JP3714980B2 - Amine compounds - Google Patents

Amine compounds Download PDF

Info

Publication number
JP3714980B2
JP3714980B2 JP25968894A JP25968894A JP3714980B2 JP 3714980 B2 JP3714980 B2 JP 3714980B2 JP 25968894 A JP25968894 A JP 25968894A JP 25968894 A JP25968894 A JP 25968894A JP 3714980 B2 JP3714980 B2 JP 3714980B2
Authority
JP
Japan
Prior art keywords
general formula
following general
defined above
represented
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25968894A
Other languages
Japanese (ja)
Other versions
JPH0899941A (en
Inventor
富山裕光
中西直子
伊原郁子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP25968894A priority Critical patent/JP3714980B2/en
Priority to EP19940117206 priority patent/EP0650955B1/en
Priority to DE1994612567 priority patent/DE69412567T2/en
Priority to US08/332,726 priority patent/US5639914A/en
Publication of JPH0899941A publication Critical patent/JPH0899941A/en
Priority to US08/738,326 priority patent/US5707747A/en
Application granted granted Critical
Publication of JP3714980B2 publication Critical patent/JP3714980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、有機電界発光素子などに用いられる電荷輸送材料として有用な新規アミン化合物に関する。
【0002】
【従来の技術】
有機化合物を構成要素とする電界発光素子は、従来より検討されていたが、充分な発光特性が得られていなかった。しかし、近年数種の有機材料を積層した構造とすることにより、その特性が著しく向上し、以来、有機物を用いた電界発光素子に関する検討が活発に行われている。この積層構造とした電界発光素子はコダック社のC.W.Tangらにより最初に報告されたが〔Appl.Phys.Lett.51(1997)913〕、この中では10V以下の電圧で1000cd/m2以上の発光が得られており、従来より実用化されている無機電界発光素子が200V以上の高電圧を必要とするのに比べ、格段に高い特性を有することが示された。
【0003】
これら積層構造の電界発光素子は、有機蛍光体と電荷輸送性の有機物(電荷輸送材)及び電極を積層した構造となっており、それぞれの電極より注入された電荷(正孔及び電子)が電荷輸送材中を移動して、それらが再結合することによって発光する。有機蛍光体としては、8−キノリノールアルミニウム錯体やクマリリンなど蛍光を発する有機色素などが用いられている。また、電荷輸送材としては電子写真感光体用有機材料として良く知られた種々の化合物を用いて検討されており、例えばN,N’−ジ(m−トリル)−N,N’−ジフェニルベンジジンや1,1−ビス〔N,N−ジ(p−トリル)アミノフェニル〕シクロヘキサンといったジアミン化合物や4−(N,N−ジフェニル)アミノベンズアルデヒド−N,N−ジフェニルヒドラゾンなどのヒドラゾン化合物が挙げられる。更に、銅フタロシアニンのようなポルフィリン化合物も用いられている。
【0004】
ところで、有機電界発光素子は、高い発光特性を有しているが、発光時の安定性や保存安定性の点で充分ではなく、実用化には至っていない。素子の発光時の安定性、保存安定性における問題点の一つとして、電荷輸送材の安定性が指摘されている。電界発光素子の有機物で形成されている層は百〜数百nmと非常に薄く、単位厚さあたりに加えられる電圧は非常に高い。また、発光や通電による発熱もあり、従って電荷輸送材には電気的、熱的あるいは化学的な安定性が要求される。更に、一般的に素子中の電荷輸送層は、非晶質の状態にあるが、発光または保存による経時により、結晶化を起こし、これによって発光が阻害されたり、素子破壊を起こすといった現象が見られている。よって電荷輸送材には非晶質すなわちガラス状態を容易に形成し、かつ安定に保持する性能が要求される。
【0005】
このような電荷輸送材に起因する発光素子の安定性に関し、例えば、ジアミン化合物やポルフィリン化合物においては、電気的、熱的に安定なものが多く、高い発光特性が得られているが、結晶化による素子の劣化は解決されていない。また、ヒドラゾン化合物は、電気的、熱的安定性において充分ではないため、好ましい材料ではない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、発光特性のみならず、発光時の安定性、保存安定性に優れた有機電界発光素子を実現し得る電荷輸送材として有用で、かつ新規なアミン化合物を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、下記一般式(1)で表されるアミン化合物が提供される。
【0008】
【化41】

Figure 0003714980
(1)
【0009】
(式中、R1、R2、R3は同一でも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基またはフェニル基を表し、R4は水素原子、低級アルキル基、低級アルコキシ基または塩素原子を表し、A1は下記式で表される2価基を表す。)
【0010】
【化42】
Figure 0003714980
【0011】
【化43】
Figure 0003714980
【0012】
【化44】
Figure 0003714980
【0013】
又、本発明によれば、下記一般式(2)で表されるアミン化合物が提供される。
【0014】
【化45】
Figure 0003714980
(2)
【0015】
(式中、R5、R6は同一でも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基またはフェニル基を表し、R7は水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表し、A2は下記式で表される2価基を表す。)
【0016】
【化46】
Figure 0003714980
【0017】
【化47】
Figure 0003714980
【0018】
本発明の一般式(1)で表されるアミン化合物は新規化合物である。また、本発明はこれらアミン化合物の製造方法も提供するものである。これらの化合物は、相当するトリフェニルベンジジン化合物とジハロゲン化合物との縮合反応、あるいは、相当するジアミノ化合物のN,N’−ジアセチル体と相当する4’−ハロゲン化ビフェニリルアセトアニリド化合物との縮合反応による生成物を加水分解した後、相当するハロゲン化アリールと縮合反応することにより合成することができる。これら縮合反応はウルマン反応として知られる方法である。例えば、下記式
【0019】
【化48】
Figure 0003714980
【0020】
(式中、R4は上で定義した通りであり、Xは塩素原子、臭素原子またはヨウ素原子を表す。但し、R4とXが同時に塩素原子ではない。)で表される4,4’−ジハロゲン化ビフェニル化合物を下記式
【0021】
【化49】
Figure 0003714980
【0022】
(式中、R1は上で定義した通りである。)で表されるアニリド化合物と等量で縮合させ、下記式
【0023】
【化50】
Figure 0003714980
【0024】
(式中、R1、R4、Xは上で定義した通りである。但し、R4とXが同時に塩素原子ではない。)で表される4’−ハロゲン化ビフェニリルアセトアニリド化合物が得られる。この4’−ハロゲン化ビフェニリルアセトアニリド化合物は、更に、下記式
【0025】
【化51】
Figure 0003714980
【0026】
(式中、R2、R3は上で定義した通りである。)で表されるジフェニルアミン化合物と縮合反応した後、加水分解することにより、下記式
【0027】
【化52】
Figure 0003714980
【0028】
(式中、R1、R2、R3、R4は上で定義した通りである。)で表されるトリフェニルベンジジン化合物が得られる。このトリフェニルベンジジン化合物の2当量を1当量の下記式
【0029】
【化53】
Figure 0003714980
【0030】
(式中、X及びA1は上で定義した通りである。)で表されるジハロゲン化物を作用させて縮合することにより、本発明のアミン化合物が得られる。一方、下記式
【0031】
【化54】
Figure 0003714980
【0032】
(式中、A1は上で定義した通りである。)で表されるジアミノ化合物を原料とする場合は、アミノ基をアセチル化してジアセチル体とした後、下記式
【0033】
【化55】
Figure 0003714980
【0034】
(式中、R1及びXは上で定義した通りである。)で表されるハロゲン化アリールと縮合し、加水分解して、下記式
【0035】
【化56】
Figure 0003714980
【0036】
(式中、R1及びA1は上で定義した通りである。)で表されるジアリールジアミノ化合物とする。これに、ジハロゲン化ビフェニル化合物とアニリド化合物より上と同様にして合成した下記式
【0037】
【化57】
Figure 0003714980
【0038】
(式中、R2、R4、Xは上で定義した通りである。但し、R4とXが同時に塩素原子ではない。)で表される4’−ハロゲン化ビフェニリルアセトアニリド化合物を縮合させ、加水分解することにより、下記一般式(3)
【0039】
【化58】
Figure 0003714980
(3)
【0040】
(式中、R1、R2、R4及びA1は上で定義した通りである。)で表されるテトラアミン化合物が得られる。更にこのテトラアミン化合物に、下記式
【0041】
【化59】
Figure 0003714980
【0042】
(式中、R3及びXは上で定義した通りである。)で表されるハロゲン化アリールを縮合させることによっても本発明の化合物を得ることができる。また、前記縮合反応のうち、4,4’−ジハロゲン化ビフェニルとアセトアニリド化合物との反応においては、アセトアニリド化合物の代わりにベンズアニリドを用いても良い。
【0043】
又、本発明の一般式(2)で表されるアミン化合物は新規化合物である。また、本発明はこれらアミン化合物の製造方法も提供するものである。これらの化合物は、相当するハロゲン化ビフェニリルジフェニルアミン化合物と相当するジアミン化合物とを縮合させることにより合成することができる。あるいはまた相当するハロゲン化ビフェニリルジフェニルアミン化合物とアミド化合物との縮合反応による生成物を加水分解して得られるトリアミン化合物を相当するジハロゲン化物と縮合させることによっても合成することができる。これら縮合反応はウルマン反応として知られる方法である。例えば、下記式
【0044】
【化60】
Figure 0003714980
【0045】
(式中、R7及びXは上で定義した通りである。但し、R7とXは同時に塩素原子ではない。)で表される4,4’−ジハロゲン化ビフェニル化合物を下記式
【0046】
【化61】
Figure 0003714980
【0047】
(式中、R5、R6は上で定義した通りである。)で表されるジフェニルアミン化合物と当量で縮合させ、下記式
【0048】
【化62】
Figure 0003714980
【0049】
(式中、R5、R6、R7、Xは上で定義した通りである。但し、R7とXは同時に塩素原子ではない。)で表される4’−ハロゲン化ビフェニリルジフェニルアミン化合物が得られる。この、4’−ハロゲン化ビフェニリルジフェニルアミン化合物4当量を下記式
【0050】
【化63】
Figure 0003714980
【0051】
(式中、A2は上で定義した通りである。)で表されるジアミン化合物1当量に作用させて縮合することにより、本発明のアミン化合物が得られる。
【0052】
一方、ジハロゲン化ビフェニル化合物とジフェニルアミン化合物より上と同様にして合成した下記式
【0053】
【化64】
Figure 0003714980
【0054】
(式中、R5、R6、R7、及びXは上で定義した通りである。但し、R7とXは同時に塩素原子ではない。)で表される4’−ハロゲン化ビフェニリルジフェニルアミン化合物2当量をアセトアミド1当量に縮合させ、加水分解することにより、下記式
【0055】
【化65】
Figure 0003714980
【0056】
(式中、R5、R6、R7は上で定義した通りである。)で表されるトリアミン化合物が得られる。
更にこのトリアミン化合物2当量を下記式
【0057】
【化66】
Figure 0003714980
【0058】
(式中、X及びA2は上で定義した通りである。)で表されるジハロゲン化物1当量に作用させ縮合することによっても本発明の化合物を得ることができる。また、前記縮合反応のうち、4’−ハロゲン化ビフェニリルジフェニルアミン化合物2当量とアセトアミド1当量との縮合反応においては、アセトアミドの代わりにベンズアミドを用いても良い。
【0059】
前述した、種々のハロゲン化アリール類と種々のアミン化合物の縮合反応において、反応は無溶媒下または溶媒存在下で行うが、溶媒としてはニトロベンゼンやジクロロベンゼンなどが用いられる。脱酸剤としての塩基性化合物には炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウムなどが用いられる。また、通常、銅粉やハロゲン化銅などの触媒を用いて反応させる。反応温度は通常160〜230℃である。
【0060】
本発明により得られた新規なアミン化合物は、容易にガラス状態を形成しかつ安定に保持すると共に、熱的、化学的にも安定であり、有機電界発光素子における電荷輸送材料として極めて有用である。また、基本的に高い電荷輸送能を有しており、電子写真感光体をはじめとする電荷輸送性を利用する素子、システムに有効な材料であることはいうまでもない。このようにして得られた本発明の具体的な化合物を以下に示す。
【0061】
【化67】
Figure 0003714980
【0062】
【化68】
Figure 0003714980
【0063】
【化69】
Figure 0003714980
【0064】
【化70】
Figure 0003714980
【0065】
【化71】
Figure 0003714980
【0066】
【化72】
Figure 0003714980
【0067】
【化73】
Figure 0003714980
【0068】
【化74】
Figure 0003714980
【0069】
【化75】
Figure 0003714980
【0070】
【化76】
Figure 0003714980
【0071】
【化77】
Figure 0003714980
【0072】
【化78】
Figure 0003714980
【0073】
【化79】
Figure 0003714980
【0074】
【化80】
Figure 0003714980
【0075】
【化81】
Figure 0003714980
【0076】
以下、本発明を実施例により詳細に説明する。
【実施例】
以下に本発明を実施例によって具体的に示すが、本発明は以下の実施例によって限定されるものではない。
【0077】
実施例1
アセトアニリド20.0g(0.15モル)と4,4’−ジヨードビフェニル65.0g(0.16モル)、無水炭酸カリウム22.1g(0.16モル)、銅粉2.16g(0.034モル)、ニトロベンゼン35mlを混合し、190〜205℃で10時間反応させた。反応生成物をトルエン200mlで抽出し、不溶分をろ別除去後、濃縮乾固した。これをカラムクロマトにより精製して(担体;シリカゲル、溶離液;トルエン/酢酸エチル=6/1)、N−(4’−ヨード−4−ビフェニリル)アセトアニリド40.2g(収率64.8%)を得た。融点は、135.0〜136.0℃であった。
【0078】
次に4,4’−ジアミノ−1,1’−ジフェニルエーテル12.0g(0.06モル)を氷酢酸100mlに溶解し、40℃で無水酢酸13.5g(0.13モル)を滴下した。滴下後45℃で2時間反応し、反応液を氷水700ml中へ注加して、析出した結晶をろ過、水洗、乾燥した。この結晶をメタノール160mlで再結晶し、4,4’−ジアセトアミド−1,1’−ジフェニルエーテル13.4g(収率:78.3%)を得た。融点は231.0℃〜231.5℃であった。
【0079】
続いて4,4’−ジアセトアミド−1,1’−ジフェニルエーテル7.11g(0.025モル)、N−(4’−ヨード−4−ビフェニリル)アセトアニリド22.7g(0.055モル)、無水炭酸カリウム7.60g(0.055モル)及び銅粉0.70g(0.011モル)、ニトロベンゼン10mlを混合し、185〜195℃で8時間反応させた。反応生成物をトルエン500mlで抽出し、不溶分をろ別除去後、濃縮してオイル状物とした。オイル状物はイソアミルアルコール60mlに溶解し、水1ml、85%水酸化カリウム1.8g(0.027モル)を加え、130℃で加水分解した。水蒸気蒸留でイソアミルアルコールを留去後、トルエン250mlで抽出し、水洗、乾燥して濃縮した。濃縮物はカラムクロマトにより精製して(担体;シリカゲル、溶離液;トルエン/酢酸エチル=1/1)、4、4’−ビス(4’−ジアニリノ−4−ビフェニリルアミノ)−1,1’−ジフェニルエーテル8.93g(収率52.0%)を得た。融点は285.5〜286.5℃であった。
【0080】
更に、4、4’−ビス(4’−ジアニリノ−4−ビフェニリルアミノ)−1,1’−ジフェニルエーテル6.87g(0.01モル)、ヨードベンゼン24.5g(0.12モル)、無水炭酸カリウム6.08g(0.044モル)、銅粉0.51g(0.008モル)を混合し、195〜210℃で16.5時間反応させた。反応生成物をトルエン100mlで抽出し、不溶分をろ別除去後、濃縮後、n−ヘキサン350mlを加えて、粗結晶を取り出した。粗結晶は、カラムクロマトにより精製して(担体;シリカゲル、溶離液;トルエン/n−ヘキサン=3/4)、4、4’−ビス(4’−ジフェニルアミノ−4−ビフェニリルアニリノ)−1,1’−ジフェニルエーテル4.06g(収率41.0%)を得た。融点は175.0〜176.5℃であった。図1には赤外線吸収スペクトル(測定機器;日本分光工業(株)製IR−700、測定方法;KBr錠剤法)を示す。更に、本発明より見いだされた化合物が有用であることを、具体的な応用例によって説明する。
【0081】
応用例
十分に洗浄したガラス基板(ITO電極は成膜済み)に、前記実施例1で得られた化合物〔一般式(1);R1=H、R2=H、R3=H、R4=H及びA1は下記式で表される〕
【0082】
【化82】
Figure 0003714980
【0083】
を電荷輸送材として、0.1nm/秒の速度で真空蒸着により50nmの厚さまで蒸着した。蒸着した膜の上に、発光材として、精製したトリス(8−キノリノール)アルミニウム錯体を真空蒸着により、同じく0.1nm/秒の速度で、50nmの厚さまで蒸着した。更に、この膜の上に、真空蒸着によりMg/Ag電極を100nmの厚さで形成して、EL素子を作製した。これらの蒸着は、途中で真空を破らずに連続して行った。また、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引続き特性の測定を行った。素子の発光特性は100mA/cm2の電流を印加した場合の発光輝度で定義し、発光の寿命は200cd/m2の発光が得られる電流を連続で印加し、輝度が100cd/cm2になるまでの時間とした。また、保存安定性は室温、乾燥空気中に一定時間放置後、20mA/cm2の電流を印加し、輝度が初期発光特性の半分になるまでの時間で定義した。測定の結果、発光特性は3100cd/m2、発光の寿命は580時間、保存安定性は2100時間であった。比較のために、電荷輸送材として、N,N’−ジ(m−トリル)−N,N’―ジフェニルベンジジンを用い、同様の条件でEL素子を作製しその特性を調べた。発光特性、発光の寿命、保存安定性はそれぞれ、2200cd/m2、220時間、460時間であった。
【0084】
【発明の効果】
本発明により見いだされた新規アミン化合物は、電荷輸送性材料として有効に機能し、また、容易にガラス状態を形成しかつ安定にガラス状態を保持し、熱的、化学的にも安定なため、特に有機電界発光素子における電荷輸送材料として有用な物質である。
【0085】
【図面の簡単な説明】
【図1】実施例1により得られた化合物の赤外線吸収スペクトルを示す図面[0001]
[Industrial application fields]
The present invention relates to a novel amine compound useful as a charge transport material used for an organic electroluminescence device and the like.
[0002]
[Prior art]
Although an electroluminescent element having an organic compound as a constituent element has been studied conventionally, sufficient light emitting characteristics have not been obtained. However, in recent years, the structure has been remarkably improved by forming a structure in which several kinds of organic materials are laminated, and since then, studies on electroluminescent devices using organic substances have been actively conducted. The electroluminescent device having this laminated structure is a C.I. W. First reported by Tang et al. [Appl. Phys. Lett. 51 (1997) 913], in which light emission of 1000 cd / m 2 or more is obtained at a voltage of 10 V or less, and the inorganic electroluminescent element that has been put to practical use conventionally requires a high voltage of 200 V or more. In comparison, it was shown to have much higher characteristics.
[0003]
These electroluminescent elements having a laminated structure have a structure in which an organic phosphor, a charge transporting organic substance (charge transporting material) and an electrode are laminated, and charges (holes and electrons) injected from each electrode are charged. Light is emitted by moving through the transport material and recombining them. As the organic phosphor, an organic dye emitting fluorescence such as 8-quinolinol aluminum complex and coumarin is used. In addition, as a charge transport material, various compounds well known as organic materials for electrophotographic photoreceptors have been studied. For example, N, N′-di (m-tolyl) -N, N′-diphenylbenzidine is studied. And diamine compounds such as 1,1-bis [N, N-di (p-tolyl) aminophenyl] cyclohexane and hydrazone compounds such as 4- (N, N-diphenyl) aminobenzaldehyde-N, N-diphenylhydrazone. . Furthermore, porphyrin compounds such as copper phthalocyanine are also used.
[0004]
By the way, although the organic electroluminescent element has high light emission characteristics, it is not sufficient in terms of stability during light emission and storage stability, and has not yet been put into practical use. The stability of charge transport materials has been pointed out as one of the problems in stability and storage stability during light emission of the device. A layer formed of an organic material of the electroluminescent element is very thin, such as one hundred to several hundred nm, and a voltage applied per unit thickness is very high. In addition, there is also heat generation due to light emission and energization, and therefore the charge transport material is required to have electrical, thermal or chemical stability. Furthermore, although the charge transport layer in the device is generally in an amorphous state, crystallization occurs with the lapse of time due to light emission or storage, and this causes a phenomenon that the light emission is inhibited or the device is destroyed. It has been. Therefore, the charge transport material is required to have an ability to easily form an amorphous state, that is, a glass state, and to maintain it stably.
[0005]
Regarding the stability of light-emitting elements due to such charge transport materials, for example, many diamine compounds and porphyrin compounds are electrically and thermally stable, and have high light-emitting properties. Degradation of the device due to is not solved. Also, hydrazone compounds are not preferred materials because they are not sufficient in terms of electrical and thermal stability.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel amine compound that is useful as a charge transport material capable of realizing an organic electroluminescent device excellent in not only light emission characteristics but also light emission stability and storage stability. .
[0007]
[Means for Solving the Problems]
According to the present invention, an amine compound represented by the following general formula (1) is provided.
[0008]
Embedded image
Figure 0003714980
(1)
[0009]
(Wherein R1, R2 and R3 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a phenyl group , and R4 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. And A1 represents a divalent group represented by the following formula.)
[0010]
Embedded image
Figure 0003714980
[0011]
Embedded image
Figure 0003714980
[0012]
Embedded image
Figure 0003714980
[0013]
Moreover, according to this invention, the amine compound represented by following General formula (2) is provided.
[0014]
Embedded image
Figure 0003714980
(2)
[0015]
(Wherein R5 and R6 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a phenyl group , and R7 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. A2 represents a divalent group represented by the following formula.)
[0016]
Embedded image
Figure 0003714980
[0017]
Embedded image
Figure 0003714980
[0018]
The amine compound represented by the general formula (1) of the present invention is a novel compound. The present invention also provides a method for producing these amine compounds. These compounds are obtained by a condensation reaction between a corresponding triphenylbenzidine compound and a dihalogen compound, or a condensation reaction between an N, N′-diacetyl form of the corresponding diamino compound and a corresponding 4′-halogenated biphenylylacetanilide compound. The product can be synthesized by hydrolysis and then condensation reaction with the corresponding aryl halide. These condensation reactions are known as Ullmann reactions. For example, the following formula:
Embedded image
Figure 0003714980
[0020]
(Wherein R4 is as defined above, X represents a chlorine atom, a bromine atom or an iodine atom, provided that R4 and X are not chlorine atoms at the same time). A biphenyl compound is represented by the following formula:
Embedded image
Figure 0003714980
[0022]
(Wherein R1 is as defined above) and condensed in an equal amount with the following formula:
Embedded image
Figure 0003714980
[0024]
(Wherein R1, R4, and X are as defined above, provided that R4 and X are not simultaneously chlorine atoms), a 4′-halogenated biphenylylacetanilide compound is obtained. The 4′-halogenated biphenylylacetanilide compound is further represented by the following formula:
Embedded image
Figure 0003714980
[0026]
(Wherein, R2 and R3 are as defined above), and after condensation reaction with the diphenylamine compound represented by the following formula:
Embedded image
Figure 0003714980
[0028]
(Wherein R1, R2, R3, and R4 are as defined above), a triphenylbenzidine compound represented by the following formula is obtained. Two equivalents of this triphenylbenzidine compound are converted to one equivalent of the following formula:
Embedded image
Figure 0003714980
[0030]
(In the formula, X and A1 are as defined above.) The amine compound of the present invention is obtained by condensing with a dihalide represented by the formula. On the other hand, the following formula [0031]
Embedded image
Figure 0003714980
[0032]
(Wherein A1 is as defined above), the amino group is acetylated to form a diacetyl compound, and then the following formula:
Embedded image
Figure 0003714980
[0034]
(Wherein R1 and X are as defined above) and condensed with an aryl halide represented by the following formula:
Embedded image
Figure 0003714980
[0036]
(Wherein R1 and A1 are as defined above). To this, a dihalogenated biphenyl compound and an anilide compound were synthesized in the same manner as described above.
Embedded image
Figure 0003714980
[0038]
(Wherein R2, R4 and X are as defined above, provided that R4 and X are not chlorine atoms at the same time.) 4′-halogenated biphenylylacetanilide compound is condensed and hydrolyzed. The following general formula (3)
[0039]
Embedded image
Figure 0003714980
(3)
[0040]
(Wherein R1, R2, R4 and A1 are as defined above). Further, this tetraamine compound has the following formula:
Embedded image
Figure 0003714980
[0042]
The compound of the present invention can also be obtained by condensing an aryl halide represented by the formula (wherein R3 and X are as defined above). In the condensation reaction, in the reaction of 4,4′-dihalogenated biphenyl and an acetanilide compound, benzanilide may be used in place of the acetanilide compound.
[0043]
The amine compound represented by the general formula (2) of the present invention is a novel compound. The present invention also provides a method for producing these amine compounds. These compounds can be synthesized by condensing a corresponding halogenated biphenylyldiphenylamine compound and a corresponding diamine compound. Alternatively, it can also be synthesized by condensing a triamine compound obtained by hydrolysis of a product obtained by condensation reaction of a corresponding halogenated biphenylyldiphenylamine compound and an amide compound with a corresponding dihalide. These condensation reactions are known as Ullmann reactions. For example, the following formula:
Embedded image
Figure 0003714980
[0045]
(Wherein R7 and X are as defined above, provided that R7 and X are not simultaneously chlorine atoms), and a 4,4′-dihalogenated biphenyl compound represented by the following formula:
Embedded image
Figure 0003714980
[0047]
(Wherein R5 and R6 are as defined above) and condensed with an equivalent amount of the following formula:
Embedded image
Figure 0003714980
[0049]
(Wherein R 5, R 6, R 7 and X are as defined above, provided that R 7 and X are not chlorine atoms at the same time), a 4′-halogenated biphenylyl diphenylamine compound is obtained. 4 equivalents of this 4′-halogenated biphenylyldiphenylamine compound is represented by the following formula:
Embedded image
Figure 0003714980
[0051]
(In the formula, A2 is as defined above.) The amine compound of the present invention is obtained by condensing by acting on 1 equivalent of the diamine compound represented by the formula:
[0052]
On the other hand, the following formula synthesized in the same manner as above from a dihalogenated biphenyl compound and a diphenylamine compound:
Embedded image
Figure 0003714980
[0054]
(Wherein R5, R6, R7 and X are as defined above, provided that R7 and X are not chlorine atoms at the same time) 2 equivalents of 4′-halogenated biphenylyldiphenylamine compound By condensation to 1 equivalent of acetamide and hydrolysis, the following formula:
Embedded image
Figure 0003714980
[0056]
(Wherein R5, R6, and R7 are as defined above).
Further, 2 equivalents of this triamine compound are represented by the following formula:
Embedded image
Figure 0003714980
[0058]
(In the formula, X and A2 are as defined above.) The compound of the present invention can also be obtained by acting and condensing one equivalent of the dihalide represented by the formula. In the condensation reaction, in the condensation reaction of 2 equivalents of 4′-halogenated biphenylyldiphenylamine compound and 1 equivalent of acetamide, benzamide may be used instead of acetamide.
[0059]
In the above-described condensation reaction of various aryl halides and various amine compounds, the reaction is performed in the absence of a solvent or in the presence of a solvent, and nitrobenzene, dichlorobenzene, or the like is used as the solvent. As the basic compound as the deoxidizing agent, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, sodium hydroxide and the like are used. Moreover, it is made to react normally using catalysts, such as copper powder and copper halide. The reaction temperature is usually 160 to 230 ° C.
[0060]
The novel amine compound obtained by the present invention easily forms a glass state and stably holds it, and is also thermally and chemically stable, and is extremely useful as a charge transport material in an organic electroluminescence device. . Needless to say, it has a high charge transport ability and is an effective material for devices and systems utilizing charge transport properties such as electrophotographic photoreceptors. Specific compounds of the present invention thus obtained are shown below.
[0061]
Embedded image
Figure 0003714980
[0062]
Embedded image
Figure 0003714980
[0063]
Embedded image
Figure 0003714980
[0064]
Embedded image
Figure 0003714980
[0065]
Embedded image
Figure 0003714980
[0066]
Embedded image
Figure 0003714980
[0067]
Embedded image
Figure 0003714980
[0068]
Embedded image
Figure 0003714980
[0069]
Embedded image
Figure 0003714980
[0070]
Embedded image
Figure 0003714980
[0071]
Embedded image
Figure 0003714980
[0072]
Embedded image
Figure 0003714980
[0073]
Embedded image
Figure 0003714980
[0074]
Embedded image
Figure 0003714980
[0075]
Embedded image
Figure 0003714980
[0076]
Hereinafter, the present invention will be described in detail with reference to examples.
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
[0077]
Example 1
Acetanilide 20.0 g (0.15 mol), 4,4′-diiodobiphenyl 65.0 g (0.16 mol), anhydrous potassium carbonate 22.1 g (0.16 mol), copper powder 2.16 g (0. 034 mol) and 35 ml of nitrobenzene were mixed and reacted at 190 to 205 ° C. for 10 hours. The reaction product was extracted with 200 ml of toluene, and the insoluble matter was removed by filtration, followed by concentration to dryness. This was purified by column chromatography (carrier: silica gel, eluent: toluene / ethyl acetate = 6/1), and 40.2 g of N- (4′-iodo-4-biphenylyl) acetanilide (yield 64.8%) Got. The melting point was 135.0-136.0 ° C.
[0078]
Next, 12.0 g (0.06 mol) of 4,4′-diamino-1,1′-diphenyl ether was dissolved in 100 ml of glacial acetic acid, and 13.5 g (0.13 mol) of acetic anhydride was added dropwise at 40 ° C. After dropping, the mixture was reacted at 45 ° C. for 2 hours, the reaction solution was poured into 700 ml of ice water, and the precipitated crystals were filtered, washed with water, and dried. The crystals were recrystallized from 160 ml of methanol to obtain 13.4 g of 4,4′-diacetamide-1,1′-diphenyl ether (yield: 78.3%). The melting point was 231.0 ° C to 231.5 ° C.
[0079]
Subsequently, 7.11 g (0.025 mol) of 4,4′-diacetamide-1,1′-diphenyl ether, 22.7 g (0.055 mol) of N- (4′-iodo-4-biphenylyl) acetanilide, anhydrous 7.60 g (0.055 mol) of potassium carbonate, 0.70 g (0.011 mol) of copper powder and 10 ml of nitrobenzene were mixed and reacted at 185 to 195 ° C. for 8 hours. The reaction product was extracted with 500 ml of toluene, insolubles were removed by filtration, and then concentrated to an oily product. The oily substance was dissolved in 60 ml of isoamyl alcohol, 1 ml of water and 1.8 g (0.027 mol) of 85% potassium hydroxide were added, and the mixture was hydrolyzed at 130 ° C. After isoamyl alcohol was distilled off by steam distillation, the product was extracted with 250 ml of toluene, washed with water, dried and concentrated. The concentrate is purified by column chromatography (carrier: silica gel, eluent: toluene / ethyl acetate = 1/1), 4,4′-bis (4′-dianilino-4-biphenylylamino) -1,1 ′ -8.93 g (yield 52.0%) of diphenyl ether was obtained. The melting point was 285.5 to 286.5 ° C.
[0080]
Further, 4,4′-bis (4′-dianilino-4-biphenylylamino) -1,1′-diphenyl ether 6.87 g (0.01 mol), iodobenzene 24.5 g (0.12 mol), anhydrous 6.08 g (0.044 mol) of potassium carbonate and 0.51 g (0.008 mol) of copper powder were mixed and reacted at 195 to 210 ° C. for 16.5 hours. The reaction product was extracted with 100 ml of toluene, insolubles were removed by filtration, and after concentration, 350 ml of n-hexane was added to take out crude crystals. The crude crystals were purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 3/4), 4,4′-bis (4′-diphenylamino-4-biphenylylanilino) − 4.06 g (41.0% yield) of 1,1′-diphenyl ether was obtained. Melting point was 175.0-176.5 ° C. FIG. 1 shows an infrared absorption spectrum (measuring instrument: IR-700 manufactured by JASCO Corporation, measuring method: KBr tablet method). Furthermore, the usefulness of the compounds found from the present invention will be explained by specific application examples.
[0081]
Application Example On a sufficiently cleaned glass substrate (ITO electrode is already formed), the compound obtained in Example 1 [general formula (1); R1 = H, R2 = H, R3 = H, R4 = H and A1 is represented by the following formula]
[0082]
Embedded image
Figure 0003714980
[0083]
Was deposited to a thickness of 50 nm by vacuum deposition at a rate of 0.1 nm / second. On the deposited film, a purified tris (8-quinolinol) aluminum complex was deposited as a luminescent material by vacuum deposition at a rate of 0.1 nm / second to a thickness of 50 nm. Further, an Mg / Ag electrode having a thickness of 100 nm was formed on this film by vacuum deposition to produce an EL element. These vapor depositions were continuously performed without breaking the vacuum on the way. The film thickness was monitored with a crystal resonator. Immediately after the device was fabricated, the electrode was taken out in dry nitrogen, and the characteristics were subsequently measured. The light emission characteristics of the device are defined by the light emission luminance when a current of 100 mA / cm 2 is applied, and the lifetime of light emission is the time until a luminance of 100 cd / cm 2 is applied by continuously applying a current capable of obtaining light emission of 200 cd / m 2. It was. The storage stability was defined as the time until the luminance became half of the initial light emission characteristics after applying a current of 20 mA / cm 2 after standing for a certain period of time in dry air at room temperature. As a result of the measurement, the light emission characteristic was 3100 cd / m 2, the light emission lifetime was 580 hours, and the storage stability was 2100 hours. For comparison, an EL device was produced under the same conditions using N, N′-di (m-tolyl) -N, N′-diphenylbenzidine as a charge transport material, and its characteristics were examined. The emission characteristics, emission lifetime, and storage stability were 2200 cd / m 2, 220 hours, and 460 hours, respectively.
[0084]
【The invention's effect】
The novel amine compound found by the present invention effectively functions as a charge transporting material, easily forms a glass state and stably maintains the glass state, and is thermally and chemically stable. In particular, it is a substance useful as a charge transport material in an organic electroluminescence device.
[0085]
[Brief description of the drawings]
1 shows an infrared absorption spectrum of the compound obtained in Example 1. FIG.

Claims (6)

下記一般式(1)で表されるアミン化合物。
Figure 0003714980
(1)
(式中、R1、R2、R3は同一でも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基またはフェニル基を表し、R4は水素原子、低級アルキル基、低級アルコキシ基または塩素原子を表し、A1は下記式で表される2価基を表す。)
Figure 0003714980
Figure 0003714980
Figure 0003714980
An amine compound represented by the following general formula (1).
Figure 0003714980
(1)
(Wherein R1, R2 and R3 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a phenyl group , and R4 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. And A1 represents a divalent group represented by the following formula.)
Figure 0003714980
Figure 0003714980
Figure 0003714980
下記一般式(2)で表されるアミン化合物。
Figure 0003714980
(2)
(式中、R5、R6は同一でも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基またはフェニル基を表し、R7は水素原子、低級アルキル基、低級アルコキシ基または塩素原子を表し、A2は下記式で表される2価基を表す。)
Figure 0003714980
Figure 0003714980
An amine compound represented by the following general formula (2).
Figure 0003714980
(2)
(Wherein R5 and R6 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a phenyl group ; R7 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom; A2 represents a divalent group represented by the following formula.)
Figure 0003714980
Figure 0003714980
下記一般式(B)で表される4,4’−ジハロゲン化ビフェニル化合物と下記一般式(C)で表されるアニリド化合物を等量で縮合させ、下記一般式(D)で表される4’−ハロゲン化ビフェニリルアセトアニリド化合物を合成し、この4’−ハロゲン化ビフェニリルアセトアニリド化合物と下記一般式(E)で表されるジフェニルアミン化合物を縮合させた後、加水分解することによって、下記一般式(F)で表されるトリフェニルベンジジン化合物を合成し、更に、このトリフェニルベンジジン化合物の2当量と下記一般式(G)で表されるジハロゲン化物の1当量を縮合させることによって合成することを特徴とする、下記一般式(1)で表されるアミン化合物の製造方法。
Figure 0003714980
(B)
(式中、R4は上で定義した通りであり、Xは塩素原子、臭素原子またはヨウ素原子を表す。但し、R4とXが同時に塩素原子ではない。)
Figure 0003714980
(C)
(式中、R1は上で定義した通りであり、R8はメチル基またはフェニル基を表す。)
Figure 0003714980
(D)
(式中、R1、R4、R8、Xは上で定義した通りである。但し、R4とXが同時に塩素原子ではない。)
Figure 0003714980
(E)
(式中、R2、R3は上で定義した通りである。)
Figure 0003714980
(F)
(式中、R1、R2、R3、R4は上で定義した通りである。)
Figure 0003714980
(G)
(式中、X及びA1は上で定義した通りである。)
Figure 0003714980
(1)
(式中、R1、R2、R3は同一でも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基またはフェニル基を表し、R4は水素原子、低級アルキル基、低級アルコキシ基または塩素原子を表し、A1は下記式で表される2価基を表す。)
Figure 0003714980
Figure 0003714980
Figure 0003714980
A 4,4′-dihalogenated biphenyl compound represented by the following general formula (B) and an anilide compound represented by the following general formula (C) are condensed in an equal amount, and 4 represented by the following general formula (D): By synthesizing a '-halogenated biphenylylacetanilide compound, condensing this 4'-halogenated biphenylylacetanilide compound with a diphenylamine compound represented by the following general formula (E), and then hydrolyzing it, the following general formula Synthesizing a triphenylbenzidine compound represented by (F) and further condensing two equivalents of this triphenylbenzidine compound with one equivalent of a dihalide represented by the following general formula (G). A method for producing an amine compound represented by the following general formula (1):
Figure 0003714980
(B)
(In the formula, R4 is as defined above, and X represents a chlorine atom, a bromine atom, or an iodine atom, provided that R4 and X are not chlorine atoms at the same time.)
Figure 0003714980
(C)
(Wherein R1 is as defined above, and R8 represents a methyl group or a phenyl group.)
Figure 0003714980
(D)
(Wherein R1, R4, R8, and X are as defined above, provided that R4 and X are not chlorine atoms at the same time.)
Figure 0003714980
(E)
(Wherein R2 and R3 are as defined above.)
Figure 0003714980
(F)
(Wherein R1, R2, R3 and R4 are as defined above.)
Figure 0003714980
(G)
(Wherein X and A1 are as defined above.)
Figure 0003714980
(1)
(Wherein R1, R2 and R3 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a phenyl group, and R4 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. And A1 represents a divalent group represented by the following formula.)
Figure 0003714980
Figure 0003714980
Figure 0003714980
下記一般式(H)で表されるジアミノ化合物をアセチル化によってジアセチル体とし、下記一般式(I)で表されるハロゲン化アリールと縮合させた後、加水分解して下記一般式(J)で表されるジアリールジアミノ化合物を合成し、このジアリールジアミノ化合物に、ジハロゲン化ビフェニル化合物とアニリド化合物より合成した下記一般式(K)で表される4’−ハロゲン化ビフェニリルアセトアニリド化合物を縮合させた後、加水分解することによって、下記一般式(3)で表されるテトラアミン化合物を合成し、更にこのテトラアミン化合物に、下記一般式(L)で表されるハロゲン化アリールを縮合させることによって合成することを特徴とする、下記一般式(1)で表されるアミン化合物の製造方法。
Figure 0003714980
(H)
(式中、A1は上で定義した通りである。)
Figure 0003714980
(I)
(式中、R1及びXは上で定義した通りである。)
Figure 0003714980
(J)
(式中、R1及びA1は上で定義した通りである。)
Figure 0003714980
(K)
(式中、R2、R4、Xは上で定義した通りである。但し、R4とXが同時に塩素原子ではない。)
Figure 0003714980
(3)
(式中、R1、R2、R4及びA1は上で定義した通りである。)
Figure 0003714980
(L)
(式中、R3及びXは上で定義した通りである。)
Figure 0003714980
(1)
(式中、R1、R2、R3は同一でも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基またはフェニル基を表し、R4は水素原子、低級アルキル基、低級アルコキシ基または塩素原子を表し、A1は下記式で表される2価基を表す。)
Figure 0003714980
Figure 0003714980
Figure 0003714980
A diamino compound represented by the following general formula (H) is converted into a diacetyl form by acetylation, condensed with an aryl halide represented by the following general formula (I), and then hydrolyzed to give the following general formula (J). After synthesizing the diaryldiamino compound represented, and condensing the diaryldiamino compound with a 4′-halogenated biphenylylacetanilide compound represented by the following general formula (K) synthesized from a dihalogenated biphenyl compound and an anilide compound The tetraamine compound represented by the following general formula (3) is synthesized by hydrolysis, and further synthesized by condensing an aryl halide represented by the following general formula (L) to this tetraamine compound. A process for producing an amine compound represented by the following general formula (1):
Figure 0003714980
(H)
(Wherein A1 is as defined above.)
Figure 0003714980
(I)
(Wherein R1 and X are as defined above.)
Figure 0003714980
(J)
(Wherein R1 and A1 are as defined above.)
Figure 0003714980
(K)
(Wherein R2, R4 and X are as defined above, provided that R4 and X are not chlorine atoms at the same time.)
Figure 0003714980
(3)
(Wherein R1, R2, R4 and A1 are as defined above.)
Figure 0003714980
(L)
(Wherein R3 and X are as defined above.)
Figure 0003714980
(1)
(Wherein R1, R2 and R3 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a phenyl group, and R4 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. And A1 represents a divalent group represented by the following formula.)
Figure 0003714980
Figure 0003714980
Figure 0003714980
下記一般式(M)で表される4,4’−ジハロゲン化ビフェニル化合物と下記一般式(N)で表されるジフェニルアミン化合物を当量で縮合させて、下記一般式(O)で表される4’−ハロゲン化ビフェニリルジフェニルアミン化合物を合成し、この4’−ハロゲン化ビフェニリルジフェニルアミン化合物の4当量と下記一般式(P)で表されるジアミン化合物の1当量を縮合することによって合成することを特徴とする、下記一般式(2)で表されるアミン化合物の製造方法。
Figure 0003714980
(M)
(式中、R7及びXは上で定義した通りである。但し、R7とXは同時に塩素原子ではない。)
Figure 0003714980
(N)
(式中、R5、R6は上で定義した通りである。)
Figure 0003714980
(O)
(式中、R5、R6、R7、Xは上で定義した通りである。但し、R7とXは同時に塩素原子ではない。)
Figure 0003714980
(P)
(式中、A2は上で定義した通りである。)
Figure 0003714980
(2)
(式中、R5、R6は同一でも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基またはフェニル基を表し、R7は水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表し、A2は下記式で表される2価基を表す。)
Figure 0003714980
Figure 0003714980
A 4,4′-dihalogenated biphenyl compound represented by the following general formula (M) and a diphenylamine compound represented by the following general formula (N) are condensed with an equivalent amount, and 4 represented by the following general formula (O): Synthesizing a '-halogenated biphenylyldiphenylamine compound by condensing 4 equivalents of the 4'-halogenated biphenylyldiphenylamine compound and 1 equivalent of a diamine compound represented by the following general formula (P). A method for producing an amine compound represented by the following general formula (2):
Figure 0003714980
(M)
(Wherein R7 and X are as defined above, provided that R7 and X are not chlorine atoms at the same time.)
Figure 0003714980
(N)
(Wherein R5 and R6 are as defined above.)
Figure 0003714980
(O)
(Wherein R5, R6, R7 and X are as defined above, provided that R7 and X are not chlorine atoms at the same time.)
Figure 0003714980
(P)
(Wherein A2 is as defined above.)
Figure 0003714980
(2)
(Wherein R5 and R6 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a phenyl group, and R7 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. A2 represents a divalent group represented by the following formula.)
Figure 0003714980
Figure 0003714980
ジハロゲン化ビフェニル化合物とジフェニルアミン化合物より合成した下記一般式(O)で表される4’−ハロゲン化ビフェニリルジフェニルアミン化合物の2当量とアセトアミドまたはベンズアミドの1当量を縮合させ、加水分解することによって、下記一般式(Q)で表されるトリアミン化合物を合成し、更に、このトリアミン化合物の2当量と下記一般式(R)で表されるジハロゲン化物の1当量を縮合させることによって合成することを特徴とする、下記一般式(2)で表されるアミン化合物の製造方法。
Figure 0003714980
(O)
(式中、R5、R6、R7、及びXは上で定義した通りである。但し、R7とXは同時に塩素原子ではない。)
Figure 0003714980
(Q)
(式中、R5、R6、R7は上で定義した通りである。)
Figure 0003714980
(R)
(式中、X及びA2は上で定義した通りである。)
Figure 0003714980
(2)
(式中、R5、R6は同一でも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基またはフェニル基を表し、R7は水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表し、A2は下記式で表される2価基を表す。)
Figure 0003714980
Figure 0003714980
By condensing and hydrolyzing 2 equivalents of 4′-halogenated biphenylyldiphenylamine compound represented by the following general formula (O) synthesized from a dihalogenated biphenyl compound and a diphenylamine compound and 1 equivalent of acetamide or benzamide, A triamine compound represented by the general formula (Q) is synthesized, and further synthesized by condensing 2 equivalents of this triamine compound and 1 equivalent of a dihalide represented by the following general formula (R). The manufacturing method of the amine compound represented by following General formula (2).
Figure 0003714980
(O)
(Wherein R5, R6, R7, and X are as defined above, provided that R7 and X are not chlorine atoms at the same time.)
Figure 0003714980
(Q)
(Wherein R5, R6 and R7 are as defined above.)
Figure 0003714980
(R)
(Wherein X and A2 are as defined above.)
Figure 0003714980
(2)
(Wherein R5 and R6 may be the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a phenyl group, and R7 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a chlorine atom. A2 represents a divalent group represented by the following formula.)
Figure 0003714980
Figure 0003714980
JP25968894A 1993-11-01 1994-09-30 Amine compounds Expired - Fee Related JP3714980B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP25968894A JP3714980B2 (en) 1994-09-30 1994-09-30 Amine compounds
EP19940117206 EP0650955B1 (en) 1993-11-01 1994-10-31 Amine compound and electro-luminescence device comprising same
DE1994612567 DE69412567T2 (en) 1993-11-01 1994-10-31 Amine compound and electroluminescent device containing it
US08/332,726 US5639914A (en) 1993-11-01 1994-11-01 Tetraaryl benzidines
US08/738,326 US5707747A (en) 1993-11-01 1996-10-25 Amine compound and electro-luminescence device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25968894A JP3714980B2 (en) 1994-09-30 1994-09-30 Amine compounds

Publications (2)

Publication Number Publication Date
JPH0899941A JPH0899941A (en) 1996-04-16
JP3714980B2 true JP3714980B2 (en) 2005-11-09

Family

ID=17337543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25968894A Expired - Fee Related JP3714980B2 (en) 1993-11-01 1994-09-30 Amine compounds

Country Status (1)

Country Link
JP (1) JP3714980B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1752023A2 (en) * 2004-03-31 2007-02-14 E.I.Du pont de nemours and company Triarylamine compounds for use as charge transport materials
US7838627B2 (en) * 2005-12-29 2010-11-23 E. I. Du Pont De Nemours And Company Compositions comprising novel compounds and polymers, and electronic devices made with such compositions
WO2015137384A1 (en) * 2014-03-14 2015-09-17 日産化学工業株式会社 Aniline derivative and use thereof

Also Published As

Publication number Publication date
JPH0899941A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
JP3220950B2 (en) Benzidine compound
JP3574860B2 (en) Tetraphenylbenzidine compound
EP0650955B1 (en) Amine compound and electro-luminescence device comprising same
KR101125386B1 (en) Tetramine compound and organic el device
JPH07126615A (en) Electroluminescence device
JPH07179394A (en) Oxadiazole compound and its production
JP3650218B2 (en) High molecular weight aromatic amine compound and hole transporting material comprising the same
JP3594642B2 (en) Diaminodiphenyl compound and organic electroluminescent device using the compound
JP3274939B2 (en) EL device
WO2007105783A1 (en) Novel 1,3,5-tris(diarylamino)benzenes and use thereof
JP3549555B2 (en) Novel pyrene derivative and method for producing the same
JP3714980B2 (en) Amine compounds
JPH11292860A (en) Triamine-based compound and its production
JPH083122A (en) Hexaamine compound
JPH07331238A (en) Electroluminescent element
EP0827367A2 (en) Electroluminescent devices
JP3567323B2 (en) Method for producing benzidine compound
JP4442960B2 (en) Organic electroluminescent device using novel dimeric tetraphenylenediamine
JP2000204051A (en) Aromatic methylidene compound, aromatic aldehyde compound for producing the same, and their production
JP2008166538A (en) Organic electroluminescent element
JP2869378B2 (en) Amine compound and organic electroluminescent device using the compound
JPH09316038A (en) Diamine compound and organic electroluminescent element containing the compound
JPH08231475A (en) Aromatic diamine compound
JP2010229053A (en) Bis-tricyclic amine-substituted arylene derivative
US20030060652A1 (en) Bis (aminostyryl) benzene compounds and synthetic intemediates thereof, and process for preparing the compounds and intermediates

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees