JP3716462B2 - Method for refining chromium-containing molten steel - Google Patents

Method for refining chromium-containing molten steel Download PDF

Info

Publication number
JP3716462B2
JP3716462B2 JP25556395A JP25556395A JP3716462B2 JP 3716462 B2 JP3716462 B2 JP 3716462B2 JP 25556395 A JP25556395 A JP 25556395A JP 25556395 A JP25556395 A JP 25556395A JP 3716462 B2 JP3716462 B2 JP 3716462B2
Authority
JP
Japan
Prior art keywords
molten steel
treatment
gas
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25556395A
Other languages
Japanese (ja)
Other versions
JPH0971807A (en
Inventor
元 新貝
哲洋 永谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25556395A priority Critical patent/JP3716462B2/en
Publication of JPH0971807A publication Critical patent/JPH0971807A/en
Application granted granted Critical
Publication of JP3716462B2 publication Critical patent/JP3716462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は含クロム溶鋼の精錬方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
含クロム鋼、例えばステンレス鋼を精錬するに際して、精錬炉内に収容した溶鋼中に酸素とArの混合ガスを大気中で吹き込んで溶鋼中のCを脱炭し、C濃度を低下させることが行われている。この脱炭精錬はAOD法として知られている。
【0003】
ところで大気中での脱炭精錬は、溶鋼中のC濃度が低くなってくると吹き込んだ酸素が脱炭のために有効に働かず、クロムを酸化してしまい、脱炭効率が悪くなる。
また脱炭に長時間かかり、この間に高価なArを多量に消費することとなるため、精錬コストが高くなってしまう。
【0004】
このようなことから、溶鋼中のC濃度があるレベルになったところで炉内を減圧状態とし、かかる減圧下で溶鋼中にArガス等の非酸化性ガスのみを吹き込んで溶鋼とスラグとを撹拌させ、その中で先の大気処理に際して生成した酸化クロムと溶鋼中のCとを反応させて脱炭を続行するとともに酸化クロムを一部還元する方法が本出願人によって提案されている(例えば特開平4−254509)。
この精錬方法では、C濃度が0.15〜0.05重量%に低下した段階で大気処理から減圧処理への切替えを行うようにしている。
【0005】
これは次の理由に基づいている。
即ち、C濃度がこれより高い段階で大気処理から減圧処理への切替えを行った場合、減圧処理に際して多量のCOガスが発生し、CO爆発を起こす恐れがあること、第二に酸化クロムと溶鋼中のCとの反応は吸熱反応であって、その反応が激しく起こると溶鋼の温度が大きく低下し、その後の還元剤等添加剤の投入による温度低下と相俟って、溶鋼温度が望ましくない温度まで低下してしまうことによる。
【0006】
詳述すると、出鋼時において溶鋼の温度はこれに続く鋳込みを良好に行うために一定温度以上、例えば溶融温度に対して一定温度以上高くしておく必要がある。
しかるに溶鋼温度が大きく低下してしまうと出鋼時において必要な温度を確保することができず、その後の鋳込みを良好に行えなくなってしまうからである。
【0007】
以上の理由により従来の方法にあってはC濃度が0.15重量%まで低下した時点で初めて大気処理から減圧処理への切替えを行うようにしていたのであるが、C濃度がより高い段階で大気処理から減圧処理への切替えが可能であれば精錬時間を更に短縮化でき、精錬コストも低減し得て望ましいものである。
【0008】
【課題を解決するための手段】
本願の発明はこのような課題を解決するためになされたものである。
而して本願の発明は、精錬炉内において含高クロム鋼の溶鋼中に大気中で酸素ガスを含むガスの吹込みを行って脱炭する大気処理を施した後、炉内を減圧状態に切り替えてガス吹込みによる脱炭を行う減圧処理を施す含クロム溶鋼の精錬方法において、前記大気処理から減圧処理への切替えを、溶鋼中のC濃度が0.3〜0.05重量%まで低下した段階で行うとともに、該減圧処理に際しては排ガスのガス分析を行いつつ該減圧処理を200〜15Torrの減圧下で行い、且つ該減圧処理への切替え後溶鋼中に非酸化性ガスの吹込みを行い、溶鋼とスラグとを撹拌させる中でスラグ中の酸化クロムと溶鋼中のCとを反応させて脱炭処理を行い、該脱炭処理後に且つ酸化クロムを還元するための還元剤の投入前において、酸素を含むガスの溶鋼中への吹込みを行ってクロムの酸化反応に伴う発熱を生ぜしめ、溶鋼温度を上昇させるようにし、更に前記排ガスのガス分析では排ガスのCO濃度,O 濃度及び排ガス温度測定を行い、その際のO 濃度の上昇を以てCO爆発の危険を予知し、減圧処理停止することを特徴とする。
【0009】
【作用及び発明の効果】
上記CO爆発は、排ガス中のCO濃度,O濃度,排ガス温度等の条件が一定の条件を満たしたときに発生する。
そこで本発明では排ガスのガス検知を行い、排ガス組成が爆発条件を満たさないように監視を行いつつ精錬を行えばC:0.3%まで切替時のC濃度を高め得ることを確認した。
【0010】
即ち、本発明は大気中でのO吹込みによる脱炭を行った後に減圧化で脱炭を行う精錬方法において、大気処理から減圧処理への切替えをC:0.3%(望ましくはC:0.2%)を上限値として行うものであり、かかる本発明によれば、大気処理から減圧処理への切替えを早い段階で行うことができ、従って脱炭効率を高め得て精錬時間を短縮化でき、また精錬コストを低減することが可能となる。
【0011】
尚、本発明において減圧処理に際しての圧力条件を200〜15Torrとしている理由は次の点にある。
即ち、200Torrよりも高い圧力の下では減圧処理を効果的に行うことができず、逆に15Torrより低い圧力の下では溶鋼のスプラッシュが激しくなることによる。
【0012】
本発明では、減圧処理への切替後、溶鋼中に非酸化性ガスの吹込みを行い、溶鋼とスラグとを撹拌させる中でスラグ中の酸化クロムと溶鋼中のCとを反応させて脱炭処理を行うもので、この減圧条件下での脱炭処理により溶鋼中のC濃度を所望の低レベル、例えば0.04%程度まで低下させることができる。即ち、減圧処理への切替時において溶鋼中にCが0.3%程度含有されていても、続く脱炭処理によってこれを所望の低レベルまで落すことが可能である。
【0013】
但し減圧処理当初の溶鋼中のC濃度がこれよりも高いと、上記脱炭処理にてはこれを所望低レベルまで落すことが難しくなる。
換言すれば、C:0.3%で大気処理から減圧処理への切替えを行った場合において、特に溶鋼中に脱炭源を供給しなくても、単に非酸化性ガスの吹込みによる撹拌を行うのみで溶鋼中のC濃度を所望低レベルまで低下させることができる。
【0014】
本発明はまた、還元剤の投入に先立って溶鋼中に酸素を含むガスの溶鋼中への吹込みを行ってクロムの酸化反応に基づく発熱を生ぜしめ、溶鋼温度を上昇させることを特徴としている。
この酸素の吹込みは脱炭後に行うものであるため、万一排ガス中に酸素が供給されても、既に排ガス中のCO濃度は低いためCO爆発の恐れはなく、また溶鋼を再度昇温させ得てこれを所望温度まで高めることができる。
【0015】
換言すれば、大気処理から減圧処理への切替えをC:0.3%の比較的高濃度段階で行った場合において、減圧処理の際に生ずる溶鋼の大きな温度降下を、この酸素ガスの吹込みによる発熱反応によって補償することができ、以て出鋼時の溶鋼温度を所望温度まで高めることができ、後の鋳込みを良好に行うことが可能となるのである。
【0016】
加えて上記大気処理に際しての溶鋼の最高到達温度を低くすることができ、従って精錬炉の耐火材の寿命を延長せしめることも可能となる。
尚、減圧処理において脱炭処理後の、酸素ガスを含むガス吹込みによって生成した酸化クロムは、その後の還元剤の投入によって還元処理される。
【0017】
本発明ではまた、上記ガス分析で排ガス中のCO濃度,O 濃度及び排ガス温度測定を行い、その際の排ガス中のO濃度が上昇したことを以てCO爆発の危険が発生したものとし、減圧処理停止する。
上記のようにCO爆発は排ガス中のCO濃度,O濃度,排ガス温度等の条件が一定の条件を満たさない限り発生することはない。
換言すれば、排ガス中に酸素の供給がなければCO爆発の危険はないのであり、そこで本発明では排ガス中の酸素濃度の上昇傾向を以て何らかの異常、例えば精錬炉の本体と蓋との間でリークが生じる等、異常が生じたものとして減圧処理停止するもので、本発明によれば安全な操業を確保することができる。
【0018】
【実施例】
次に本発明の実施例を以下に詳述する。
18Cr−8Niステンレス鋼を電炉溶解し、図2に示すように溶鋼10を精錬炉12内部に移して大気中で底部近傍の羽口18よりOとArの混合ガスを吹き込み、脱炭を行った。このとき、図1に示すようにOとArガスとの比率を溶鋼中のCの減少に応じて2段階に切り替えた。
この過程ではOと溶鋼中のCとの反応及びCrとの反応により発熱が生じ、これに伴って溶鋼10の温度は上昇する。
【0019】
従来の方法によって脱炭処理した場合、酸素の吹込みを終了した時点、具体的には大気処理を終了した時点で溶鋼10の温度は図1中破線Bで示しているようにピーク温度1740℃まで上昇したが(但し大気処理終了時のC濃度は0.3%より低い。例えば0.15%)、本例の方法では大気処理工程での全体のO吹込量を少なくすることによって、同図中Aで示しているように、最高温度を1710℃まで低下させることができた。
尚、精錬の際の当初温度は1525℃,Cの量は1.5%であった。
【0020】
次に、溶鋼10中のC量が0.3%まで低下した時点で精錬炉12内部を蓋体14で密閉した上、ダクト16を通じ、蒸気エジェクタ20及びウォーターポンプ22により炉内を40Torrまで減圧した上、羽口18から今度はArガスのみを吹き込んだ。
またこの減圧処理は、測定装置24にて、ダクト16内の排ガスのCO濃度,O濃度測定及び排ガスの温度測定を行いつつ実施した。
【0021】
この減圧下でのガス吹込みによって溶鋼10とスラグ26とが激しく撹拌され、スラグ26中の酸化クロムと溶鋼10中のCとの反応によって脱炭及び酸化クロムの還元が進行した。
このときの全体の反応は吸熱反応であり、これにより溶鋼10の温度は低下した(図1参照)。
【0022】
次に減圧状態を保ったまま、再び溶鋼中にO/Ar混合ガスを吹き込んだ。このときのOの吹込量は全体で100〜200Nmとした。これは上記大気処理に際して従来より減少させた吹込Oガス量の減少分に相当する量である。即ち、全工程を通じて見ればOの吹込量が従来の方法と同量となるように、この昇温工程においてOの吹込みを行った。
【0023】
このOの吹込みによってクロムが酸化され、その際の発熱反応によって溶鋼10の温度が再び上昇する。このときの到達温度は、従来の方法に従って還元処理を開始する時点の温度と等しい温度である。
【0024】
次に減圧状態を保ちつつ、吹込ガスをArガス単独に切り替えてFe−Siを投入し、生成した酸化クロムを還元し、その後所定の工程を経て出鋼を行った。出鋼時の温度は1680℃であった。
【0025】
以上のように本例の方法は、比較的早い段階で、即ち溶鋼中のC濃度が比較的高い段階で大気処理から減圧処理への切替えを行うものであり、全体として高クロム溶鋼の精錬を短時間で能率よく行うことができる。
またC濃度が比較的高い段階で大気処理から減圧処理に切り替えるものであるにも拘らず、排ガス分析によってCO爆発を確実に防止することができ、加えて減圧処理の工程で溶鋼温度を再度昇温させることから、最終的に出鋼時の温度を所望温度とすることができ、これに続く鋳込みを良好に行うことができる。
【0026】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその主旨を逸脱しない範囲において種々変更を加えた形態で構成可能である。
【図面の簡単な説明】
【図1】 本発明の実施例方法を実施する中で変化する溶鋼の温度を各工程との関係において示した図である。
【図2】 同方法の実施工程の要部をその装置とともに示す図である。
【符号の説明】
10 溶鋼
12 精錬炉
14 蓋体
16 ダクト
18 羽口
20 蒸気エジェクタ
22 ウォーターポンプ
24 測定装置
26 スラグ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for refining chromium-containing molten steel.
[0002]
[Prior art and problems to be solved by the invention]
When refining chromium-containing steel, such as stainless steel, a mixed gas of oxygen and Ar is blown into the molten steel accommodated in the refining furnace to decarburize C in the molten steel, thereby reducing the C concentration. It has been broken. This decarburization refining is known as the AOD method.
[0003]
By the way, in the decarburization refining in the atmosphere, when the C concentration in the molten steel becomes low, the blown oxygen does not work effectively for decarburization, oxidizes chromium, and the decarburization efficiency deteriorates.
In addition, decarburization takes a long time, and a large amount of expensive Ar is consumed during this period, so that the refining cost becomes high.
[0004]
For this reason, when the C concentration in the molten steel reaches a certain level, the furnace is depressurized, and only the non-oxidizing gas such as Ar gas is blown into the molten steel under such reduced pressure to stir the molten steel and slag. The present applicant has proposed a method in which chromium oxide produced during the previous atmospheric treatment reacts with C in molten steel to continue decarburization and partially reduce chromium oxide (for example, (Kaihei 254509).
In this refining method, switching from atmospheric treatment to decompression treatment is performed when the C concentration is reduced to 0.15 to 0.05% by weight.
[0005]
This is based on the following reason.
That is, when switching from atmospheric processing to decompression processing at a stage where the C concentration is higher than this, a large amount of CO gas may be generated during decompression processing, and a CO explosion may occur. Second, chromium oxide and molten steel The reaction with C in the inside is an endothermic reaction, and when the reaction occurs vigorously, the temperature of the molten steel is greatly decreased, and the temperature of the molten steel is undesirable due to the subsequent temperature decrease due to the addition of an additive such as a reducing agent. This is because it drops to temperature.
[0006]
More specifically, the temperature of the molten steel needs to be higher than a certain temperature, for example, higher than a certain temperature with respect to the melting temperature, in order to perform subsequent casting satisfactorily at the time of steel production.
However, if the molten steel temperature is greatly reduced, the necessary temperature cannot be ensured at the time of steel production, and subsequent casting cannot be performed satisfactorily.
[0007]
For the above reasons, in the conventional method, switching from the atmospheric treatment to the decompression treatment is performed for the first time when the C concentration is reduced to 0.15% by weight, but at a stage where the C concentration is higher. If switching from atmospheric treatment to decompression treatment is possible, the refining time can be further shortened and the refining cost can be reduced, which is desirable.
[0008]
[Means for Solving the Problems]
The invention of the present application has been made to solve such problems.
Thus, the invention of the present application is that in the refining furnace, after the atmospheric treatment is performed in which the decarburization is performed by blowing a gas containing oxygen gas into the molten steel of the high chromium steel in the atmosphere, the pressure inside the furnace is reduced. In the refining method for chromium-containing molten steel that performs depressurization treatment that performs decarburization by gas injection, switching from the atmospheric treatment to the depressurization treatment reduces the C concentration in the molten steel to 0.3 to 0.05% by weight. In the decompression process, the decompression process is performed under a reduced pressure of 200 to 15 Torr while analyzing the exhaust gas, and after switching to the decompression process, a non-oxidizing gas is blown into the molten steel. Performing decarburization treatment by reacting chromium oxide in the slag and C in the molten steel while stirring the molten steel and slag, and before introducing a reducing agent for reducing chromium oxide after the decarburization treatment In the gas containing oxygen Performing blowing into the steel caused the heat generated by the oxidation reaction of chromium, so as to raise the molten steel temperature, subjected to further CO concentration of the exhaust gas in the gas analysis of the exhaust gas, O 2 concentration and the exhaust gas temperature measurement, The increase in O 2 concentration at that time predicts the danger of CO explosion, and the decompression process is stopped.
[0009]
[Operation and effect of the invention]
The CO explosion occurs when conditions such as CO concentration, O 2 concentration and exhaust gas temperature in exhaust gas satisfy certain conditions.
Therefore, in the present invention, it was confirmed that the C concentration at the time of switching can be increased to C: 0.3% by performing gas refining while monitoring so that the exhaust gas composition does not satisfy the explosion condition.
[0010]
That is, according to the present invention, in a refining method in which decarburization is performed by depressurization after decarburization by blowing O 2 in the atmosphere, switching from atmospheric treatment to decompression treatment is performed at C: 0.3% (preferably C : 0.2%) as an upper limit value, and according to the present invention, switching from atmospheric treatment to decompression treatment can be performed at an early stage, so that decarburization efficiency can be improved and refining time can be increased. It can be shortened and the refining cost can be reduced.
[0011]
In the present invention, the reason why the pressure condition in the decompression process is 200 to 15 Torr is as follows.
That is, the pressure reduction treatment cannot be effectively performed under a pressure higher than 200 Torr, and conversely, the splash of molten steel becomes intense under a pressure lower than 15 Torr.
[0012]
In the present invention, after switching to the reduced pressure treatment, non-oxidizing gas is blown into the molten steel, and in the agitation of the molten steel and slag, chromium oxide in the slag and C in the molten steel react to decarburize. In this decarburization process under reduced pressure conditions, the C concentration in the molten steel can be reduced to a desired low level, for example, about 0.04%. That is, even when about 0.3% of C is contained in the molten steel at the time of switching to the decompression process, it can be lowered to a desired low level by the subsequent decarburization process.
[0013]
However, if the C concentration in the molten steel at the beginning of the decompression process is higher than this, it is difficult to lower it to a desired low level in the decarburization process.
In other words, when switching from atmospheric treatment to reduced pressure treatment at C: 0.3%, stirring by simply injecting a non-oxidizing gas is possible without particularly supplying a decarburization source into the molten steel. It is possible to reduce the C concentration in the molten steel only to a desired low level.
[0014]
The present invention is also characterized in that prior to the introduction of the reducing agent, a gas containing oxygen is blown into the molten steel to generate heat based on the oxidation reaction of chromium, and the molten steel temperature is raised. .
Since this oxygen injection is performed after decarburization, even if oxygen is supplied to the exhaust gas, the CO concentration in the exhaust gas is already low, so there is no risk of a CO explosion, and the temperature of the molten steel is raised again. And this can be raised to the desired temperature.
[0015]
In other words, when switching from the atmospheric treatment to the decompression process is performed at a relatively high concentration stage of C: 0.3%, the large temperature drop of the molten steel that occurs during the decompression treatment is caused by blowing this oxygen gas. Therefore, the temperature of the molten steel at the time of outgoing steel can be increased to a desired temperature, and the subsequent casting can be performed satisfactorily.
[0016]
In addition, the maximum temperature reached by the molten steel during the air treatment can be lowered, and therefore the life of the refractory material in the refining furnace can be extended.
In addition, the chromium oxide produced | generated by the gas blowing containing oxygen gas after a decarburization process in a pressure reduction process is reduce | restored by the injection | throwing-in of a reducing agent after that.
[0017]
In the present invention, the CO concentration in the exhaust gas, the O 2 concentration and the exhaust gas temperature are measured by the above gas analysis, and the risk of CO explosion is caused by the increase in the O 2 concentration in the exhaust gas at that time. processing it stops.
As described above, the CO explosion does not occur unless conditions such as CO concentration, O 2 concentration, and exhaust gas temperature in the exhaust gas satisfy certain conditions.
In other words, there because there is no risk of CO explosions Without supply of oxygen in the exhaust gas, where the present invention some abnormality with a rising trend of the oxygen concentration in the exhaust gas, between the main body and the lid, for example refining furnace The decompression process is stopped as an abnormality such as a leak occurs. According to the present invention, safe operation can be ensured.
[0018]
【Example】
Next, examples of the present invention will be described in detail below.
18Cr-8Ni stainless steel was melted in an electric furnace, and as shown in FIG. 2, the molten steel 10 was transferred into the refining furnace 12, and a mixed gas of O 2 and Ar was blown from the tuyere 18 near the bottom in the atmosphere to perform decarburization. It was. At this time, as shown in FIG. 1, the ratio of O 2 to Ar gas was switched to two stages according to the decrease in C in the molten steel.
In this process, heat is generated due to the reaction between O 2 and C in the molten steel and the reaction with Cr, and the temperature of the molten steel 10 increases accordingly.
[0019]
When the decarburization process is performed by a conventional method, the temperature of the molten steel 10 is 1740 ° C. at the peak temperature as shown by the broken line B in FIG. (However, the C concentration at the end of the air treatment is lower than 0.3%. For example, 0.15%). In the method of this example, by reducing the total amount of O 2 blown in the air treatment step, As indicated by A in the figure, the maximum temperature could be lowered to 1710 ° C.
The initial temperature during refining was 1525 ° C., and the amount of C was 1.5%.
[0020]
Next, when the amount of C in the molten steel 10 is reduced to 0.3%, the inside of the refining furnace 12 is sealed with a lid 14 and the inside of the furnace is reduced to 40 Torr through the duct 16 by the steam ejector 20 and the water pump 22. In addition, only Ar gas was blown from the tuyere 18 this time.
The decompression process was performed while measuring the CO concentration and O 2 concentration of the exhaust gas in the duct 16 and the temperature of the exhaust gas with the measuring device 24.
[0021]
The molten steel 10 and the slag 26 were vigorously stirred by the gas blowing under the reduced pressure, and decarburization and reduction of the chromium oxide proceeded by the reaction between the chromium oxide in the slag 26 and C in the molten steel 10.
The entire reaction at this time was an endothermic reaction, and as a result, the temperature of the molten steel 10 decreased (see FIG. 1).
[0022]
Next, the O 2 / Ar mixed gas was blown again into the molten steel while maintaining the reduced pressure state. The total amount of O 2 blown at this time was 100 to 200 Nm 3 . This is an amount corresponding to a decrease in the amount of blown O 2 gas that has been reduced as compared with the conventional air treatment. That is, blowing amount of O 2 when viewed through the entire process is such that the conventional method and the same amount, was blowing of O 2 in the heating step.
[0023]
Chromium is oxidized by the blowing of O 2 , and the temperature of the molten steel 10 rises again by an exothermic reaction. The ultimate temperature at this time is equal to the temperature at the time of starting the reduction process according to the conventional method.
[0024]
Next, while maintaining the reduced pressure state, the blowing gas was switched to Ar gas alone, Fe—Si was added, the generated chromium oxide was reduced, and then steel was produced through a predetermined process. The temperature at steeling was 1680 ° C.
[0025]
As described above, the method of this example switches from atmospheric treatment to reduced pressure treatment at a relatively early stage, that is, at a stage where the C concentration in the molten steel is relatively high. It can be performed efficiently in a short time.
In addition, despite the fact that the C concentration is relatively high, switching from the atmospheric treatment to the decompression treatment, the exhaust gas analysis can reliably prevent the CO explosion, and in addition, the molten steel temperature is raised again in the decompression treatment process. Since it is heated, the temperature at the time of steel output can be finally set to a desired temperature, and the subsequent casting can be performed satisfactorily.
[0026]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be configured in various modifications without departing from the spirit of the present invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing the temperature of a molten steel that changes during the implementation of an embodiment method of the present invention in relation to each step.
FIG. 2 is a view showing a main part of an implementation process of the method together with the apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Molten steel 12 Refining furnace 14 Cover body 16 Duct 18 Tuyere 20 Steam ejector 22 Water pump 24 Measuring apparatus 26 Slag

Claims (1)

精錬炉内において含高クロム鋼の溶鋼中に大気中で酸素ガスを含むガスの吹込みを行って脱炭する大気処理を施した後、炉内を減圧状態に切り替えてガス吹込みによる脱炭を行う減圧処理を施す含クロム溶鋼の精錬方法において
前記大気処理から減圧処理への切替えを、溶鋼中のC濃度が0.3〜0.05重量%まで低下した段階で行うとともに、該減圧処理に際しては排ガスのガス分析を行いつつ該減圧処理を200〜15Torrの減圧下で行い、且つ該減圧処理への切替え後溶鋼中に非酸化性ガスの吹込みを行い、溶鋼とスラグとを撹拌させる中でスラグ中の酸化クロムと溶鋼中のCとを反応させて脱炭処理を行い、該脱炭処理後に且つ酸化クロムを還元するための還元剤の投入前において、酸素を含むガスの溶鋼中への吹込みを行ってクロムの酸化反応に伴う発熱を生ぜしめ、溶鋼温度を上昇させるようにし、
更に前記排ガスのガス分析では排ガスのCO濃度,O 濃度及び排ガス温度測定を行い、その際のO 濃度の上昇を以てCO爆発の危険を予知し、減圧処理停止することを特徴とする含クロム溶鋼の精錬方法。
In the refining furnace, after the atmosphere treatment to decarburize by injecting oxygen-containing gas into the high chromium-containing molten steel in the atmosphere, the inside of the furnace is switched to a reduced pressure state and decarburization is performed by gas injection. In the method for refining chromium-containing molten steel subjected to the reduced pressure treatment, the switching from the atmospheric treatment to the reduced pressure treatment is performed at a stage where the C concentration in the molten steel is reduced to 0.3 to 0.05% by weight, and the reduced pressure treatment is performed. At that time, the pressure reduction treatment is performed under a reduced pressure of 200 to 15 Torr while performing a gas analysis of the exhaust gas, and after switching to the pressure reduction treatment, a non-oxidizing gas is injected into the molten steel to stir the molten steel and slag. In the molten steel containing oxygen gas, the chromium oxide in the slag is reacted with C in the molten steel to decarburize, and after the decarburizing treatment and before the introduction of the reducing agent for reducing the chromium oxide. Blowing into Te caused the heat generated by the oxidation reaction of chromium, so as to raise the molten steel temperature,
Further, in the gas analysis of the exhaust gas, the CO concentration, the O 2 concentration and the exhaust gas temperature of the exhaust gas are measured, the risk of CO explosion is predicted by the increase of the O 2 concentration at that time, and the decompression process is stopped. Method for refining molten steel.
JP25556395A 1995-09-06 1995-09-06 Method for refining chromium-containing molten steel Expired - Lifetime JP3716462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25556395A JP3716462B2 (en) 1995-09-06 1995-09-06 Method for refining chromium-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25556395A JP3716462B2 (en) 1995-09-06 1995-09-06 Method for refining chromium-containing molten steel

Publications (2)

Publication Number Publication Date
JPH0971807A JPH0971807A (en) 1997-03-18
JP3716462B2 true JP3716462B2 (en) 2005-11-16

Family

ID=17280466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25556395A Expired - Lifetime JP3716462B2 (en) 1995-09-06 1995-09-06 Method for refining chromium-containing molten steel

Country Status (1)

Country Link
JP (1) JP3716462B2 (en)

Also Published As

Publication number Publication date
JPH0971807A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
JPH02221336A (en) Smelting reduction method of ni ore
JP3176374B2 (en) Method for producing low carbon molten steel by vacuum degassing decarburization
JP3716462B2 (en) Method for refining chromium-containing molten steel
JP3531218B2 (en) Method for producing low carbon chromium-containing steel
KR910009961B1 (en) Process for producing low p chromium-containing steel
CZ299403B6 (en) Process for producing stainless steel, particularly refined steels containing chromium and chromium and nickel
JP3752801B2 (en) Method for melting ultra-low carbon and ultra-low nitrogen stainless steel
JPH09165615A (en) Denitrifying method for molten metal
RU2778340C1 (en) Method for steel smelting in an electric arc furnace
JPH0971809A (en) Method for refining chromium-containing molten steel
JPH0558050B2 (en)
JPH11286713A (en) Method for refining chromium-containing molten steel
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
JP3176679B2 (en) Converter scouring method
US4066442A (en) Method of making chrome steel in an electric arc furnace
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JP2850546B2 (en) Refining method of high chrome steel
JPS62116752A (en) Manufacture of low-or medium-carbon ferroalloy
JPH0250165B2 (en)
JP2914126B2 (en) Copper removal and tin removal from molten iron
JPH02209414A (en) Method for producing dead soft steel under atmosphere
JP3804143B2 (en) Atmosphere control method during ladle stirring
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JPH08302417A (en) Method for melting chromium steel
JPH01294818A (en) Method for vacuum-treating stainless steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

EXPY Cancellation because of completion of term