】
さらに、前段のNIU104に対しても、リダイレクトメッセージを送出する。
【0196】
この際、下流からのリダイレクトメッセージにe−ACKが立っている場合は、ここにもe−ACKを立てる。
【0197】
このようなステップをビデオサーバ101まで繰り返す。なお、NIU104では、ATM/1394乗せ変え部1008に、ATMから1394へのデータリンクスイッチのみでATMコネクション2102から第1の1394バス112の同期チャネル2103とのデータリンクレイヤでの(IP/FANP処理部での処理を介さない)データフォワーディングが出来るような設定(ATMのVPI/VCIの値から、直接1394のチャネル番号まで変換できるように、その対応テーブルの設定)がなされる。
【0198】
また、セルスイッチルータ103では、ATMコネクション2101とATMコネクション2102とを内部のATMスイッチ602にて直接ATMレイヤ接続(VCIテーブルの設定)する。この時点で、ビデオサーバ101から、映像端末106へのデータリンクコネクションは全て確立したことになる。これを図28に示す。
【0199】
さらに、エンド=エンドACKの到着により、ターゲットの端末である映像端末106が映像の受信準備が整ったことが示される(図17のステップS1710)。
【0200】
ここで、ビデオサーバ101は、先に確立し、FANPメッセージのやりとりを行ったVCである2101に、映像の送出を開始することができる。送出された映像データは、図28のコネクションに沿って、基本的に途中IPレイヤ処理を何等受けることなく、映像端末106まで到達する。なお、伝送されるデータは、生のMPEGデータであっても、MPEGデータがIPパケットでカプセル化されたもの(いわゆるMPEGoverIP)であっても良い。
【0201】
前者の場合、MPEGデータがATM上を伝送されている間は、ATMフォーラムで標準化されているMPEGoverATMの仕様(SAAVer.1の仕様)、1394上を伝送されている間は、デジタルVTR協議会にて標準化されているMPEGover1394の仕様にしたがって伝送されることになる。また、この場合、NIU104のATM/1394乗せ換え部1008では、MPEGoverATMとMPEGover1394との乗せ換え、フォーマット変換も行われることになる。この場合は、生のMPEG映像のデータ転送のためのエンド・エンドのデータリンクレイヤコネクション設定を、FANPを使って行ったことになる。この場合、これらの処理のトリガは、データリンクレイヤヘッダであるVPI/VCIの値によりなされる。
【0202】
以上説明したように、上記第1の実施形態によれば、
(1)ATMやIEEE1394等の異種ネットワーク技術(データリンク技術)が混在するような環境においても、エンド=エンドにデータリンクレイヤコネクションを確立して、データ転送が行う事ができるようになる。
【0203】
(2)データリンク接続点において、データの転送を行う場合に、IP/FANP処理部による処理でなく、直接データリンク同士を接続できるように、相互接続装置を制御できるような自由度があるので、必要なところには高速なデータ転送を行う事が可能となる。
【0204】
(3)伝送するデータがIPパケットではないとしても、コネクション確立の制御にIP/FANPを用いる事によって、その経路設定を行う事ができ、希望のところへの希望のデータ転送を実現できる。
【0205】
(4)FANPノードには、従来のルータに様にOSPF等のルーチングプロトコルが稼動はしておらず、基本的に動的ルーチングのサポートは行わなくてよいため、従来のルータと比べて、処理負荷が軽い。
【0206】
さて、ひとたび、図28に示したように、直結されたコネクションが確立されると、これらのエンド・エンドのデータリンクレイヤコネクションは、そのまま固定的に維持されてもよい。
【0207】
この場合は、明示的にコネクション開放の制御メッセージが流れてこない限りは、該コネクションは永続的に継続するので、コネクションはハードステートにて維持される事になる。この場合は、通信の終了の際に、送信者、受信者、あるいは途中ノードがFANPのフロー交換メッセージのコネクション開放メッセージを送出し、各FANPノードに、コネクションの開放を促す事になる。
【0208】
ここで、送信者がコネクションの開放を求める場合とは、番組の終了時、予約時間の満了時等が考えれられる。また、受信者がコネクションの開放を求める場合とは、ユーザが自主的にそのコネクションを切断する場合や、受信端末の設定(例えばタイマ予約など)等が考えられる。途中ノードがコネクションの開放を求める場合とは、途中のケーブル断や電源断等を検出した場合等が考えられる。
【0209】
図29に示すように、コネクションの開放はフロー交換メッセージのリリース(解放)メッセージと、リリースACKメッセージの交換によって行われる。
【0210】
コネクションの開放を行うノード2901が、隣接FANPノード2902に対して、リリースメッセージを送出し、このメッセージを受信したFANPノード2902が、リリースACKメッセージを送出する。なお、このコネクション開放は、あくまでFANPノードにおける「データリンクコネクションの相互接続」の状態の開放(図28の点線部分のパイプの開放)であり、ATM網におけるVCや、IEEE1394における同期チャネル等のデータリンクレイヤコネクションの開放は必ずしも必要ない。
【0211】
上流、あるいは下流からのコネクションの開放要求を受け取り、(それ以上データの転送は、該コネクションの開放により維持されなくなってしまうため)全体としてその下流、あるいは上流へのコネクションの維持に意味がないとノードが判断した場合は、更にその下流、あるいは上流へとコネクションの開放要求を該ノードが行っていく(フォワードしていく)ことになる。
【0212】
また、図30に示すように、コネクションの維持をソフトステートにて行ってもよい。ソフトステートとは、下流ノードが上流ノードに対して、定期的にリダイレクトメッセージを送出して、該当するデータリンクコネクションにおいてデータの継続受信が可能であると認識し、該データリンクコネクションにデータを流し続ける。このリダイレクトメッセージの送出は、図30に示す所定のリフレッシュ間隔の値ごととする。そして、リダイレクトメッセージが、所定のリフレッシュ時間が経過しても上流ノードに到着しなかった場合(図30の3002にて示される状態)、下流ノードが受信できなくなったと判断して、該データリンクコネクションへのデータの転送をやめる、という一連の手順である。
【0213】
下流ノードは、該データリンクコネクションにデータが流れている間は、リダイレクトメッセージを定期的に上流ノードに送信する。間隔は、オファーメッセージで示された「リフレッシュ間隔」で送出する。データが流れていない場合は、リダイレクトメッセージを送出しない。
【0214】
このようにリダイレクトメッセージを送出する事で、上流ノードでは、そのリダイレクトメッセージに関連したデータリンクコネクション(2101、2102、2103、2104のいずれか)が正常に動作している事と、下流ノードの生存確認ができる。
【0215】
ここで、上流ノードが何かの都合や不具合でダウンした場合に、下流ノードが該データリンクコネクションが設定されたままになるのを防ぐため、下流ノードで該データリンクコネクションにデータが流れない状態が一定期間続いた時に、下流ノードから該データリンクコネクションを開放することとする。
【0216】
また、該データリンクコネクションにて転送しているデータがIPパケットである場合は、該データリンクコネクションでのIPパケットの転送を終了するのに伴い、該IPパケットの転送を該専用データリンクコネクションから、デフォルトVC(デフォルトチャネル=非同期チャネル)に切替えを行ってもよい。
【0217】
次に、先に説明したフローIDの使用方法について説明する。
【0218】
本発明の方法で確立したデータリンクレイヤコネクションにIPパケットを通すという場合に、典型的な使用方法は、フローIDとして、「送信端末のIPアドレス+受信端末のIPアドレス」、または「送信端末のIPアドレス+送信端末のポート番号+受信端末のIPアドレス+受信端末のポート番号」を用いる、というものである。
【0219】
IPパケットを、この方法により直結されたデータリンクレイヤコネクションにいれる場合は、途中のFANPノードは、いれるべきIPのフローの識別に、IPパケットのうち、特定の「送信元アドレス+宛先アドレス」、あるいは、「送信元アドレス+送信元ポート番号+宛先アドレス+宛先ポート番号」の組を持ったものを、該データリンクレイヤコネクションに入れていけばよい事になる。なお、これは途中のどのFANPノード(通常はルータ)がやってもよい。また、どこでこの直結コネクションが途切れてもよい。このように、フローIDの値として、どのような値を用いるかについては、フローIDタイプの番号により、各FANPノードはこれを知ることができる。
【0220】
次に、直結されたデータリンクレイヤコネクションに、IPパケットではなく、生のデータ(例えばMPEGデータ等)をいれるような場合を考える。
【0221】
まず、フローIDとして、「宛先IPアドレス+宛先ポート番号」を入れる場合を考える。「宛先ポート番号の値として、ある範囲内の値を用いる場合には、これは直結されたデータリンクレイヤコネクションにはIPパケットではなく、生のデータが入る」といった約束を送受信両側の端末が認識していれば、フローIDの宛先ポート番号の値を見て、FANPノードは、以降流れて来るデータがIPパケットではないという事を認識する事ができる。この場合は、通信属性に関する情報を送らなくてもよい場合がある。
【0222】
フローIDとして、「宛先IPアドレス+送信端末が決定したユニークなID」を入れる場合を考える。この「送信端末が決定したユニークなID」とは、送信端末が、なんらかの意味付けを行って、送信端末でユニークなIDを決定して、これを用いる物である。これも、前者と同様に、「ユニークIDの値として、ある範囲内の値を用いる場合には、これは直結されたデータリンクレイヤコネクションには特定の生のデータが入る」といった約束を送受信両側の端末で認識しあっておく、という方法がまず考えられる。
【0223】
フローIDは、2つ以上のソースから出力される情報(同時に出力される事がなくてもよい)を、あるFANPノードでマージし、該FANPノードからは同一のデータリンクレイヤコネクションにて出力する場合に、各々のソースから流れてくる。
【0224】
該データリンクにいれるべき情報(フロー)に、同一のフローIDをつけておき、異なるソースからの情報も1本のデータリンクレイヤコネクションにまとめる事ができるようにするための識別子として使う、という使用方法も考えられる。
【0225】
この場合について、図31を参照して説明する。基本的に図1の構成と同様の構成をもったネットワークであるが(よって、構成要素の詳細の説明は省略する)、
ビデオサーバが複数台(例えば、ここでは、2台のビデオサーバ3121、3122)存在する点が異なる。
【0226】
これらのビデオサーバからの映像データの配信は、やはり番組案内配信サーバ3102より制御される。この時、案内サーバ3102は、配信を行わせるビデオサーバ3121、3122のいずれかに対して、「この番号をフローID(の一部)として利用せよ」という意味で、同一接続時間の同一の映像端末3106に向けての映像データ配信の制御に、ある特定の番号を通知する。ここで、同一接続時間における異なるビデオサーバからの映像データの配信とは、映像端末3106のユーザが、見ている映像のチャンネル番号(番組)を変更するような場合、それぞれ異なるビデオサーバがそれぞれの番組を提供するような場合に発生する。このような場合に、複数のビデオサーバが同一のフローID(の一部)を投げる事で、FANPノード(この場合セルスイッチルータ3103)は、これら両方のフローが、同一のデータリンクコネクション3109にフォワードすべきものである事を知ることができるようになり、ユーザによるチャンネルの切替え(すなわち、ビデオサーバの変更)が有るような場合にも、該FANPノード(この場合セルスイッチルータ3103)より下流側において、新たなデータリンクレイヤコネクションの確立の必要もなく、各々のデータを適当なデータリンクレイヤコネクションに送る事ができるようになる。
【0227】
なお、この場合、リダイレクトメッセージが下流から流れてきた場合は、これを、FANPにより関連づけられた複数の上流のFANPノード(この場合ビデオサーバ3121、3122)に送る必要がある。
【0228】
また、データリンクレイヤ同士をつなぐスイッチ(図の場合セルスイッチルータ3103内のATMスイッチ)は、多対1(異なる入力データリンクコネクションからのデータを、1つの出力データリンクコネクションにまとめて出力する形態)の接続形態になっている事が求められる場合がある。これは、同時に複数の送信端末がデータを送出することはない、という前提に立っていてもよい。
【0229】
また、本発明で1394バスとして説明した部分が、1394コネクタあるいは1394ブリッジで相互接続された1394ネットワークであってもよい。
【0230】
さらに、本発明においては、ルータは家庭の外のCATVヘッドエンドにおかれるものとして説明してきたが、これが家庭内におかれるものとしても、もちろんよい。
【0231】
本実施形態では、ビデオサーバ101から映像端末106までの間の帯域の予約を拡張されたFANPにより行う例を紹介してきた。これに対し、既存のルータ(本実施形態においてはセルスイッチルータ103)における帯域の予約制御はRSVP(Resource Reservation Protocol:資源予約型ネットワークプロトコル)やST2(Stream Transport Protocol−2:ストリーム転送プロトコル)等のネットワークレイヤにおけるシグナリングプロトコルを用いて行い、IPサブネットの中、すなわち、セルスイッチルータ103から映像端末106の間の帯域の予約制御は本発明の拡張されたFANPにより行うことも可能である。この場合のシーケンスを図32に示す。
【0232】
図32には、ネットワークレイヤのシグナリングプロトコルとして、RSVPを用いた例を示している。なお、図32には、ARPや、プロポーズメッセージ、ペンディングメッセージなど、細かなメッセージのやり取りについては省略してある。
【0233】
送信端末(ビデオサーバ101)、ルータ(セルスイッチルータ103)、映像端末106間の帯域の予約制御はRSVPやST2等のシグナリングプロトコルを用い、それらの間のサブネット内の帯域予約制御は本発明の拡張されたFANPを用いて行っている。すなわち、本発明の拡張されたFANPをRSVPノード間の帯域制御のために使っていることになる。このようにすることにより、既存ルータは、インターネットルータ間のデファクトスタンダードとなっており、
広く使われているST2やRSVPといった端末とルータ、ルータとルータ間の帯域予約プロトコルを使用することができ、これまで方法のなかったサブネット内の帯域予約、特に仮想コネクション形ネットワークが混在するヘテロな環境のサブネットにおける帯域制御を、本発明の拡張されたFANPにより行うことができるようになる。
【0234】
(第2の実施形態)
次に、第2の実施形態として、2つ以上の1394バスを、それぞれのバスに接続されたハーフコネクタと呼ぶノードと、それぞれのハーフコネクタ間をつなぐ各種のネットワークにて構成される通信ネットワークシステムについて説明する。
【0235】
図33は、第2の実施形態に係る通信ネットワークシステム(例えば、家庭内の各電気機器を接続するためのホームネットワークシステム)の全体構成例を示す。図33に示すように、この通信ネットワークシステムは、送信端末4001、第1のハーフコネクタ4002、第2のハーフコネクタ4003、受信端末4004、第1の1394バス4011、イーサネットケーブル4012、第2の1394バス4013からなる。
【0236】
ここで、全ての系は第1の実施形態と同様に、同一の家庭内においてネットワークを構成するものであるとする。よって、この系の上の端末のうち、IPノードであるものは、すべて同一のIPサブネットに属するものとする。ここでは、IPサブネットアドレスはNとし、それぞれのノードのIPアドレスは、それぞれ送信端末4001がN.1、第1のハーフコネクタ4002がN.2、第2のハーフコネクタ4003がN.3、受信端末4004がN.4であるとする。
【0237】
また、これらのノードの1394アドレス、及びイーサネットアドレスについても、図33に示すとおりである。
【0238】
本実施形態における送信端末4001、第1のハーフコネクタ4002、第2のハーフコネクタ4003、受信端末4004は、すべて第1の実施形態にて述べたFANPノード、即ち本発明で説明している拡張されたFANPの機能を有しているノードである。
【0239】
送信端末4001は、IP端末でもある。受信端末4004とIPパケットのやりとりを行ったり、受信端末4004に対して映像の配信を行ったりする機能を有する。
【0240】
映像の配信は、IPパケットに映像情報を乗せる形で行っても良いし、映像データをそのまま指定された1394の同期チャネルに送出する形でこれを行っても良い。詳細は後述する。
【0241】
第1のハーフコネクタ4002および第2のハーフコネクタ4003は、1394バス同士を接続するための機器である。即ち、第1の1394バス4011と、第2の1394バス4013との間を接続するために、用いられる機器である。このようなケースは、例えば第1の1394バス4011と、第2の1394バス4013との間が非常に離れているような場合に、これらを1本の1394バスにまとめるということが難しい場合に起こり得る。
【0242】
すなわち、1394バスは、その仕様上、長大なケーブルを用いるのは好ましくないことになっている。このようなときに、各々の1394バスに、本発明のハーフコネクタをそれぞれ接続し、これらのハーフコネクタ間を専用のケーブルにて接続することによって、これを行う為のものである。詳細は後述する。
【0243】
受信端末4004は、IP端末でもある。送信端末4001とIPパケットのやりとりを行ったり、送信端末4001から配送される映像の受信を行ったりする機能を有する。
【0244】
第1のハーフコネクタ4002と、第2のハーフコネクタ4003との間は、例えば、イーサネットケーブル4102にて接続されている。すなわち、本実施形態では、2つのハーフコネクタ間はイーサネットフレームにて、各々のデータのやりとりは行われることになる。
【0245】
図34は、ハーフコネクタ4002、4003の内部構成例を示したものである。
【0246】
図34に示すように、ハーフコネクタは、1394物理部4101、1394リンク部4102、1394制御部4103、第1のMUX−DEMUX4104、IP/FANP処理部4105、1394・イーサ乗換部4106、第2のMUX−DEMUX4107、イーサインタフェース部4108からなる。
【0247】
1394物理部4101、1394リンク部4102、1394制御部4103は、それぞれ接続された1394バス(4011あるいは4013)について、その物理レイヤ処理、リンクレイヤ処理、バス管理及びとトランザクションレイヤ処理をそれぞれ行い、送受信する1394フレームを、第1のMUX−DEMUX4104、または第2のMUX−DEMUX4107を通して、IP/FANP処理部4105、または1394・イーサ乗せ換え部4106とデータ(1394から見ると、PDU)のやりとりを行う。
【0248】
IP/FANP処理部4105は、受信したIPパケット、FANPパケット、ARPパケット等について、IPアドレスに基づくルーチング、ルーチングテーブルの管理、FANP処理、ARP処理等を行う機能を持つ。
【0249】
1394・イーサ乗せ換え部4106は、1394側から受信したデータ、特に同期チャネルを通して受信したデータを、その同期チャネル番号をキーとして、特定のイーサネットのヘッダを付与した後に、これをイーサネット側に送出する機能と、逆にイーサネット側から受信したデータを、そのヘッダ情報をキーとして、1394側の特定の同期チャネルに送出する機能を有する。すなわち、この処理部におけるデータのフォワーディングはIPレイア処理を介さず、データリンクレイヤ処理のみで行われる。例えば、図35(1394側から受信したデータをイーサネット側へ送出する場合)、図36(イーサネット側から受信したデータを1394側に送出する場合)に示すような対応テーブルを用い、MACアドレスの値と1394バスの同期チャネルのチャネル番号との対応テーブルを作成する。この各々のマッピングについては、IP/FANP処理部4105が行う。
【0250】
イーサインタフェース部4108は、物理的に接続されたイーサネットとのインタフェースをとる部分であり、第2のMUX−DEMUX4107とやりとりするデータと、イーサネットフレームとのカプセル化、デカプセル化を行う。
【0251】
次に、送信端末4001から受信端末4004にむけて、映像を送信する場合を例にとり、図37および図38を参照しながら、そのシーケンスを時間を追って説明する。
【0252】
図37に、ARP(アドレス解決)のシーケンスを示す。
【0253】
まず、送信端末4001は、受信端末4004のIPアドレスから、そのデータリンクレイヤアドレスを知るために、アドレス解決を行うべく、ARP要求パケットを第1の1394バスに送出する(ステップS4201)。第1の実施形態でも述べたように、このARP要求は、ローカルバス(すなわち、第1の1394バス4011)上に放送される。
【0254】
これを受信したFANPノードである第1のハーフコネクタ4002は、自分がその端末ではないことを確認し、かつ、自分に入力されたポート(すなわち、第1の1394バス4011)とは別のポート(すなわち、イーサネットケーブル4012)が接続されていることを確認すると、このARP要求をイーサネットケーブル4012にフォワードする(ステップS4202)。ここで、宛先イーサネットアドレスはブロードキャストアドレスである。
【0255】
これを受信した第2のハーフコネクタ4003も、第1のハーフコネクタ4002とは逆の手順を踏んで、該ARP要求を第2の1394バスにフォワードする(ステップS4203)。このとき、このARP要求は「ローカルバス」への放送の形で送出されてもよい。
【0256】
これを受信した受信端末4004は、自分の1394アドレス(EUI64と「バスID+物理ID」)を記した上で、第2の1394バス上にこれを送り返す(ステップS4204)。このとき、このARP応答の送信アドレスは第2のハーフコネクタの1394アドレスである。
【0257】
これを受信した第2のハーフコネクタ4003は、自分のイーサネットアドレスを解決アドレスの所に記して、代理応答を第1のハーフコネクタ4002に対して行う(ステップS4205)。このとき、宛先は第1のハーフコネクタのイーサネットアドレスである。また、第2の1394バス4013側に、受信端末4004のIPアドレスを持った端末が存在することを認識し、これを内部のルーチングテーブルに記述する。
【0258】
これを受信した第1のハーフコネクタ4002は、自分の1394アドレスを解決アドレスの所に記して、代理応答を送信端末4001に対して行う(ステップS4206)。このとき、宛先は送信端末4001の1394アドレスである。また、イーサネット4012側に、受信端末4004のIPアドレスを持った端末が存在することを認識し、これを内部のルーチングテーブルに記述する。
【0259】
このようにして、送信端末4001は、受信端末4004へ向けてのIPパケットは、第1のハーフコネクタ4002(の1394アドレス)に対して送出すれば良いことを知る。
【0260】
なお、図37では、ARP要求が一度ターゲットノードまで到達し、そこから順次逆流していく形でアドレス解決が行われる場合を示しているが、この場合に限らず、途中ノードが、ターゲットノードについての情報を既に有している場合などにおいて、順次アドレス解決を直接行ってしまうような場合も可能である。
【0261】
さて、次に送信端末4001は、自分がFANPノードであることを認識しており、更にこれから受信端末4004に対して送信するのが映像であることを認識している。よって、これから送出する映像を途中のFANPノードにおいて、IP処理を伴わずにデータリンク処理のみでフォワードしてもらうことを意図している。
【0262】
このため、送信端末4001は、受信端末4004との間で、IPパケットによる初期設定や符号化方式の確認、映像受付能力の可否などを確認した上で、映像送出の準備にはいる。これのシーケンスを図38に示す。
【0263】
まず、送信端末4001は、第1の1394バス4011上の同期リソースマネージャのレジスタにアクセスして、第1のハーフコネクタ4002との間に、映像送信に必要な帯域を予約し、同期チャネル番号を取得する(ステップS4401)。図39に、このとき得られた同期チャンネル4301を示す。
【0264】
そして、その同期チャネル4301を通して、第1のハーフコネクタ4002に対して、FANPのプロポーズメッセージを送出する。これは、VCIDとして自分のESIとシーケンス番号をターゲットIPアドレスとして、受信端末4004のIPアドレス(N.4)を記して送信する(ステップS4402)。
【0265】
これを受信した第1のハーフコネクタ4002は、これがFANPパケット(プロポーズメッセージ)であることを認識すると、最終的な宛先IPアドレス(受信端末4004)をターゲットIPアドレスより確認し、それがイーサネットケーブル4012の側に存在することを内部のルーチングテーブルを参照することにより確認する。そして、プロポーズACKメッセージに自分のIPアドレスを記入した上で、第1の1394バス4011の非同期チャネル上に送り返す(ステップS4403)。
【0266】
これを受信した送信端末4001は、オファーメッセージを、宛先IPアドレスを第1のハーフコネクタ4002のIPアドレスとし、先のVCIDを記述し、第1の実施形態と同様に、フローID中に最終的な受信端末である4004のIPアドレスを記し、さらに必要な帯域の値と、エンド・エンドACK要求等を含めて、第1の1394バス4011の非同期チャネル上に送出する(ステップS4404)。その際の、宛先1394アドレスは当然第1のハーフコネクタ4002の1394アドレスとなる。
【0267】
これを受信した第1のハーフコネクタ4002は、これがFANPパケットであることを認識すると、最終的な宛先IPアドレス(受信端末4004)をフローIDより確認し、それがイーサネットケーブル4012の側に存在することを再度確認する。
【0268】
そして、第2のハーフコネクタ4003がイーサネットヘッダの値の確認のみで、送信するデータを直接第2の1394バス4013上の同期チャネルに送出できるように、第2のハーフコネクタ固有のイーサネットアドレス「A2」とは異なる値を、送出するイーサネットフレームの宛先アドレスとして用いることにする。この値は、第1のハーフコネクタ4002、及び第2のハーフコネクタ4003のイーサネットアドレスの値と相異なるものであり、かつ、現在他のフローのデータリンクレイヤでの直接フォワーディングに既に使われていない値であれば、どの様な値を用いても良い。
【0269】
例えば、ここで第1のハーフコネクタ4002が選択したイーサネットアドレスの値が「#A」であるとすると、今後宛先イーサネットアドレスに「#A」と記されたイーサネットフレームには、受信端末4004に向けた映像情報のみが乗ることになる。これは、第1のハーフコネクタ4002と第2のハーフコネクタ4003の間に、「#A」をVCIとした仮想コネクションが確立されたことと等価である。これを図39では、コネクション4302として示している。なお、ハーフコネクタ4002、4003は、共に、どの様なイーサネットアドレスに宛てられたフレームであっても、それが1394・イーサ乗換部4106を通るもの以外は、一度IP/FANP処理部4105に、その宛先イーサネットアドレスの値と共に渡されるように初期設定がなされているとする。このようにすることにより、IP/FANP処理部4105は、必要なイーサネットアドレスについては、1394・イーサ乗換部4106へ適切な設定により、データリンクレイヤにおけるスイッチングをするような設定をFANPパケットの内容によって行うことが可能となる。
【0270】
図39のコネクション4302を通して、第1のハーフコネクタ4002は、FANPのプロポーズメッセージを送出する(ステップS4406)。これは、VCIDとして自分のESIとシーケンス番号を、ターゲットIPアドレスとして受信端末4004のIPアドレス(N.4)を記して送信する。
【0271】
これを受信した第2のハーフコネクタ4003は、これがFANPパケット(プロポーズメッセージ)であることを認識すると、最終的な宛先IPアドレス(受信端末4004)をターゲットIPアドレスより確認し、それが第2の1394バス4013の側に存在することを内部のルーチングテーブルを参照することにより確認する。そして、プロポーズACKメッセージをターゲットIPアドレスとして、自分のIPアドレスを記入した上で、イーサネットケーブル4012に対して、宛先アドレスを第1のハーフコネクタ4002のイーサネットアドレスとして送り返す(ステップS4407)。
【0272】
この記述からもわかるように、通常のイーサネットアドレスをイーサフレームの宛先ヘッダとして用いて送る場合は、FANPでいう「デフォルトVC」にて送る場合に相当する。
【0273】
これを受信した第1のハーフコネクタ4002は、オファーメッセージを宛先IPアドレスを第2のハーフコネクタ4003のIPアドレスとし、先のVCIDを記述し、フローID中に最終的な受信端末である4004のIPアドレスを記し、さらに必要な帯域の値と、エンド・エンドACK要求を含めて、イーサネットケーブル4012上に送出する(ステップS4408)。その際の、宛先イーサネットアドレスは第2のハーフコネクタ4003のイーサネットアドレスとなる。
【0274】
これを受信した第2のハーフコネクタ4003は、これがFANPパケットであることを認識すると、最終的な宛先IPアドレス(受信端末4004)をフローIDより確認し、それが第2の1394バス4013の側に存在することを再度確認する。そして、受信端末4004まで必要な帯域を確保して、映像信号を送信すべく、第2の1394バスの同期リソースマネージャのレジスタの設定により帯域と同期チャネル番号を確保する(ステップS4410)。図39に、このとき得られる同期チャンネル4303を示す。
【0275】
そして、該同期チャネル4303を通してFANPのプロポーズメッセージを送信する(ステップS4411)。
【0276】
これを受信した受信端末4004は、受け入れが可能な場合は、プロポーズACKメッセージを、第2のハーフコネクタ4003に送信する(ステップS4412)。
【0277】
その後、第2のハーフコネクタ4003は、FANPのオファーメッセージを受信端末4004に送信する(ステップS4413)。
【0278】
受信可能な場合は、受信端末4004は、リダイレクトメッセージを、上流のFANPノード(この場合第2のハーフコネクタ4003)に、エンド・エンドACKフラグをONにして、送出する(ステップS4414)。このエンド・エンドACKフラグは、受信端末4004に送信されてきたFANPのオファーメッセージに、エンド・エンドACK要求があり、かつ自分が最終の端末であることに伴う処理である。
【0279】
このリダイレクトメッセージを受信した第2のハーフコネクタ4003は、下流側(この場合、受信端末4004)の同期チャネルの使用準備が整ったと判断し、第2のハーフコネクタ4003内の1394・イーサ乗換部4106にて、イーサネットアドレスが#A(4302)でやってきたフレームのSDU(サービスデータユニット)を、IP/FANP処理部4105における処理無しに、直接データリンクレイヤフォワーディングできるように設定を行う。このようにすることにより、特定のイーサネットアドレス「#A」をつけてやってきたフレームについては、図36に示したような対応テーブルを参照することにより、直接そのSDUを同期チャネル4303に送出できることになり、データフォワーディング処理の大幅な効率化、及び高速化が図れることになる。
【0280】
また、該処理がIP/FANP処理部4105での処理が伴わないため、IP/FANP処理部4105の負荷の低減と、負荷分散が同時に図れることになる。さらに、IPパケットではないデータも送信することが可能である。
【0281】
第2のハーフコネクタ4003は、リダイレクトメッセージを上流のFANPノード(この場合第1のハーフコネクタ4002)に送出する(ステップS4415)。 このときも、下流側からのリダイレクトメッセージのエンド・エンドACKフラグが立ち上がっているため、ここでもエンド・エンドACKフラグはONとしておく。
【0282】
こうして、リダイレクトメッセージは第2のハーフコネクタ4003、第1のハーフコネクタ4002をとおって、送信端末4001まで配送される。
【0283】
第1のハーフコネクタ4002では、同期チャネル4301と、イーサネットアドレスが「#A」で示されるイーサネットフレーム4302への直接変換が1394・イーサ乗換部4106に設定される。また、リダイレクトメッセージのフォワーディングの際は、各1394バスの非同期チャネル、またはイーサネット上の正規のイーサネットアドレス「A1」を使って配送される。
【0284】
こうして、送信端末4001で、エンド・エンドACKのフラグが立ったリダイレクトメッセージが受信されると(ステップS4416)、送信端末4001は、同期チャネル4301が、最終的に受信端末4004までデータリンクレイヤのレベルで直結されたことを確認できる。その後、送信端末4001は、映像データの送信を同期チャネル4301を通してはじめる(ステップS4417)。
【0285】
これは、4302、4303を通して、受信端末4004に、データリンクレイヤ処理のみで、途中ノードである各ハーフコネクタ4002、4003におけるIP/FANP処理部4105での処理のないまま配送されることが可能となる。
【0286】
なお、ここで配送される映像情報は、第1の実施形態と同様に、映像データをIPパケットにカプセル化したものであっても良いし、直接映像データを1394の同期チャネル(あるいは宛先イーサネットアドレスが「#A」で示されるイーサネットフレーム4302)に乗せ込む形でも、どちらでもよい。また、イーサフレームに、直接1394フレームを乗せ込む形で伝送してもよい。
【0287】
第1の実施形態と同様に、ソフトステートの維持にて、該コネクションの維持が行われる場合には、上記リダイレクトメッセージは定期的に上流方向の送出される。このリダイレクトメッセージが一定時間以上届かない場合や、上流方向から、明示的にコネクション断のためのメッセージ(リリースメッセージ)が送られてきた場合には、該ソフトステートを解除し、該直結データリンクレイヤコネクションについての1394・イーサ乗せ換え部4106の設定もクリアする。
【0288】
以上説明したように、複数のハーフコネクタ(4002、4003)と、その間を結ぶイーサネットケーブル(4012)を用いれば、1394ブリッジによる1394同士の接続でなくとも、複数の1394バス同士をハーフコネクタを用いて相互接続し、お互いに通信ができるようになる事が分かる。
【0289】
図40に、ハーフコネクタとイーサネットケーブルの使用形態の一例を示す。図40に示すように、1394間相互接続ケーブルの物理形状は、2つのハーフコネクタ4002、4003間に長大なイーサネットケーブル4503があらかじめつながれている。このケーブル部分は、UTP5や同軸ケーブルなどの電気ケーブルにて接続されていてもよいし、プラスチック光ファイバのような光ケーブルにて接続されていても良い。ただし、物理レイヤの伝送方式は、イーサネットの標準に従うものとする。
【0290】
また、各々のハーフコネクタには、比較的短いケーブル(1394専用ケーブル)を介して、1394コネクタ4501、4502が接続されている。ここには、1394専用ケーブルが接続されているため、両ハーフコネクタ4002、4003のための給電は、それぞれ1394コネクタ4501、4502、及び1394ケーブルを介して行うことができる。よって、図40の系については、特別な給電を行う必要はない。これは、2つの1394バスを相互接続したいユーザの立場から見ると、これを行うには、単に第1の1394バス4011に、ケーブルの片方の端(4501)を接続し、第2の1394バス4013にケーブルのもう片方の端(4502)を接続すれば、その接続は基本的に完了であり、接続の利便性を飛躍的に向上させる事が可能となる。
【0291】
また、1394のケーブルは基本的に4.5mが上限であるのに対し、本発明の方式では、両ハーフコネクタ4002、4003間を接続するケーブルは長大なもの(具体的には、例えば、数百メータ)を選択可能であり、お互いに遠く離れた1394バス同士を接続するといった場合に、非常に有益である。
【0292】
なお、ここでは長大ケーブルとして例を示してきたが、図41に示すように、ハーフコネクタ4002、4003間を無線で接続することも可能である。
【0293】
4801、4802は1394コネクタ、4803、4804は無線による相互接続のための無線送受信装置である。
【0294】
無線での伝送方式にMACフレームを用いる場合は、本実施形態の手法が基本的にそのまま使える。このように、ハーフコネクタ間を無線のインタフェースとすると、この間の接続が配線レスとなり、ユーザは容易な配線を行うことができるようになるという特徴がある。
【0295】
なお、1394間相互接続ケーブルは、本発明のような(図40、図41に示したような)1394ハーフコネクタ間の接続については言うにおよばず、一般の1394ブリッジをハーフブリッジの構成にして、これを実現する場合についても適用できることは明らかである。その場合、上記までの実施形態の説明で「宛先IPアドレスを指定」として説明していた個所を、1394アドレスと置き換えて処理させれば、1394ブリッジとしての機能の実現が可能である。
【0296】
ところで、図42に示すように、送信端末として、デジタル衛星放送(またはデジタルCATV等)からのMPEG映像を受信し、これをMPEGover1394のフォーマットに直して、あるいはMPEGデコーダにより生の映像データに変換した後、これを1394の同期チャネルのデータとして送出するようにすれば、IPパケット等のネットワークレイヤ、あるいはIEEE1394等のデータリンクレイヤフレーム等、家庭における転送パケットに当初収まっていなかった映像データ(あるいは音声データ、通常データなど)についても、本ホームネットワークにおいて転送することが可能となり、映像放送のためのケーブル配線をわざわざやり直さなくても、本ホームネットワーク上へのデータの流通が可能となる。
【0297】
図43に、これを実現する送信端末4901の内部構成例を示す。図43において、送信端末4901は、衛星放送受信インタフェース部9001、MPEGデータフォーマット変換部9002、IP/FANP処理部9003、MUX/DEMUX9004、1394インタフェース部9005からなる。
【0298】
衛星放送受信インタフェース部9001は、衛星放送からのデータを受信するインタフェースであり、データの整形の後、これをMPEGデータフォーマット変換部9002に送出する。
【0299】
MPEGデータフォーマット変換部9002では、送られてきたMPEGデータについて、衛星放送用のMPEGデータフォーマットから、IEEE1394上のMPEGデータフォーマットに変換し、MUX/DEMUX9004に送出する。ここでデスクランブル処理等を行ってもよい。
【0300】
IP・FANP処理部9003、1394インタフェース処理部9005は、前述の同名の処理部と同様の機能を持つので、詳細の説明は省略する。
【0301】
MPEGデータフォーマット変換部9002では、送られてきたMPEGデータに、適切なフォーマット変換が施されるので、衛星放送からのMPEGデータを、1394バスを通して映像端末までデータを送ることができるわけである。
【0302】
図44は、衛星放送により受信したMPEGデータを送信端末4901においてデコード(復号化)してしまい、生の映像データとなったものを、1394バスを通して映像端末にフォワードする場合の送信端末4901の内部構成例について示したものである。
【0303】
図44では、MPEGデコード部9105において、MPEGデコードを行い、生の映像データを1394バスに送出する点が、図43と異なる部分である。
【0304】
MPEGデコーダ、あるいはMPEGover1394への整合を行う機能に、さらに、同時に数チャンネルの処理機能が備わっていれば、該ホームネットワークに同時に数チャンネルの映像情報の流通が可能となり、例えば一家の複数の構成員がそれぞれ同時にテレビを見ている場合など、複数の映像を見ることが望まれる場合において非常に有益である。なお、ここのMPEGデコーダ、もしくは、MPEGover1394整合部において、IPパケットへのカプセル化は、行ってもよいし、行わなくてもよい。
【0305】
なお、本実施形態として「送信端末」として説明してきたものは、一般に「セットトップボックス」として知られるものであってもよい。
【0306】
また、本実施形態では、IEEE1394バスを例に説明を行ってきたが、ATM等他のデータリンクレイヤ技術においても適用が可能であることは明らかである。その場合は、チャネル番号の代わりに、VPI/VCIの値を用いればよい。
【0307】
(第3の実施形態)
次に、第3の実施形態として、2つ以上の1394バスを接続して構成される通信ネットワークシステム、すなわち、それぞれの1394バスに接続されたハーフコネクタと呼ぶノードと、それぞれのハーフコネクタ間をつなぐネットワークにて構成される通信ネットワークシステムについて説明する。なお、ここでは、ハーフコネクタ間をつなぐネットワークとして、イーサネットを用い、かつハーフコネクタ間に複数のFANP機能付きイーサネットスイッチを配置する場合について示す。
【0308】
図45は、第3の実施形態に係る通信ネットワークシステム(例えば、家庭内の各電気機器を接続するためのホームネットワークシステム)の全体構成例を示す。
【0309】
図45において、この通信ネットワークシステムは、送信端末5001、第1のハーフコネクタ5002、FANPイーサスイッチ5003、第2のハーフコネクタ5004、受信端末5005、第1の1394バス5011、第1のイーサネットケーブル5012、第2のイーサネットケーブル5013、第2の1394バス5014からなる。
【0310】
ここで、全ての系は第1の実施形態と同様に、同一の家庭内において、ネットワークを構成するものであるとする。よって、この系の上の端末のうち、IPノードであるものは、すべて同一のIPサブネットに属するものとする。ここでも、
IPサブネットアドレスはNとし、それぞれのノードのIPアドレスは、それぞれ送信端末5001がN.1、第1のハーフコネクタ5002がN.2、FANPイーサスイッチ5003がN.3、第2のハーフコネクタ5004がN.4、受信端末5005がN.5であるとする。
【0311】
また、これらのノードの1394アドレス、及びイーサネットアドレスについても、図45に示すとおりである。
【0312】
本実施形態における送信端末5001、第1のハーフコネクタ5002、FANPイーサスイッチ5003、第2のハーフコネクタ5004、受信端末5005は、すべて第1の実施形態にて述べたFANPノード、即ち本発明で説明している拡張されたFANPの機能を有しているノードである。
【0313】
送信端末5001、第1のハーフコネクタ5002、FANPイーサスイッチ5003、第2のハーフコネクタ5004、受信端末5005は、すべて第2の実施形態で説明した同名の装置と同様の機能を有する。よって、詳細の説明は省略する。
【0314】
本実施形態でも、第1のハーフコネクタ5002と、第2のハーフコネクタ5004との間は、イーサネットケーブル5012、5013にて接続されている。すなわち、本実施形態においても、2つのハーフコネクタ間はイーサネットフレームにて、各々のデータのやりとりが行われることになる。
【0315】
FANPイーサスイッチ5003は、FANP機能を有するイーサネットスイッチであるが、後述のように、入力されてきたFANPパケットについては、これを内部のIP/FANP処理部に取り込むという特徴(これは、イーサネットフレームのプロトコル種別を見る事によって行う)と、フレームの入出力前後で、
あらかじめ内部のテーブルに設定されたように、フレームのイーサネットアドレスを書き換えて、これを出力する機能とを持つ。特に後者は、ATMスイッチノードがATMセルの入出力の前後にVPI/VCIを書き換えるのと、同様の動作を行うためのものである。
【0316】
本実施形態では、FANPイーサスイッチ5003(あるいは内部のスイッチ)は2ポートの物理構成であるが、多ポートのFANPイーサネットスイッチも、同様の構成方法、仕組みで構築が可能である。
【0317】
図46にFANPイーサスイッチ5003の内部構成例を示す。図46において、FANPイーサスイッチ5003は、第1のイーサインタフェース部5101、第1のMUX−DEMUX5102、IP/FANP処理部5103、イーサフレームスイッチ部及びイーサヘッダ書き換え部5104、第2のMUX−DEMUX5105、第2のイーサインタフェース部5106からなる。
【0318】
イーサインタフェース部5101、5106は、物理的に接続されたイーサネットとのインタフェースを司る部分であり、MUX−DEMUX5102、5105とやりとりするデータと、イーサネットフレームとのカプセル化、デカプセル化を行う。
【0319】
IP/FANP処理部5103は、受信したIPパケット、FANPパケット、ARPパケット等について、IPアドレスに基づくルーチング、ルーチングテーブルの管理、FANP処理、ARP処理等を行う機能を持つと共に、イーサフレームスイッチ及びイーサヘッダ書き換え部への適切な設定を行う機能を有する。
【0320】
イーサフレームスイッチ及びイーサヘッダ乗せ換え部5104は、両インタフェースから受信したイーサフレームを、その宛先イーサネットアドレスを参照して、これをもとにして、適当な出力ポートにスイッチングする機能と、あらかじめIP/FANP処理部5103からの設定にしたがって、該スイッチングの際にイーサネットアドレスの少くなくとも一部を書き換えて出力する機能を有する。このため、ATMスイッチのように、内部にヘッダ変換テーブルを持っていても良い。また、イーサネットアドレスの学習機能も有しており、入力されたイーサネットフレームのソースアドレスを参照し、これを入力ポートと共に、一定時間記憶しておく機能がある。
【0321】
なお、このモジュールを通過するイーサネットフレームについては、IP/FANP処理部5103による処理は伴わずに通過できる。
【0322】
次に、送信端末5001から受信端末5005にむけて、映像を送信する場合を例に、図47、図48を参照ながら、そのシーケンスを時間を追って説明する。
【0323】
図47は、ARPのシーケンスを示したものである。
【0324】
まず、送信端末5001は、受信端末5005のIPアドレスから、そのデータリンクレイヤアドレスを知るために、アドレス解決を行うべく、ARP要求パケットを第1の1394バス5011に送出する(ステップS5401)。第2の実施形態でも述べたように、このARP要求は、ローカルバス(即ち第1の1394バス)上に放送される。
【0325】
これを受信したFANPノードである第1のハーフコネクタ5002の処理は第2の実施形態の場合と同様である。その結果、このARP要求をイーサネットケーブル5012に、宛先アドレスはイーサネットブロードキャストアドレスとして、フォワードする(ステップS5402)。
【0326】
FANPイーサスイッチ5003も、これを受信するが、該当するIPアドレスを持っていないため、ARP応答を送ることはない。また、イーサフレームスイッチ部5104を通して、該ARP要求は第2のイーサネットケーブル5013宛にフォワードされる。なお、この時(宛先アドレスがブロードキャストアドレスの時)は、イーサネットアドレスの書き換えが行われることはなく、そのままフォワードされる。
【0327】
これを受信した第2のハーフコネクタ5004、受信端末5005の処理は、第2の実施形態の場合と同様である(ステップS5403)。すなわち、これを受信した受信端末5005は、自分の1394アドレス(EUI64と「バスID+物理ID」)を記した上で、ARP応答を送り返し(ステップS5404)、これがFANPイーサスイッチ5003に到達する。この時、イーサフレームの宛先アドレスは第1のハーフコネクタ5002のイーサネットアドレス「A1」となっている。
【0328】
前述のように、FANPイーサスイッチ5003は、学習機能を有しており、ARP要求の際に第1のハーフコネクタ5002のイーサネットアドレスと、その物理ポートの方向(すなわち、第1のイーサネットケーブル5012の側)をテーブルとして有しているため、イーサフレームスイッチ部5104にてスイッチングされて、第1のハーフコネクタ5002に到達する(ステップS5405)。
【0329】
そして、第1のハーフコネクタ5002がARP応答(代理応答)を返す事で(ステップS5406)、最終的に該ARP応答は送信端末5001に到達する。
【0330】
このようにして、送信端末5001は、受信端末5005へ向けてのIPパケットは、第1のハーフコネクタ5002(の1394アドレス)に対して送出すれば良いことを知る。
【0331】
次に、送信端末5001は、第2の実施形態と同様に、これから送出する映像を途中のFANPノードにおいて、IP処理を伴わずにデータリンク処理のみでフォワードしてもらうことを意図し、受信端末5005との間で、IPパケットによる初期設定や符号化方式の確認、映像受付能力の可否などを確認した上で、映像送出の準備にはいる。これを図48に示すシーケンスを参照しながら説明する。
【0332】
送信端末5001および第1のハーフコネクタ5002の処理のうち、両者のメッセージのやり取り(FANPのペンディングメッセージの送信まで)については、第2の実施形態の場合と同様である(ステップS5501〜ステップS5505)。
【0333】
送信端末5001から、オファーメッセージを受信した第1のハーフコネクタ5002は、これがFANPパケットであることを認識すると、最終的な宛先IPアドレス(受信端末5005)をフローIDより確認し、それがイーサネットケーブル5012の側に存在することを確認する。そして、次の段のFANPノードがイーサネットヘッダの確認のみで、送信するデータを直接データリンクレイヤスイッチングできるように、第2のハーフコネクタ固有のイーサネットアドレスとは異なる値を、送出するイーサネットフレームの宛先アドレスとして用いることにする。この値は、第1のハーフコネクタ5002および第2のハーフコネクタ5004のイーサネットアドレスの値と相異なるものであれば、どの様な値を用いても良い。
【0334】
例えば、ここで第1のハーフコネクタ5002が選択したイーサネットアドレスが「#A」であるとする。今後宛先イーサネットアドレスに「#A」と記されたイーサネットフレームには、受信端末5005に向けた映像情報のみが乗ることになる。
【0335】
これは、第1のハーフコネクタ5002と次段のFANPノード(具体的にはFANPイーサスイッチ5003)の間に、「#A」をVCIとした仮想コネクションが確立されたことと等価である。これを図49に5302と付して示している。
【0336】
このコネクション5302を通して、第1のハーフコネクタ5002は、FANPのプロポーズメッセージを送出する(ステップS5506)。その際、イーサネットフレームのプロトコル種別には、FANPを意味する番号が記されているものとする。またプロポーズメッセージは、VCIDとして自分のESIとシーケンス番号を、ターゲットIPアドレスとして受信端末5005のIPアドレスを記して送信する。
【0337】
これを受信したFANPイーサスイッチ5003は、イーサネットフレームのプロトコル種別のフィールドを参照し、これがFANPパケット(プロポーズメッセージ)であることを認識すると、これを内部のIP/FANP処理部5103に転送する。そして、該イーサネットフレームの宛先イーサネットアドレスが第2のハーフコネクタ5004側に存在する事を確認し、これを最終的な宛先IPアドレス(受信端末5005)と関連づけて、内部のルーチングテーブルに、登録する。そして、プロポーズACKメッセージを自分のIPアドレスを記入した上で、第1のイーサネットケーブル5012に対して、宛先アドレスを第1のハーフコネクタ5002のイーサネットアドレスとして送り返す(ステップS5507)。
【0338】
これを受信した第1のハーフコネクタ5002は、オファーメッセージを宛先IPアドレスをFANPイーサスイッチ5003のIPアドレス「N.3」とし、先のVCIDを記述し、フローID中に最終的な受信端末である5005のIPアドレス「N.5」を記し、さらに必要な帯域の値と、エンド・エンドACK要求を含めて、第1のイーサネットケーブル5012上に送出する(ステップS5508)。その際の宛先イーサネットアドレスはFANPイーサスイッチ5003のイーサネットアドレス「A2」となる。この場合も、イーサネットフレームのプロトコル種別にはFANPを意味する番号が記されていてもよい。
【0339】
該オファーメッセージを受信したFANPイーサスイッチ5003は、これがFANPパケットであることを認識すると、これをIP/FANP処理部5103に転送する。ここにて、最終的な宛先IPアドレス(受信端末5005)をフローIDより確認し、それが第2のイーサネットケーブル5013の側に存在することを確認する。そして、次の段のFANPノード(具体的には第2のハーフコネクタ5004)がイーサネットヘッダの確認のみで、送信するデータを直接データリンクレイヤスイッチングできるように、ここでも、第2のハーフコネクタ固有のイーサネットアドレスとは異なる値を、送出するイーサネットフレームの宛先アドレスとして用いることにする。
【0340】
例えば、FANPイーサスイッチ5003が選択したイーサネットアドレスが「#B」であるとする。これは、FANPイーサスイッチ5003と次段のFANPノードであるFANPイーサスイッチ5003の間に、「#B」をVCIとした仮想コネクションが確立されたことと等価である。これを図49では、5303と付して示している。
【0341】
この5303を通して、FANPイーサスイッチ5003は、FANPのプロポーズメッセージを送出する(ステップS5510)。以降の手続きは、第2の実施形態の場合と同様である。
【0342】
さて、下流側からのリダイレクトメッセージを受信した(ステップS5519)FANPイーサスイッチ5003は、下流側(この場合、第2のハーフコネクタ5004)の専用の仮想チャネル(具体的には、「#B」を宛先イーサネットアドレスとするフレーム)の使用準備が整ったと判断し、FANPイーサスイッチ5003内のイーサフレームスイッチ及びイーサヘッダ書換え部5104にて、イーサネットアドレスが第1のイーサネットケーブル5012側から「#A」でやってきたイーサネットフレームを、IP/FANP処理部5103における処理無しに、直接データリンクレイヤフォワーディング(イーサネットスイッチング)できるように、設定を行う。このとき、宛先イーサネットアドレスを「#A」から「#B」に変換し、かつ、適切な出力ポート(本実施形態の場合は、第2のイーサケーブル5013)にスイッチングするように、内部のイーサヘッダ変換テーブルに設定も行う。
【0343】
これにより、今後第1のイーサネットケーブル5012から、特定のイーサネットアドレス「#A」をつけてやってきたフレームについては、イーサネットヘッダ変換を行った後、直接イーサネットスイッチングで第2のイーサネットケーブル5013に、宛先イーサアドレスを「#B」に変換した上で送出できることになり、データフォワーディング処理の大幅な効率化、及び高速化が図れることになる。また、該処理がIP/FANP処理部5103での処理が伴わないため、
IP/FANP処理部5103の負荷の低減と、負荷分散が同時に図れることになる。
【0344】
また、イーサネット5012、5013内にて仮想コネクションと同様の概念を導入する事が可能となり、もって、上記データフォワーディングが可能となる。
【0345】
こうして、FANPイーサスイッチ5003は、リダイレクトメッセージを上流のFANPノード(この場合、第1のハーフコネクタ5002)に送出する(ステップS5520)。下流側からのリダイレクトメッセージのエンド・エンドACKフラグが立ち上がっているため、ここでもエンド・エンドACKフラグはONとしておく。
【0346】
以降の動作処理は、第2の実施形態と同様に、送信端末4001までエンド・エンドACKのフラグが立ったリダイレクトメッセージが送られる(ステップS5521)。
【0347】
送信端末5001は、同期チャネル5301が、最終的に受信端末5005までデータリンクレイヤのレベルで直結されたことを確認できる。その後、送信端末5001は、映像データの送信を同期チャネル5301を通してはじめる(ステップS5522)。これは、5302、5303、5304を通して、受信端末5005に、データリンクレイヤ処理のみで、即ち途中ノードである各ハーフコネクタ5002、5004、FANPイーサスイッチ5003におけるIP/FANP処理部での処理のないまま配送されることが可能となり、実時間を確保した映像情報の転送が容易になる。
【0348】
なお、ここで配送される映像情報は、第2の実施形態と同様に、映像データをIPパケットにカプセル化したものであっても良いし、直接映像データを1394の同期チャネル(あるいは宛先イーサネットアドレスが「#A」、「#B」で示されるイーサネットフレーム)に乗せ込む形でも、どちらでもよい。
【0349】
また、イーサフレームは、1394の同期チャネルのフレームをそのまま(あるいは適当な処理を施した後)乗せる形になっていてもよい。
【0350】
また、ソフトステートの維持のためのリダイレクトメッセージ等についても第2の実施形態の場合と同様である。
【0351】
さて、この第3の実施形態においても、複数のハーフコネクタ(5002、5004)と、その間を結ぶイーサネットケーブル(5012、5013)およびFANPイーサスイッチ5003を用いれば、複数の1394バス同士を相互接続し、お互いに通信ができるようになる事が分かる。
【0352】
さらに、例えば、FANPイーサスイッチ5003に3つ以上のハーフコネクタを接続することも可能である。
【0353】
次に、図50に、ハーフコネクタとイーサネットケーブルの他の使用形態を示す。図50に示す1394間相互接続ケーブルの物理形状は、1394コネクタ5501が、比較的短い1394専用ケーブル5502に接続されている形で、ハーフコネクタ5503に接続されている。また、ハーフコネクタ5503から長大なイーサネットケーブル5504があらかじめつながれている。
【0354】
この部分は、UTP5や同軸ケーブルなどの電気ケーブルにて接続されていてもよいし、プラスチック光ファイバのような光ケーブルにて接続されていても良い。ただし、物理レイヤの伝送方式は、イーサネットの標準に従うものとする。
【0355】
コネクタ5505は、該物理レイヤの伝送方式にあわせたコネクタである。
【0356】
このようなケーブルを、1394コネクタ5501は、接続したい1394バスに接続し、コネクタ5505の側にはFANPイーサスイッチ5003に接続する。FANPイーサスイッチ5003は、複数のコネクタの差込口を持っていても良い。
【0357】
前述のように、ハーフコネクタ5503には、比較的短い1394専用ケーブルを介して、1394コネクタ5501が接続されている。このため、ハーフコネクタ5503のための給電は、1394コネクタ5501および1394ケーブル5502を介して行うことができる。よって、図50の系については、特別な給電を行う必要はない。(FANPイーサスイッチ5003への給電は基本的に必要である)
これは、2つの1394バスを相互接続したいユーザの立場から見ると、これを行うには、単に接続したい1394バスに、ケーブルの片方の端(5501)を接続し、もう片方の端(5505)にFANPイーサスイッチ5003を接続すれば、基本的に完了であり、接続の利便性を飛躍的に向上させる事が可能となる。
【0358】
ハーフコネクタ5503からFANPイーサスイッチ5003へと接続されるケーブルは長大なもの(具体的には、例えば、数100m)を選択可能であり、お互いに遠く離れた1394バス同士を接続するといった場合に、非常に有益である。
【0359】
なお、このような1394間相互接続ケーブルは、本発明のような1394ハーフコネクタ間の接続については言うにおよばず、一般の1394ブリッジをハーフブリッジの構成にして、これを実現する場合についても適用できることは明らかである。この場合は、第2の実施形態と同様にIPアドレスのかわりに1394アドレスを用いて、その制御を行えばよい。
【0360】
第2、第3の実施形態においては、ハーフコネクタ間の伝送方式として、イーサネットを用いて説明してきたが、トークンリングやFDDI等のネットワークを用いて、メカニズムを変更することなくこれを実現することも可能である。
【0361】
(第4の実施形態)
第2の実施形態、あるいは第3の実施形態においては、ハーフコネクタ間のデータの伝送方式はイーサネットを用いてきた。また、このイーサネット上で、宛先イーサネットアドレスを仮想コネクション識別子として使用し、次段のFANPノードにおけるデータリンクレイヤフォワーディング(データリンクレイヤヘッダのみを参照して、次段のノードへのデータフォワーディング/データスイッチングを行うこと)を行ってきた。
【0362】
同様の方法を、ハーフコネクタ間のデータ伝送方式をATMとしたときにも可能である。ただし、ここでは、伝送方式がイーサネットの場合に用いてきた仮想コネクションIDとして、宛先イーサネットアドレスを用いるのではなく、ATMのVPI/VCIを用いて、これを行う。
【0363】
図51に、図33に示した第2の実施形態に係るホームネットワークシステムにおいて、ハーフコネクタ間をATM伝送方式にて接続する場合について示す。また、図52に、ハーフコネクタ6002、6003の内部構成例を示す。
【0364】
図51、図52において、第2の実施形態と異なる部分は、ハーフコネクタ6002、6003間の接続をATM伝送方式により行っていることにより、VPI/VCIの値を仮想コネクション識別子として用いていること、デフォルトVC(用語の意味については第1の実施形態を参照)として、当初から定義されており、かつ両ハーフコネクタが認識しているVPI/VCIの値が予約されている点、それにATMケーブルの長さに制限がない点である。
【0365】
図53に、図45に示した第3の実施形態に係るホームネットワークシステムにおいて、ハーフコネクタ間をATM伝送方式にて接続する場合について示す。図53において図45と異なる部分は、FANPイーサスイッチ5003に代わり、FANP−ATMスイッチ6203が配置されている。
【0366】
図54に、FANP−ATMスイッチ6203の内部構成例を示す。
【0367】
図53、図54におて、第3の実施形態と異なる部分は、ハーフコネクタ6202、6203間の接続をATM伝送方式により行っていることにより、VPI/VCIの値を仮想コネクション識別子として用いていること、デフォルトVC(用語の意味については第1の実施形態を参照)として、当初から定義されており、かつ両ハーフコネクタが認識しているVPI/VCIの値が予約されている点、それにATMケーブルの長さに制限がない点である。また、FANP−ATMスイッチ6203のアーキテクチャがあげられる。
【0368】
ここでは、デフォルトVCは、IP/FANP処理部6302(図54参照)にて終端され、IP/FANP処理部6302にセルがたどり着く前にATMスイッチ6303を通過することになる。
【0369】
よって、両ATMインタフェース部6301、6304間の直結のデータリンクレイヤコネクション、即ちATMコネクションを確立するためには、IP/FANP処理部6302は、ATMスイッチ6303内部のヘッダ変換テーブルの値の設定を適切に行い、ATMケーブル6212の、特定のATM−VCと、ATMケーブル6213の特定のATM−VC間をATMレイヤで直結する機能が求められる。
【0370】
このように、ハーフコネクタ間の接続の実現は、イーサネット、ATM等の伝送方式のみでなく、一般のコネクションレス、及びコネクションオリエンテッドの伝送方式を包含する。
【0371】
(第5の実施形態)
次に、第5の実施形態として、以上の実施形態で説明してきた本発明の手法を「MACアドレスによる経路の設定と、帯域の予約」に用いる場合について以下に説明する。
【0372】
図55に、第5の実施形態に係る通信ネットワークシステムの全体構成例を示す。図55において、このネットワークは、送信端末8001、第1のコネクタ8002、第2のコネクタ8003、第3のコネクタ8004、受信端末8005、ATMネットワーク8011、第1のイーサネット8012、第2のイーサネット8013、1394バス8014からなる。
【0373】
ここで、全ての系は第1の実施形態の場合と同様に、同一の家庭内において、ネットワークを構成するものであるとする。よって、この系上の端末のうち、IPノードであるものは、すべて同一のIPサブネットに属するものとする。ここでは、IPサブネットアドレスはNとする。しかし、第2の実施形態の場合と異なり、第1のイーサネット、第2のイーサネット、1394バス間をそれぞれ接続する2つのコネクタ(第2のコネクタ8003、第3のコネクタ8004)は、
それぞれブリッジであるため、必ずしもIPアドレスを持っていなくてもよい(IP処理部がなくてもよい)。
【0374】
各ノードのIPアドレスは、それぞれ送信端末8001がN.1、第1のハーフコネクタ8002がN.2、受信端末8005がN.3であるとする。また、これらのノードの1394アドレス、及びイーサネットアドレスについても、図55に示すとおりである。
【0375】
ここで、1394バス8014につながるノード(第3のコネクタ8004、受信端末8005)にもMACアドレスが割り当てられている。これには、いくつかの場合が考えられて、
(1)1394バス8014がイーサネット等のIEEE802系ネットワークのエミュレーションを行っている。
【0376】
(2)1394アドレスの一部の領域を用いて、MACアドレスを表現している。
【0377】
即ち、本実施形態においては、例えば「EUI64の値をMACアドレスにて表現する」等の表現方法が用いられている。このように、MACアドレスを用いることにより、1394バス8014上のノードを一意に識別できるようになっている状況であればよい。
【0378】
本実施形態における送信端末8001、第1のハーフコネクタ8002、第2のハーフコネクタ8003、第3のハーフコネクタ8004、受信端末4005は、すべて本発明で説明している拡張されたFANPの機能を有しているノードであるが、第1の実施形態と異なるのは、IPアドレスではなく、MACアドレスにおいてもその経路設定と、帯域(通信資源)の予約が行える点である。以下にそれを説明する。
【0379】
送信端末8001は、ATM網に接続されている点以外は、第2の実施形態の送信端末4001と同等の機能を有する。よって、詳細な説明は省略する。
【0380】
第1のコネクタ8002は、ATMネットワーク8011と、第1のイーサネット8012とを相互接続するFANPノードである。機能としては、第1のイーサネット8012の方向に対して、MACアドレス対応でFANPの制御メッセージを送出・受信する点を除いては、第2の実施形態のハーフコネクタ(4002、4003)と同等の機能を有する。
【0381】
第2のコネクタ8003、第3のコネクタ8004はそれぞれイーサネット間、イーサネットと1394バス間を相互接続するが、第1のコネクタ8002との大きな違いは、これらはIPアドレスではなく、MACアドレスで経路の設定や帯域の予約などができる点である。即ち、第2のコネクタ8003、第3のコネクタ8004はMACアドレス対応FANPの中継ノードである。
【0382】
第2のコネクタ8003、第3のコネクタ8004はそれぞれMACアドレスの学習機能を有したラーニングブリッジである。入力されたフレーム(イーサフレーム、1394非同期フレーム)の入力アドレスを参照し、これを入力ポートと共に一定時間記憶しておく機能を有する。
【0383】
受信端末8005は、IP端末でもある。送信端末8001とIPパケットのやりとりを行ったり、送信端末8001から配送される映像の受信を行ったりする機能を有するが、第2の実施形態の受信端末4004との違いは、この端末がMACアドレス対応FANPの終端機能を有している点である。
【0384】
図56に第3のコネクタ8004の内部構成例を示す。図56において、コネクタ8004は、イーサインタフェース部8101、第1のMUX−DEMUX8102、イーサ・1394乗換部8103、FANP処理部8104、第2のMUX−DEMUX8105、1394インタフェース部8106からなる。
【0385】
イーサインタフェース部8101は、物理的に接続されたイーサネットとのインタフェースをとる部分であり、第1のMUX−DEMUX8102とやりとりするデータと、イーサネットフレームとのカプセル化、デカプセル化を行う。
【0386】
第1のMUX−DEMUX8102は、受信したイーサフレームのプロトコル種別のフィールドを参照し、それがFANPのフレームであることが記載されていたならば、このフレームをFANP処理部8104に転送し、それ以外の場合はイーサ・1394乗換部8103に転送する機能を有する。
【0387】
FANP処理部8104は、受信したFANPパケットについて、イーサ・1394乗せ換え部8103内のMACアドレスとその出力ポートの間の対応テーブルを参照して、MACアドレスに基づくルーチング、FANP処理等を行う機能を持つ。
【0388】
イーサ・1394乗せ換え部8104は、1394側から受信したデータ、特に同期チャネルを通して受信したデータを、その同期チャネル番号をキーとして、特定のイーサネットのヘッダを付与した後に、これをイーサネット側に送出する機能と、逆にイーサネット側から受信したデータを、そのヘッダ情報をキーとして、1394側の特定の同期チャネルに送出する機能、それにラーニングブリッジとして、フレームの宛先アドレス(MACアドレス)の値に従って、内部のMACアドレスと出力ポートの対応テーブルを常時更新しながら、これらをフォワーディングする機能を有する。即ち、この処理部におけるデータのフォワーディングはデータリンクレイヤ処理のみで行われる。また、ここでできる対応テーブルは、図35、図36と全く同様のものになる。
【0389】
1394インタフェース部8106は、接続された1394バス8014について、1394の物理レイヤ処理、リンクレイヤ処理、バス管理及びトランザクションレイヤ処理をそれぞれ行い、送受信する1394フレームを、第2のMUX−DEMUX8105を通して、FANP処理部8104、またはイーサ・1394乗せ換え部8104とデータ(1394から見ると、PDU)のやりとりを行う。
【0390】
なお、第2のMUX−DEMUX8105は、1394インタフェース部8106から受信した1394フレームに、それがFANPフレームである旨の情報が記載されていたならば、これをFANP処理部8104に転送する機能がある。
【0391】
次に、送信端末8001から受信端末8005にむけて、映像を送信する場合について図57を参照しながら説明する。
【0392】
まず、送信端末8001は、受信端末8005のIPアドレスから、そのデータリンクレイヤアドレスを知るために、アドレス解決を行うべく、ARP要求パケットをATMネットワークに送出する。このARP要求はATMネットワーク内のATM−ARPとして処理される(ステップS5701)。
【0393】
このARP要求は、第1のコネクタ8002により第1のイーサネット8012にフォワードされる。第1のイーサネット8012、第2のイーサネット8013、1394バス8014は、それぞれブリッジ接続されているため、このARP要求はブリッジ接続されたこれらネットワーク内をブロードキャストされ、受信端末8005に直接到達する(ステップS5702)。
【0394】
受信端末8005は、ARP応答を直接第1のコネクタ8002に行い、第1のコネクタ8002は、送信端末8001に代理ARP応答を行う。この時、第1のコネクタ8002は受信端末8005が第1のイーサネット8012の側にいることを記憶する(ステップS5703、ステップS5704)。
【0395】
さて、次に送信端末8001は、自分がFANPノードであることを認識しており、更にこれから受信端末8005に対して送信するのが映像であることを認識している。よって、これから送出する映像を途中のFANPノードにおいて、IP処理を伴わずにデータリンク処理のみでフォワードしてもらうことを意図している。このため、送信端末8001は、受信端末8004との間で、IPパケットによる初期設定や符号化方式の確認、映像受付能力の可否などを確認した上で、映像送出の準備にはいる。
【0396】
まず、送信端末8001は、ATMシグナリングを行い、適当なVCを取得する(ステップS5705)。そして、そのVCを通して、第1のコネクタ8002に対して、FANPのやり取りを行う。やり取りについては、第1の実施形態と同様である(ステップS5706〜ステップS5709)。
【0397】
さて、第1のコネクタ8002は、プロポーズメッセージには、宛先となるIPアドレスとMACアドレスの両方が記述されている(ステップS5710)。
【0398】
受信FANPノードである第2のコネクタ8003は、MACアドレスのみに対応するFANPノードであるので、このMACアドレスのフィールドのみを参照する。そして、自分がMACアドレスのみに対応するFANPノードであることを知らせるため、プロポーズACKメッセージをMACアドレスのみを記述して第1のコネクタ8002に送り返す(ステップS5711)。
【0399】
これを受信した第1のコネクタ8002は、下流側のFANPノードがMACアドレスによるFANPを希望していることを知ることができる。そこで、第1のコネクタ8002は宛先MACアドレスを含んだオファーメッセージを隣接FANPノードである第2のコネクタ8003に送出する。これは、オファーメッセージの宛先MACアドレスを受信端末8005のMACアドレスにして、これを行ってもよいし、FANPメッセージに、新たなオプションフィールドを設けてこれを行ってもよい(ステップS5712)。
【0400】
第2のコネクタ8003による、FANPメッセージのFANP処理部への取り込みは、イーサネットフレームのプロトコル種別のフィールドを参照することにより行う。
【0401】
このようにして、順次受信端末8005までFANP処理を行っていき、順にリダイレクトメッセージを逆方向に送信することで、おのおののコネクタでの設定が完了していく。最後にリダイレクトメッセージを受信した送信端末8001は、このVCを通して、映像データの送信を開始する。上記の手続きにより、途中経路における通信資源の確保が第1〜第4の実施形態の場合と同様に行われることから通信品質を保証する形での映像データ配信が可能になることがわかる。
【0402】
ここで、第1のイーサネット8012、第2のイーサネット8013において、映像専用のMACアドレスを第2の実施形態のように取得してもよいが、本来のMACアドレス(この場合M.2)をつかって、そのまま帯域予約を行ってもよい。この場合、第1のイーサネット8012、第2のイーサネット8013においては、受信端末8005宛のMACアドレスが、イーサフレームの宛先フィールドに記載されているものについては、すべて途中のブリッジ(第2のコネクタ8003、第3のコネクタ8004)において要求した通信品質が保証されたものになっている。すなわち、本発明では、単純なブリッジ接続型のネットワークにおいても、宛先MACアドレス毎に、必要な通信品質の予約等ができるメカニズムになっている。また、このメカニズムは、ブリッジとルータ、あるいは、IPアドレス対応のFANPノード等が混在した環境(第1の実施形態や、第5の実施形態のような環境)において、エンド−エンドに経路の制御と通信品質の予約、それに対応するデータリンクレイヤの制御とその接続を行うことができる点で、より柔軟なものである。
【0403】
以上、5つの実施形態を示してきたが、これらは、主にIPアドレスによる制御である。しかし、本発明は、E.164やコルバ、あるいは拡張OLEといった、「あらゆるネットワークを束ねることのできるアドレス体系」について拡張可能である事は明らかである。
【0404】
また、ここまでの説明は現行のインターネット(即ちIPv4)を念頭に行ってきたが、次世代のインターネット(IPv6)においても、同様の運用が可能であることは言うまでもない。
【0405】
【発明の効果】
以上説明したように、本発明の通信端末装置、中継装置、IEEE1394間接続ケーブルを接続してネットワークを構成することにより、1394バスを含んだ家庭ネットワークの大規模化、及び多様化(種々のネットワークを使用)が可能となる。また、これらの方式は、公衆網、インターネットとも親和性が良い。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る通信ネットワークの構成例を概略的に示した図。
【図2】IPサブネットNa側のIPアドレスとデータリンクレイヤアドレス(ATMアドレス)の対応例を示した図。
【図3】IPサブネットNb側のIPアドレスとデータリンクレイヤアドレス(ATMアドレス)の対応例を示した図。
【図4】案内サーバと映像端末間のシーケンスを説明するための図。
【図5】局内ATMバックボーン網内のデフォルトVCを概略的に示した図。
【図6】セルスイッチルータの構成例を示した図。
【図7】セルスイッチルータと映像端末間のアドレス解決のシーケンスを説明するための図。
【図8】セルスイッチルータと映像端末間のアドレス解決の他のシーケンスを説明するための図。
【図9】ARPパケットの受渡しに用いられるチャンネルの一例を示した図。
【図10】NIU(Network Interface Unit)の構成例を示した図。
【図11】FANPノードに具備されるルーチングテーブルの一例を示した図。
【図12】ARP処理シーケンスを説明するためのフローチャート。
【図13】1394バス上のARP要求パケットのフォーマットの一例を示した図。
【図14】1394コネクタの構成例を示した図。
【図15】1394バス上のARP応答パケットのフォーマットの一例を示した図。
【図16】1394バス上に送出されるIPパケットのフォーマットの一例を示した図。
【図17】ビデオサーバから映像端末への映像送信のシーケンスを説明するための図。
【図18】図17のシーケンスをより詳細に示した図。
【図19】1394コネクタの1394スイッチ部に具備される対応テーブルの一例を示した図。
【図20】VCID交換メッセージのフォーマットの一例を示した図。
【図21】ビデオサーバと映像端末間のデフォルトデータコネクション(VC)と専用データコネクションの一例を示した図。
【図22】案内サーバとセルスイッチルータ間のFANPメッセージの交換の際のシーケンスを説明するための図。
【図23】フロー交換メッセージのフォーマットの一例を示した図。
【図24】フロー交換メッセージ(オファーメッセージ)の一例を示した図。
【図25】フロー交換メッセージ(ペンディングメッセージ)の一例を示した図。
【図26】1394バス上のVCID交換メッセージの一例を示した図。
【図27】1394バス上のフロー交換メッセージ(リダイレクトメッセージ)の一例を示した図。
【図28】ビデオサーバから映像端末へのデータリンクコネクションの一例を示した図。
【図29】データリンクコネクションの開放シーケンスを説明するための図。
【図30】データリンクコネクションの維持と開放をソフトステートにて行う場合のシーケンスを説明するための図。
【図31】2つ以上のソースからの情報データのフローを同一のデータリンクコネクションにマージする場合のフローIDの使用方法を説明するための図。
【図32】セルスイッチルータから映像端末の間の帯域の予約制御を拡張されたFANPにより行う場合のシーケンスを説明するための図。
【図33】本発明の第2の実施形態に係る通信ネットワークの構成例を概略的に示した図。
【図34】ハーフコネクタの構成例を示した図。
【図35】ハーフコネクタの1394・イーサ乗せ換え部に具備される(1394側から受信したデータをイーサネット側へ送出する場合の)対応テーブルの一例を示した図。
【図36】ハーフコネクタの1394・イーサ乗せ換え部に具備される(イーサネット側から受信したデータを1394側へ送出する場合の)対応テーブルの一例を示した図。
【図37】ARPのシーケンスを説明するための図。
【図38】映像伝送までのシーケンスを詳細に説明するたの図。
【図39】送信端末から受信端末までの映像の通信経路の一例を示した図。
【図40】1394間相互接続ケーブルの物理形状の一例を示した図で、2つのハーフコネクタ間に接続されるケーブルがイーサネットケーブルの場合を示したものである。
【図41】1394間相互接続ケーブルの物理形状の他の例を示した図で、2つのハーフコネクタ間を無線伝送路にて接続する場合を示したものである。
【図42】送信端末がデジタル衛星放送(またはデジタルCATV等)からのMPEG映像を受信する機能を具備し、これをMPEGover1394のフォーマットに直して、あるいはMPEGデコーダにより生の映像データに変換した後、受信端末へ送信する場合のホームネットワークの構成例を示した図。
【図43】図42の送信端末の構成例を示した図。
【図44】図42の送信端末の他の構成例を示した図。
【図45】本発明の第3の実施形態に係る通信ネットワークの構成を概略的に示した図。
【図46】図45のFANPノード装置の構成例を示した図。
【図47】ARPシーケンスを説明するための図。
【図48】映像伝送までのシーケンスを詳細に説明するための図。
【図49】送信端末から受信端末までの映像の通信経路の一例を示した図。
【図50】1394間相互接続ケーブルの物理形状のさらに他の例を示した図で、1394コネクタが、比較的短い1394専用ケーブルに接続されている形で、ハーフコネクタに接続され、ハーフコネクタから長大なイーサネットケーブルがあらかじめつながれている場合を示している。
【図51】本発明の第4の実施形態に係る通信ネットワークの構成例を概略的に示した図で、2つのハーフコネクタ間をATM通信路で接続する場合である。
【図52】ハーフコネクタの構成例を示した図で、1394とATM間の乗せ替えを行うものである。
【図53】本発明の第4の実施形態に係る通信ネットワークの他の構成例を概略的に示した図で、2つのハーフコネクタ間にFANP−ATMスイッチが接続されている場合である。
【図54】図53のFANP−ATMスイッチの構成例を示した図。
【図55】本発明の第5の実施形態に係る通信ネットワークの構成例を概略的に示した図。
【図56】ハーフコネクタの構成例を示したものでイーサと1394間の乗せ替えを行うものである。
【図57】第5の実施形態に係る通信ネットワークにおけるARPから映像伝送までのシーケンスを説明するための図。
【符号の説明】
101…ビデオサーバ(通信端末)、102…案内サーバ(通信端末)、103…セルスイッチルータ(中継装置)、104…NIU(中継装置)、105…1394コネクタ(中継装置)、106…映像端末(通信端末)、4002…第1のハーフコネクタ(中継装置)、4003…第2のハーフコネクタ(中継装置)。

Claims (11)

  1. 第1の物理ネットワークと第2の物理ネットワークを含む複数の物理ネットワークを介して前記第2のネットワークに接続された相手端末装置へ映像データを送信する前記第1の物理ットワークに接続された通信端末装置であって、
    少なくとも、前記第1の物理ネットワークに依存するヘッダ情報若しくはチャネル情報、前記相手端末装置へ送信する情報データを識別するための前記相手端末装置のアドレスを含むフローID及び帯域情報を含む制御メッセージを送信する第1の送信手段と、
    この第1の送信手段で送信された制御メッセージに呼応した、前記フローIDに対応する前記相手端末装置までの経路が設定された旨を通知する応答メッセージを受信する第1の受信手段と、
    この第1の受信手段で前記応答メッセージが受信されたとき、少なくとも前記ヘッダ情報若しくはチャネル情報と、前記フローIDとを含む前記情報データを前記相手端末装置に送信する第2の送信手段と、
    を具備したことを特徴とする通信端末装置。
  2. 圧縮されたデジタル映像データおよびまたはデジタル音声データを受信する第2の受信手段と、
    前記第2の受信手段で受信された圧縮されたデジタル映像データおよびまたはデジタル音声データを伸長する伸長手段とをさらに具備し、
    前記第2の送信手段は、前記伸長手段で伸長されたデジタル映像データ及びまたはデジタル音声データと、前記ヘッダ情報若しくはチャネル情報と、前記フローIDとを含む前記情報データを前記相手端末装置に送信することを特徴とする請求項1記載の通信端末装置。
  3. 第1の物理ネットワークと第2の物理ネットワークに接続し、前記第1の物理ネットワークから送信されるデータパケットを受信して、前記第2の物理ネットワークへ送信する中継装置において、
    前記第1の物理ネットワークから、少なくとも、前記第1の物理ネットワークに依存する第1のヘッダ情報若しくはチャネル情報と、受信端末へ送信されるデータパケット群を識別するための前記受信端末のアドレス情報を含むフローIDとを含む第1の制御メッセージを受信する第1の受信手段と、
    この第1の受信手段で前記第1の制御メッセージを受信したとき、前記アドレス情報から求められる前記第2の物理ネットワーク上の前記データパケット群の送信先に、前記フローIDを含む第2の制御メッセージを送信する第1の送信手段と、
    前記第1の送信手段で送信された第2の制御メッセージに呼応した、前記フローIDに対応する前記受信装置までの経路が設定された旨を通知する応答メッセージを前記第2の物理ネットワークから受信する第2の受信手段と、
    受信された前記応答メッセージを前記第1の物理ネットワークへ送信する第2の送信手段と、
    前記第1の物理ネットワークから、前記第1のヘッダ若しくはチャネル情報と、前記フローIDとを含むデータパケットを受信し、前記フローIDに対応するデータパケット群を送信する際に用いられる第2のヘッダ情報若しくはチャネル情報を当該データパケットに付加して前記第2の物理ネットワークへ送信する転送手段と、
    を具備したことを特徴とする中継装置。
  4. 前記第1の物理ネットワークは、IEEE1394バスであり、第1のヘッダ情報若しくはチャネル情報は、IEEE1394バスの同期チャネル番号であることを特徴とする請求項3記載の中継装置。
  5. 第2のヘッダ情報若しくはチャネル情報は、MAC(Media access control)アドレスであることを特徴とする請求項3記載の中継装置。
  6. 前記第の物理ネットワークはATM(Asynchronous Transfer Mode)ネットワークであり、前記第のヘッダ情報若しくはチャネル情報は、VPI(Virtual Path Identifier)/VCI(Virtual Channel identifier)であることを特徴とする請求項3記載の中継装置。
  7. 前記第2の物理ネットワークは無線ネットワークであり、前記第2のヘッダ情報若しくはチャネル情報は、無線パケットの宛先データリンクレイヤアドレスあるいは仮想識別子であることを特徴とする請求項3記載の中継装置。
  8. 前記アドレス情報は、IPアドレスであることを特徴とする3記載の中継装置。
  9. 前記のアドレス情報は、IPアドレスであることを特徴とする1記載の通信端末装置。
  10. 前記第1および第2の制御メッセージは、後に前記データパケット群を転送するために確保する必要のある帯域を示す帯域情報を含み、
    前記第1の受信手段で前記第1の制御メッセージを受信したとき、前記帯域情報に基づき前記第2の物理ネットワーク上に前記帯域を確保することを特徴とする請求項3記載の中継装置。
  11. 前記第1および第2の制御メッセージは、前記データパケット群にて転送されるデータの属性情報を含むことを特徴とする請求項3記載の中継装置。
JP26449696A 1996-10-04 1996-10-04 通信端末装置及び中継装置 Expired - Fee Related JP3719789B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26449696A JP3719789B2 (ja) 1996-10-04 1996-10-04 通信端末装置及び中継装置
EP19970117278 EP0835037A3 (en) 1996-10-04 1997-10-06 Data transmitting node, and network inter-connection node suitable for home network environment
US09/036,197 US6751221B1 (en) 1996-10-04 1998-03-06 Data transmitting node and network inter-connection node suitable for home network environment
US10/830,020 US7466705B2 (en) 1996-10-04 2004-04-23 Data transmitting node and network inter-connection node suitable for home network environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26449696A JP3719789B2 (ja) 1996-10-04 1996-10-04 通信端末装置及び中継装置

Publications (2)

Publication Number Publication Date
JPH10112730A JPH10112730A (ja) 1998-04-28
JP3719789B2 true JP3719789B2 (ja) 2005-11-24

Family

ID=17404054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26449696A Expired - Fee Related JP3719789B2 (ja) 1996-10-04 1996-10-04 通信端末装置及び中継装置

Country Status (2)

Country Link
EP (1) EP0835037A3 (ja)
JP (1) JP3719789B2 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032261A (en) * 1997-12-30 2000-02-29 Philips Electronics North America Corp. Bus bridge with distribution of a common cycle clock to all bridge portals to provide synchronization of local buses, and method of operation thereof
WO1999055051A1 (en) * 1998-04-17 1999-10-28 Koninklijke Kpn N.V. Multimedia subscriber network
EP0951157A1 (en) * 1998-04-17 1999-10-20 Koninklijke KPN N.V. Multimedia subscriber network
JP4168302B2 (ja) * 1998-05-12 2008-10-22 ソニー株式会社 情報受信装置および方法、並びに記録媒体
KR100385967B1 (ko) * 1998-05-23 2003-07-16 삼성전자주식회사 네트웍상에서의서버기기접속방법
JP3571912B2 (ja) * 1998-05-26 2004-09-29 株式会社東芝 通信装置およびサービス提供方法
CN1272277A (zh) * 1998-05-29 2000-11-01 索尼株式会社 中继装置和方法、通信系统以及记录媒体
KR100311020B1 (ko) 1998-08-17 2001-12-20 윤종용 네트웍간 데이터 전송 방법
US6505255B1 (en) * 1999-04-29 2003-01-07 Mitsubishi Electric Information Technology Center America, Inc. (Ita) Method for formatting and routing data between an external network and an internal network
WO2000011840A2 (en) * 1998-08-25 2000-03-02 Mitsubishi Electric Corporation Home gateway
KR100335432B1 (ko) * 1998-11-18 2002-06-20 윤종용 Ieee 1394 등시성 데이타의 외부 동기 네트워크로의 전송시에 채널 재배열 방법 및 그 장치
US6466549B1 (en) * 1999-04-12 2002-10-15 Intel Corporation Broadcast discovery in a network having one or more 1394 buses
GB9921049D0 (en) * 1999-09-07 1999-11-10 Koninkl Philips Electronics Nv Clustered networked devices
EP1113626B1 (en) 1999-12-30 2009-04-22 Sony Deutschland GmbH Interface link layer device to build a distributed network
FR2804812A1 (fr) 2000-02-08 2001-08-10 Canon Kk Procede et dispositif de communication entre un premier et un deuxieme reseau
FI110151B (fi) * 2000-11-14 2002-11-29 Nokia Corp Menetelmä pakettien siirtämiseksi piirikytkentäisen verkon yli
CN1437814A (zh) * 2000-12-27 2003-08-20 松下电器产业株式会社 家庭总线系统上的路由处理及方法
US7212511B2 (en) * 2001-04-06 2007-05-01 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for VoIP wireless terminals
GB2375264B (en) 2001-05-02 2004-10-13 Mitel Knowledge Corp Remote assembly of messages for distributed applications
JP2003204482A (ja) * 2001-10-22 2003-07-18 Matsushita Electric Ind Co Ltd 放送装置
DE10160844B4 (de) * 2001-12-12 2005-07-07 Grundig Multimedia B.V. System zur Übertragung eines Datenstroms über ein Netzwerk an unterschiedliche Netzwerkprotokolle unterstützende Empfänger
JP2005535238A (ja) * 2002-08-01 2005-11-17 ジェネラル・インスツルメント・コーポレーション ホームネットワーク上の非ip映像トラッフィクとipトラッフィクとを統合するための方法及び装置
US7970863B1 (en) 2003-12-29 2011-06-28 AOL, Inc. Using a home-networking gateway to manage communications
EP1968251A1 (en) * 2007-03-09 2008-09-10 NTT DoCoMo, Inc. Method and apparatus for QoS resource reservation and configuration of multicast network resources
JP2009278288A (ja) * 2008-05-13 2009-11-26 Funai Electric Co Ltd ネットワーク機器
CN103248604B (zh) * 2012-02-01 2016-12-21 华为技术有限公司 增强VoIP数据上行覆盖的方法、终端及基站
JP6260346B2 (ja) * 2014-02-26 2018-01-17 住友電気工業株式会社 電力計測装置、端末装置、電力計測システム、通信制御方法および通信制御プログラム

Also Published As

Publication number Publication date
EP0835037A2 (en) 1998-04-08
JPH10112730A (ja) 1998-04-28
EP0835037A3 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP3719789B2 (ja) 通信端末装置及び中継装置
JP3660443B2 (ja) データ転送制御システム及び中継装置
US6751221B1 (en) Data transmitting node and network inter-connection node suitable for home network environment
US6751218B1 (en) Method and system for ATM-coupled multicast service over IP networks
CA2155768C (en) Methods and systems for interprocess communication and inter-network data transfer
JP3649367B2 (ja) パケット伝送制御方法および装置
US7383341B1 (en) Data transfer control device, relay device and control device suitable for home network environment
US20050071494A1 (en) Method and apparatus for providing fixed bandwidth communications over a local area network
WO1999059295A1 (fr) Dispositif et procede de reception d'information, dispositif de production d'information et systeme de communication d'information
JP3677153B2 (ja) 蓄積装置
CA2317343A1 (en) Communication control apparatus and method, communication system, and program storage medium
JP3519628B2 (ja) 中継装置
JPH10308758A (ja) 通信装置
JP4409776B2 (ja) Atmノードの内部制御経路の確立
KR100610522B1 (ko) 다른 전송 특성들을 사용하는 통신 네트워크
JP4327746B2 (ja) 中継装置
JPH10308764A (ja) ネットワーク間接続装置および通信装置および通信方法
US7636375B2 (en) Method for multimedia flow transport
KR20010022374A (ko) 중계 장치 및 방법, 통신 시스템, 및 기록 매체
JP2004531936A (ja) マルチキャスティング実現のためのマルチキャスティング中継方法
US20030200312A1 (en) Communication system with improved access network
JP3098183B2 (ja) 通信網の中継経路設定方法及び通信システム並びに通信装置
KR100264349B1 (ko) 랜 애뮬레이션에서의 비.유.에스 처리 방법
JP2009135950A (ja) 中継装置
JPH11103294A (ja) パケット伝送制御方法および装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

LAPS Cancellation because of no payment of annual fees