JP2010229053A - Bis-tricyclic amine-substituted arylene derivative - Google Patents

Bis-tricyclic amine-substituted arylene derivative Download PDF

Info

Publication number
JP2010229053A
JP2010229053A JP2009076665A JP2009076665A JP2010229053A JP 2010229053 A JP2010229053 A JP 2010229053A JP 2009076665 A JP2009076665 A JP 2009076665A JP 2009076665 A JP2009076665 A JP 2009076665A JP 2010229053 A JP2010229053 A JP 2010229053A
Authority
JP
Japan
Prior art keywords
group
exemplified compound
compound
yield
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009076665A
Other languages
Japanese (ja)
Inventor
Koichi Torizuka
光一 鳥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2009076665A priority Critical patent/JP2010229053A/en
Publication of JP2010229053A publication Critical patent/JP2010229053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new bis-tricyclic amine-substituted arylene derivative excellent as an element component for an organic EL, especially a positive hole-transport material. <P>SOLUTION: The new bis-tricyclic amine-substituted arylene derivative has two tricyclic amine groups having specific structures on an arylene derivative represented by general formula (1) (wherein, R<SP>1</SP>is hydrogen, 1-4C lower alkyl, 1-4C lower alkoxy or halogen; Ar<SP>1</SP>is alkyl, aralkyl, aryl or heterocycle each of which may have a substituent; Z shows atoms required for forming a 5- to 8-membered saturated hydrocarbon ring or a 5-membered saturated heterocycle with two carbons of the 5-membered ring containing nitrogen; and A is a divalent linking group). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規なビス三環性アミン置換アリーレン誘導体に関する。さらに詳しくは有機エレクトロルミネッセンス(EL)素子成分として用いることができる新規なビス三環性アミン置換アリーレン誘導体に関する。   The present invention relates to novel bistricyclic amine-substituted arylene derivatives. More specifically, the present invention relates to a novel bis-tricyclic amine-substituted arylene derivative that can be used as an organic electroluminescence (EL) element component.

有機EL素子については、その原理的な可能性は従来から知られていたものの、実用的な素子の作製が初めて報告されたのは、1987年にコダック社のTangらによるものが最初である。彼らは発光層と正孔輸送層を分離し、薄膜で積層化させることにより有機EL素子の発光効率を向上させ、かつ低電圧での発光を可能にし、発光素子としての可能性を世に示した(例えば、特許文献1参照)。これ以降、多くの研究者によって発光効率や素子寿命の改良のための研究が行われ、素子用材料として数多くの化合物が提案されてきた。その結果、発光特性についても十分な実用性を有する材料が開発されるに至った(例えば、特許文献2参照)。しかしながら、素子寿命については未だに十分な特性が得られているとは言い難く、素子の駆動時に、時間とともに発光輝度が低下したり、ダークスポットと呼ばれる発光しない部分が現れたりする等の劣化が観測されている。これらの素子寿命に影響を及ぼす劣化の原因の一つとして、正孔輸送材料の特性が大きくかかわっていることが、最近の研究で明らかになってきた。具体的には、通電により正孔輸送材料が結晶化して薄膜の均一性をゆがめ、素子の短絡をまねいたり、また、通電により正孔輸送材料が分解を起こして機能しなくなり、発光を阻害する等である。   Although the principle possibility of the organic EL element has been conventionally known, the production of a practical element was first reported by Tang et al. Of Kodak in 1987. They separated the light-emitting layer and the hole transport layer and laminated them with a thin film to improve the light-emitting efficiency of the organic EL device and to enable light emission at a low voltage, and showed its potential as a light-emitting device. (For example, refer to Patent Document 1). Since then, many researchers have conducted research for improving luminous efficiency and device lifetime, and many compounds have been proposed as device materials. As a result, a material having sufficient practicality in terms of light emission characteristics has been developed (see, for example, Patent Document 2). However, it is difficult to say that sufficient characteristics have been obtained with respect to the lifetime of the element, and when the element is driven, deterioration such as a decrease in light emission luminance with time or a non-light-emitting portion called a dark spot appears. Has been. Recent research has revealed that one of the causes of deterioration affecting the lifetime of these elements is that the properties of hole transport materials are greatly involved. Specifically, the hole transport material crystallizes by energization and distorts the uniformity of the thin film, causing a short circuit of the device, or the energization causes the hole transport material to decompose and not function, thereby inhibiting light emission. Etc.

このような問題を解決すべく、改良された特性を有する化合物(通称:α−NPD)のような正孔輸送材料が用いられている(例えば、特許文献3参照)。   In order to solve such a problem, a hole transport material such as a compound having improved characteristics (common name: α-NPD) is used (for example, see Patent Document 3).

Figure 2010229053
Figure 2010229053

また、さらに最近になって、正孔輸送材料としてより高い融点や高い熱分解点を有するものが、発光や保存の安定性に優れ、また、発光寿命が長いことも見出されている(例えば、特許文献4参照)。一方、正孔輸送材料を含む正孔輸送層と陽極との間に、適切なイオン化ポテンシャル値を有する正孔注入材料を含む、正孔注入層を設けることによって、よりスムースにホール移動が起こり、結果として単独の正孔輸送層を有する構成のものと比較して、より駆動電圧の低い、結果として安定性に優れ、駆動による特性の劣化が改善された素子が得られることも見出されている(例えば、特許文献5参照)。しかしながら、これまでに開発されている優れた発光材料の特性を生かすに足る、十分な安定性を持った正孔輸送材料や正孔注入材料については、未だ得られていないのが現状である。   More recently, it has also been found that a hole transport material having a higher melting point and a higher thermal decomposition point is superior in light emission and storage stability and has a long light emission lifetime (for example, , See Patent Document 4). On the other hand, by providing a hole injection layer containing a hole injection material having an appropriate ionization potential value between the hole transport layer containing the hole transport material and the anode, hole movement occurs more smoothly, As a result, it has also been found that an element having a lower driving voltage, superior stability, and improved deterioration of characteristics due to driving can be obtained as compared with a structure having a single hole transport layer. (For example, see Patent Document 5). However, at present, a hole transport material and a hole injection material having sufficient stability sufficient to make use of the characteristics of the excellent light emitting material developed so far have not yet been obtained.

特開昭63−295695号公報JP-A 63-295695 特開平4−220995号公報JP-A-4-220995 特開平5−234681号公報Japanese Patent Laid-Open No. 5-234681 特開2004−182740号公報JP 2004-182740 A 特開2007−42973号公報JP 2007-42973 A

本発明は、正孔注入及び輸送能力に優れ、駆動による特性の劣化が改善された、有機EL用正孔注入材料や有機EL用正孔輸送材料として優れた特性を有する新規なビス三環性アミン置換アリーレン誘導体を提供することを目的とする。   The present invention is a novel bis-tricyclic compound having excellent characteristics as a hole injection material for organic EL and a hole transport material for organic EL, which has excellent hole injection and transport capability and improved deterioration of characteristics due to driving. An object is to provide an amine-substituted arylene derivative.

本発明者は、上記目的を達成すべく鋭意検討した結果、文献に未記載の新規化合物である特定の構造を有するビス三環性アミン置換アリーレン誘導体を見出した。   As a result of intensive studies to achieve the above object, the present inventors have found a bistricyclic amine-substituted arylene derivative having a specific structure, which is a novel compound not described in the literature.

すなわち、本発明は、一般式(1)で示されるビス三環性アミン置換アリーレン誘導体を提供するものである。   That is, the present invention provides a bistricyclic amine-substituted arylene derivative represented by the general formula (1).

Figure 2010229053
Figure 2010229053

〔一般式(1)において、Rは、水素原子、C〜Cの低級アルキル基、C〜Cの低級アルコキシ基またはハロゲン原子を示す。Arはそれぞれが置換基を有してもよいアルキル基、アラルキル基、アリール基またはヘテロ環基を示す。Zは、チッ素を含む5員環の2つの炭素と共に、5〜8員環の飽和の炭化水素環あるいは5員環の飽和の複素環を形成するのに必要な原子を示す。Aは一般式(2)〜(6)で示される2価の連結基を示す。〕 [In General Formula (1), R 1 represents a hydrogen atom, a C 1 -C 4 lower alkyl group, a C 1 -C 4 lower alkoxy group, or a halogen atom. Ar 1 represents an alkyl group, an aralkyl group, an aryl group or a heterocyclic group, each of which may have a substituent. Z represents an atom necessary for forming a 5- to 8-membered saturated hydrocarbon ring or a 5-membered saturated heterocyclic ring together with two carbons of a 5-membered ring containing nitrogen. A represents a divalent linking group represented by the general formulas (2) to (6). ]

Figure 2010229053
Figure 2010229053

〔一般式(2)〜(4)において、R〜Rは、水素原子、C〜Cの低級アルキル基、C〜Cの低級アルコキシ基またはハロゲン原子を示す。一般式(5)において、R及びRは、水素原子、C〜Cの低級アルキル基またはフェニル基を示す。〕 [In General Formulas (2) to (4), R 2 to R 5 represent a hydrogen atom, a C 1 to C 4 lower alkyl group, a C 1 to C 4 lower alkoxy group, or a halogen atom. In the general formula (5), R 6 and R 7 represents a hydrogen atom, a lower alkyl group or a phenyl group of C 1 -C 4. ]

本発明のビス三環性アミン置換アリーレン誘導体を、正孔注入材料や正孔輸送材料として用いることにより、駆動電圧が十分低く、素子寿命の長い、優れた有機EL素子を得ることができる。   By using the bis-tricyclic amine-substituted arylene derivative of the present invention as a hole injection material or a hole transport material, an excellent organic EL device having a sufficiently low driving voltage and a long device life can be obtained.

一般式(1)におけるRの具体例としては、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基等のC〜Cの低級アルキル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t−ブトキシ基等のC〜Cの低級アルコキシ基、または、フッ素原子、塩素原子等のハロゲン原子を挙げることができる。 Specific examples of R 1 in the general formula (1) include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group and other C 1 -C 4 lower alkyl groups, and a methoxy group. , an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a lower alkoxy group of C 1 -C 4, such as a t- butoxy group or a fluorine atom, and a halogen atom such as a chlorine atom.

Arの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t−ブチル基、ヘキシル基、オクチル基等のアルキル基;ベンジル基、フェネチル基等のアラルキル基;フェニル基;2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−エチルフェニル基、4−プロピルフェニル基、4−ブチルフェニル基、4−イソプロピルフェニル基、4−t−ブチルフェニル基、4−ヘキシルフェニル基、4−オクチルフェニル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、2,4,5−トリメチルフェニル基、2,4,6−トリメチルフェニル基、2−メチル−4−エチルフェニル基、2−エチル−5−ブチル基等のアルキル基で置換されたフェニル基;2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、4−エトキシフェニル基、3−プロポキシフェニル基、3−イソプロポキシフェニル基、4−プロポキシフェニル基、4−ブトキシフェニル基、4−t−ブトキシフェニル基、4−ヘキシルオキシ基、2,4−ジメトキシフェニル基、2−メトキシ−5−エトキシ基等のアルコキシ基で置換されたフェニル基;2−メトキシ−4−メチルフェニル基、2,6−ジメチル−4−メトキシフェニル基、2−イソプロポキシ−5−t−ブチルフェニル基、3−t−ブトキシ−4−イソプロピルフェニル基等のアルキル基及びアルコキシ基の双方で置換されたフェニル基;4−スチリルフェニル基、4−(1−メチル−2−フェニルエテニル)フェニル基、4−(1,2−ジフェニルエテニル)フェニル基、4−(2,2−ジフェニルエテニル)フェニル基等のアルケニル基で置換されたフェニル基;1−ナフチル基、2−ナフチル基、4−メチル−1−ナフチル基、5−メチル−1−ナフチル基、1−メチル−2−ナフチル基、4−エチル−2−ナフチル基、4−プロピル−1−ナフチル基、4−イソプロピル−1−ナフチル基等のアルキル基で置換されたナフチル基;2−ビフェニリル基、3−ビフェニリル基、4−ビフェニリル基、4′−メチル−4−ビフェニリル基、2′,4′−ジメチル−4−ビフェニリル基、3′,5′−ジエチル−3−ビフェニリル基、3′−メチル−4′−t−ブチル−3−ビフェニリル基等のアルキル基で置換されたビフェニリル基;4−p−ターフェニリル基、4−m−ターフェニリル基、4−o−ターフェニリル基、4′′−メチル−p−ターフェニリル基、3′′−5′′−ジメチル−p−ターフェニリル基、4′′−t−ブチル−p−ターフェニリル基、4′′−オクチル−p−ターフェニリル基等のアルキル基で置換されたターフェニリル基;9−フェナントリル基、1−アントリル基、9−アントリル基、1−ピレニル基等のアリール基;2−ピリジル基、4−ピリジル基等のヘテロ環基を挙げることができる。 Specific examples of Ar 1 include methyl groups, ethyl groups, propyl groups, isopropyl groups, butyl groups, t-butyl groups, hexyl groups, octyl groups and other alkyl groups; benzyl groups, phenethyl groups and other aralkyl groups; phenyl groups 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-ethylphenyl group, 4-propylphenyl group, 4-butylphenyl group, 4-isopropylphenyl group, 4-t-butylphenyl group; 4-hexylphenyl group, 4-octylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,4,5-trimethylphenyl group, 2,4,6-trimethylphenyl group, 2 A phenyl group substituted with an alkyl group such as methyl-4-ethylphenyl group or 2-ethyl-5-butyl group; 2-methoxyphenyl group 3-methoxyphenyl group, 4-methoxyphenyl group, 4-ethoxyphenyl group, 3-propoxyphenyl group, 3-isopropoxyphenyl group, 4-propoxyphenyl group, 4-butoxyphenyl group, 4-t-butoxyphenyl Group, phenyl group substituted by alkoxy group such as 4-hexyloxy group, 2,4-dimethoxyphenyl group, 2-methoxy-5-ethoxy group; 2-methoxy-4-methylphenyl group, 2,6-dimethyl A phenyl group substituted with both an alkyl group and an alkoxy group such as a 4-methoxyphenyl group, 2-isopropoxy-5-t-butylphenyl group, 3-t-butoxy-4-isopropylphenyl group; 4-styryl Phenyl group, 4- (1-methyl-2-phenylethenyl) phenyl group, 4- (1,2-diphenylethenyl) A phenyl group substituted with an alkenyl group such as an phenyl group, 4- (2,2-diphenylethenyl) phenyl group; 1-naphthyl group, 2-naphthyl group, 4-methyl-1-naphthyl group, 5-methyl- 1-naphthyl group, 1-methyl-2-naphthyl group, 4-ethyl-2-naphthyl group, 4-propyl-1-naphthyl group, naphthyl group substituted with alkyl group such as 4-isopropyl-1-naphthyl group 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, 4'-methyl-4-biphenylyl group, 2 ', 4'-dimethyl-4-biphenylyl group, 3', 5'-diethyl-3-biphenylyl A biphenylyl group substituted with an alkyl group such as a group, 3'-methyl-4'-t-butyl-3-biphenylyl group; 4-p-terphenylyl group, 4-m-terphenylyl group, 4- -Terphenylyl group, 4 "-methyl-p-terphenylyl group, 3" -5 "-dimethyl-p-terphenylyl group, 4" -t-butyl-p-terphenylyl group, 4 "-octyl-p A terphenylyl group substituted with an alkyl group such as a terphenylyl group; an aryl group such as a 9-phenanthryl group, a 1-anthryl group, a 9-anthryl group and a 1-pyrenyl group; a hetero group such as a 2-pyridyl group and a 4-pyridyl group A cyclic group can be mentioned.

また、Zの具体例としては、チッ素を含む5員環の2つの炭素と共に飽和鎖を形成する−(CH−、−(CH−、−(CH−等の炭素鎖や、−CH−NH−CH−、−CH−N(CH)−CH−等の含チッ素炭素鎖が挙げられる。 Specific examples of Z include — (CH 2 ) 3 —, — (CH 2 ) 4 —, — (CH 2 ) 5 — and the like which form a saturated chain with two carbons of a 5-membered ring containing nitrogen. And carbon-containing carbon chains such as —CH 2 —NH—CH 2 — and —CH 2 —N (CH 3 ) —CH 2 —.

Aの具体例としては、一般式(2)〜(6)で示される2価の連結基が示される。一般式(2)〜(4)におけるR〜Rの具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基等のC〜Cの低級アルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のC〜Cの低級アルコキシ基、または、フッ素原子、塩素原子等のハロゲン原子を挙げることができる。一般式(5)におけるR及びRの具体例としては、水素原子、メチル基、エチル基、プロピル基、ブチル基等のC〜Cの低級アルキル基またはフェニル基を挙げることができる。 Specific examples of A include divalent linking groups represented by general formulas (2) to (6). Specific examples of R 2 to R 5 in the general formulas (2) to (4) include C 1 to C 4 lower alkyl groups such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, and a butyl group, a methoxy group, ethoxy group, a propoxy group, C 1 -C 4 lower alkoxy group or a butoxy group or a fluorine atom, and a halogen atom such as a chlorine atom. Specific examples of R 6 and R 7 in the general formula (5) include a C 1 to C 4 lower alkyl group such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, or a butyl group, or a phenyl group. .

次に、上記一般式(1)で示されるビス三環性アミン置換アリーレン誘導体の製造方法について説明する。一般式(1)で示されるビス三環性アミン置換アリーレン誘導体は、一般式(7)で示されるハロゲン置換三環性アミンと、一般式(8)で示されるビスボロン酸置換アリーレン誘導体または一般式(9)で示されるビスボロン酸エステル置換アリーレン誘導体とをカップリング反応させることにより合成できる。あるいは、一般式(10)で示されるボロン酸置換三環性アミンまたは一般式(11)で示されるボロン酸エステル置換三環性アミンと、一般式(12)で示されるビスハロゲン置換アリーレン誘導体とをカップリング反応させることにより合成できる。   Next, the manufacturing method of the bis tricyclic amine substituted arylene derivative shown by the said General formula (1) is demonstrated. The bistricyclic amine-substituted arylene derivative represented by the general formula (1) includes a halogen-substituted tricyclic amine represented by the general formula (7) and a bisboronic acid-substituted arylene derivative represented by the general formula (8) or the general formula It can be synthesized by a coupling reaction with the bisboronic acid ester-substituted arylene derivative represented by (9). Alternatively, a boronic acid-substituted tricyclic amine represented by the general formula (10) or a boronic acid ester-substituted tricyclic amine represented by the general formula (11) and a bishalogen-substituted arylene derivative represented by the general formula (12) Can be synthesized by a coupling reaction.

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

〔一般式(7)〜(12)において、R、Ar、Z及びAは前記一般式(1)の場合と同じである。また、Xは臭素原子、ヨウ素原子等のハロゲン原子を示す。〕 [In the general formulas (7) to (12), R 1 , Ar 1 , Z and A are the same as those in the general formula (1). X represents a halogen atom such as a bromine atom or an iodine atom. ]

また、一般式(7)のハロゲン置換三環性アミン誘導体は、臭素やヨウ素等の単体ハロゲンまたはN−ハロゲノコハク酸イミド等を用いて、一般式(13)の三環性アミン誘導体をハロゲン化することにより得られる。   The halogen-substituted tricyclic amine derivative of the general formula (7) is halogenated from the tricyclic amine derivative of the general formula (13) using a single halogen such as bromine or iodine, or N-halogenosuccinimide. Can be obtained.

Figure 2010229053
Figure 2010229053

〔一般式(13)において、R、Ar及びZは前記一般式(1)の場合と同じである。〕 [In General Formula (13), R 1 , Ar 1 and Z are the same as those in General Formula (1). ]

一般式(13)の三環性アミン誘導体は、特開2000−169446号公報に記載されているように、公知の前駆体であるNが無置換の三環性インドール誘導体を、アリールハライドによりN−アリール化した後、接触水素化反応等でインドール環の二重結合を還元するか、あるいは、1,1−ジフェニルヒドラジンとシクロペンタノンを縮合させるFisherのインドール合成の方法により得られた三環性インドール誘導体の二重結合を、同様に接触水素化反応等で還元することにより製造することができる。   As described in JP-A No. 2000-169446, a tricyclic amine derivative represented by the general formula (13) is obtained by converting a known precursor N-unsubstituted tricyclic indole derivative to N by aryl halide. -After triarylation, the double ring of the indole ring is reduced by catalytic hydrogenation or the like, or the tricycle obtained by Fisher's indole synthesis method in which 1,1-diphenylhydrazine and cyclopentanone are condensed. Similarly, the double bond of the sex indole derivative can be produced by reduction by a catalytic hydrogenation reaction or the like.

また、一般式(8)のビスボロン酸置換アリーレン誘導体は、市販のビスボロン酸誘導体を用いるか、あるいは、一般式(12)のビスハロゲン置換アリーレン誘導体をノルマルブチルリチウムと反応させてビスリチウム塩とした後、トリメトキシホウ素と反応させ、次いで希塩酸で加水分解することにより合成することができる。   As the bisboronic acid-substituted arylene derivative of the general formula (8), a commercially available bisboronic acid derivative is used, or the bishalogen-substituted arylene derivative of the general formula (12) is reacted with normal butyl lithium to form a bislithium salt. Thereafter, it can be synthesized by reacting with trimethoxyboron and then hydrolyzing with dilute hydrochloric acid.

また、一般式(9)のビスボロン酸エステル置換アリーレン誘導体は、一般式(12)のビスハロゲン置換アリーレン誘導体をノルマルブチルリチウムと反応させてビスリチウム塩とした後、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(DOB)と反応させることにより合成することができる。   Further, the bisboronic acid ester-substituted arylene derivative of the general formula (9) is obtained by reacting the bishalogen-substituted arylene derivative of the general formula (12) with normal butyl lithium to form a bislithium salt, and then 2-isopropoxy-4,4 , 5,5-tetramethyl-1,3,2-dioxaborolane (DOB).

また、一般式(10)のボロン酸置換三環性アミンまたは一般式(11)で示されるボロン酸エステル置換三環性アミンは、一般式(7)のハロゲン置換三環性アミン誘導体を原料として、それぞれ先の一般式(8)のビスボロン酸誘導体及び一般式(9)のビスボロン酸エステル誘導体の合成方法と同様の方法で合成できる。   In addition, the boronic acid-substituted tricyclic amine represented by the general formula (10) or the boronic acid ester-substituted tricyclic amine represented by the general formula (11) is obtained using a halogen-substituted tricyclic amine derivative represented by the general formula (7) as a raw material. These can be synthesized by the same method as the synthesis method of the bisboronic acid derivative of the general formula (8) and the bisboronic acid ester derivative of the general formula (9).

また、一般式(12)のビスハロゲン置換アリーレン誘導体は、市販の薬品を用いるか、あるいは、対応する一般式(14)のアリーレン誘導体を臭素やヨウ素等の単体ハロゲンまたはN−ハロゲノコハク酸イミド等を用いてハロゲン化することにより得られる。   Further, as the bishalogen-substituted arylene derivative of the general formula (12), a commercially available chemical is used, or the corresponding arylene derivative of the general formula (14) is replaced with a simple halogen such as bromine or iodine or N-halogenosuccinimide, etc. It can be obtained by halogenation using

Figure 2010229053
Figure 2010229053

〔一般式(14)において、Aは前記一般式(1)の場合と同じである。〕 [In General Formula (14), A is the same as in General Formula (1). ]

上記一般式(7)で示されるハロゲン置換三環性アミンの具体例としては、下記式(7−01)〜(7−22)などが挙げられる。   Specific examples of the halogen-substituted tricyclic amine represented by the general formula (7) include the following formulas (7-01) to (7-22).

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

また、一般式(8)で示されるビスボロン酸置換アリーレン誘導体の具体例としては、下記式(8−01)〜(8−39)などが挙げられる。   Specific examples of the bisboronic acid-substituted arylene derivative represented by the general formula (8) include the following formulas (8-01) to (8-39).

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

また、一般式(9)で示されるビスボロン酸エステル置換アリーレン誘導体の具体例としては、下記式(9−01)〜(9−15)などが挙げられる。   Specific examples of the bisboronic acid ester-substituted arylene derivative represented by the general formula (9) include the following formulas (9-01) to (9-15).

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

また、一般式(10)で示されるボロン酸置換三環性アミンの具体例としては、下記式(10−01)〜(10−22)などが挙げられる。   Specific examples of the boronic acid-substituted tricyclic amine represented by the general formula (10) include the following formulas (10-01) to (10-22).

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

また、一般式(11)で示されるボロン酸エステル置換三環性アミンの具体例としては、下記式(11−01)〜(11−21)などが挙げられる。   Specific examples of the boronic acid ester-substituted tricyclic amine represented by the general formula (11) include the following formulas (11-01) to (11-21).

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

また、一般式(12)で示されるビスハロゲン置換アリーレン誘導体の具体例としては、下記式(12−01)〜(12−39)などが挙げられる。   Specific examples of the bishalogen-substituted arylene derivative represented by the general formula (12) include the following formulas (12-01) to (12-39).

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

また、一般式(13)で示される三環性アミンの具体例としては、下記式(13−01)〜(13−22)などが挙げられる。   Specific examples of the tricyclic amine represented by the general formula (13) include the following formulas (13-01) to (13-22).

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

上記一般式(7)のハロゲン置換三環性アミンと、一般式(8)のビスボロン酸置換アリーレン誘導体または一般式(9)で示されるビスボロン酸エステル置換アリーレン誘導体とのカップリング反応、あるいは、一般式(10)のボロン酸置換三環性アミンまたは一般式(11)で示されるボロン酸エステル置換三環性アミンと、一般式(12)で示されるビスハロゲン置換アリーレン誘導体とのカップリング反応においては、一般的に、縮合剤として塩基が用いられる。塩基の例としては、アルカリ金属の水酸化物、炭酸塩、水素化物;アルカリ土類金属の水酸化物、炭酸塩、水素化物;低級アルコールのアルカリ金属塩;3級アミン類が用いられるが、好ましくはアルカリ金属の炭酸塩が水溶液の状態で用いられる。   Coupling reaction between the halogen-substituted tricyclic amine of the general formula (7) and the bisboronic acid-substituted arylene derivative of the general formula (8) or the bisboronic acid ester-substituted arylene derivative represented by the general formula (9), or In a coupling reaction between a boronic acid-substituted tricyclic amine of the formula (10) or a boronic acid ester-substituted tricyclic amine represented by the general formula (11) and a bishalogen-substituted arylene derivative represented by the general formula (12) In general, a base is used as a condensing agent. Examples of bases include alkali metal hydroxides, carbonates, hydrides; alkaline earth metal hydroxides, carbonates, hydrides; alkali metal salts of lower alcohols; tertiary amines, Preferably, alkali metal carbonate is used in the form of an aqueous solution.

また、このカップリング反応においては、反応を円滑に進行せしめるために金属触媒を用いることができる。金属触媒としては、パラジウムやその化合物の酢酸パラジウム等が用いられる。好ましくは、触媒助剤として、三価のアルキルリン化合物、例えば、トリターシャルブチルフォスフィンやトリ−o−トリルフォスフィン等を併用するか、あるいは直接テトラキス(トリフェニルフォスフィン)パラジウムのような三価のアルキルリンを配位子に有するパラジウム化合物を用いてもよい。   In this coupling reaction, a metal catalyst can be used in order to allow the reaction to proceed smoothly. As the metal catalyst, palladium, palladium acetate of its compound, or the like is used. Preferably, a trivalent alkyl phosphorus compound such as tritertiary butylphosphine or tri-o-tolylphosphine is used in combination as the catalyst auxiliary, or directly like tetrakis (triphenylphosphine) palladium. A palladium compound having a trivalent alkyl phosphorus as a ligand may be used.

また、反応溶剤としては、ある程度の溶解性を有する不活性の有機溶剤であればいずれをも用いることができる。好ましくは、トルエン、キシレン等の原料化合物の溶解度は高いが水と混合しない溶剤を用い、撹拌効率の高い状態でアルカリ金属塩の水溶液と不均一系で反応させる方法、この系にエタノール、プロパノール等の水とも混合する溶剤を併用する方法、原料化合物の溶解度も比較的高く、かつ、水とも混合する1,2−ジメトキシエタンや2−メトキシエタノール等の溶剤を用いる方法等が挙げられる。   As the reaction solvent, any inert organic solvent having a certain degree of solubility can be used. Preferably, a method in which a raw material compound such as toluene or xylene has a high solubility but is not mixed with water and is reacted in a heterogeneous system with an aqueous solution of an alkali metal salt with high stirring efficiency, ethanol, propanol, etc. And a method of using a solvent such as 1,2-dimethoxyethane or 2-methoxyethanol which is relatively high in solubility of the raw material compound and also mixed with water.

反応温度は、原料化合物の反応溶剤に対する溶解度、使用する反応溶剤の沸点、反応のし易さ等によっても異なるので、一概には言えないが、通常20〜150℃、好ましくは70〜120℃の範囲で行われる。   The reaction temperature varies depending on the solubility of the raw material compound in the reaction solvent, the boiling point of the reaction solvent to be used, the ease of reaction, etc., but cannot be generally stated, but is usually 20 to 150 ° C., preferably 70 to 120 ° C. Done in a range.

次に、本発明の一般式(1)の化合物の具体例を挙げるが、本発明はこれらに限定されるものではない。   Next, although the specific example of the compound of General formula (1) of this invention is given, this invention is not limited to these.

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

Figure 2010229053
Figure 2010229053

本発明のビス三環性アミン置換アリーレン誘導体について、代表的な合成の実施例を以下に示す。   Representative synthesis examples of the bis-tricyclic amine-substituted arylene derivatives of the present invention are shown below.

(実施例1)
(1)4−フェニル−1,2,3,3a,4,8b−ヘキサヒドロシクロペント[b]インドール〔例示化合物(13−02)〕23.54g(100ミリモル)のクロロホルム500ml溶液に、室温で撹拌しながら臭素17.59g(110.1ミリモル)を2時間かけて滴下する。滴下後、さらに室温で8.5時間撹拌した後、減圧で溶剤を留去し、得られた粗生成物44g(溶剤含む)をクロマト精製して7−ブロモ−4−フェニル−1,2,3,3a,4,8b−ヘキサヒドロシクロペント[b]インドール〔例示化合物(7−02)〕27.04g(収率86.1%)を得た。
Example 1
(1) 4-phenyl-1,2,3,3a, 4,8b-hexahydrocyclopento [b] indole [Exemplary Compound (13-02)] 23.54 g (100 mmol) in a chloroform 500 ml solution at room temperature While being stirred at 17.59 g (110.1 mmol) of bromine is added dropwise over 2 hours. After the dropwise addition, the mixture was further stirred at room temperature for 8.5 hours, the solvent was distilled off under reduced pressure, and 44 g (including solvent) of the resulting crude product was purified by chromatography to give 7-bromo-4-phenyl-1,2, 3,3a, 4,8b-Hexahydrocyclopent [b] indole [Exemplary Compound (7-02)] (27.04 g, yield 86.1%) was obtained.

(2)上記(1)で得られた例示化合物(7−02)3.14g(9.99ミリモル)、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕0.83g(5.01ミリモル)、酢酸パラジウム90mg(0.40ミリモル)、トリ−o−トリルフォスフィン0.84g(2.76ミリモル)、炭酸カリウム2モル水溶液15.2ml及び1,2−ジメトキシエタン24mlの混合物を窒素気流下撹拌しながら、90℃で6.5時間、加熱して反応を完結させる。反応液をデカントして生成結晶を単離し、クロロホルム40mlに溶かし、無水硫酸マグネシウムで乾燥した後、濾過して無水硫酸マグネシウムを除去し、濾液に10mlヘキサンを加え一晩放置する。析出した結晶を濾取し、乾燥して、目的とするビス三環性アミン置換アリーレン誘導体〔例示化合物(1−01)〕0.26g(収率9.56%)を得た。融点は218〜222℃であった。   (2) 3.14 g (9.99 mmol) of Exemplified Compound (7-02) obtained in (1) above, benzene-1,4-diboronic acid [Exemplary Compound (8-01) / commercially available product] 83 g (5.01 mmol), palladium acetate 90 mg (0.40 mmol), tri-o-tolylphosphine 0.84 g (2.76 mmol), potassium carbonate 2 mol aqueous solution 15.2 ml and 1,2-dimethoxyethane While stirring 24 ml of the mixture under a nitrogen stream, the reaction is completed by heating at 90 ° C. for 6.5 hours. The reaction solution is decanted, and the resulting crystals are isolated, dissolved in 40 ml of chloroform, dried over anhydrous magnesium sulfate, filtered to remove anhydrous magnesium sulfate, and 10 ml of hexane is added to the filtrate and left overnight. The precipitated crystals were collected by filtration and dried to obtain 0.26 g (yield: 9.56%) of the desired bis-tricyclic amine-substituted arylene derivative [Exemplary Compound (1-01)]. The melting point was 218-222 ° C.

ビス三環性アミン置換アリーレン誘導体〔例示化合物(1−01)〕は、H−NMR(δ,ppm,CDCl)において、7.55〜7.80(m,10H)、7.28〜7.46(m,10H)、4.83(t,2H)、3.90(t,2H)、1.81〜2.16(m,8H)、1.62〜1.70(m,2H)のピークを示していることから、その構造が確認された。 The bis-tricyclic amine-substituted arylene derivative [Exemplary Compound (1-01)] is 7.55 to 7.80 (m, 10H), 7.28 to 7 H-NMR (δ, ppm, CDCl 3 ). 7.46 (m, 10H), 4.83 (t, 2H), 3.90 (t, 2H), 1.81 to 2.16 (m, 8H), 1.62 to 1.70 (m, The structure was confirmed from the peak of 2H).

ビス三環性アミン置換アリーレン誘導体〔例示化合物(1−01)〕について、熱分析による分解点の測定を行ったところ、熱分解温度は350℃以上という結果が得られた。   When the decomposition point of the bistricyclic amine-substituted arylene derivative [Exemplary Compound (1-01)] was measured by thermal analysis, the result was that the thermal decomposition temperature was 350 ° C. or higher.

(実施例2)
(1)実施例1の(1)で得られた例示化合物(7−02)6.33g(20.15ミリモル)をテトラヒドロフラン60mlに溶かし、窒素気流下、−78℃で冷却、撹拌している中へ、n−ブチルリチウムの15%ヘキサン溶液(約1.6モル/l)13.87ml(22.19ミリモル)を加える。そのまま−78℃で2時間撹拌した後、トリメチルボレイト5.26ml(46.32ミリモル)を加え、−78℃で1時間撹拌した後、冷却器を止めて、一晩撹拌しながら自然に室温まで戻す。反応物を撹拌しながら、1モル塩酸60mlを加え、2時間撹拌した後、有機層を分離する。水層を酢酸エチル150mlで抽出した後に有機層と合わせ、飽和食塩水で洗浄する。無水硫酸マグネシウムで乾燥した後、減圧で溶剤を留去し、4.67gの粗結晶を得る。これをヘキサン/クロロホルムで再結晶した後、カラムクロマトで精製して4−フェニル−1,2,3,3a,4,8b−ヘキサヒドロシクロペント[b]インドール−7−ボロン酸〔例示化合物(10−02)〕1.93g(収率34.3%)を得た。
(Example 2)
(1) 6.33 g (20.15 mmol) of the exemplified compound (7-02) obtained in (1) of Example 1 was dissolved in 60 ml of tetrahydrofuran, and cooled and stirred at −78 ° C. in a nitrogen stream. Into this is added 13.87 ml (22.19 mmol) of a 15% hexane solution of n-butyllithium (about 1.6 mol / l). After stirring at −78 ° C. for 2 hours, 5.26 ml (46.32 mmol) of trimethyl borate was added, and stirred at −78 ° C. for 1 hour. Return to While stirring the reaction, 60 ml of 1 molar hydrochloric acid is added and stirred for 2 hours, and then the organic layer is separated. The aqueous layer is extracted with 150 ml of ethyl acetate, combined with the organic layer, and washed with saturated brine. After drying over anhydrous magnesium sulfate, the solvent is distilled off under reduced pressure to obtain 4.67 g of crude crystals. This was recrystallized from hexane / chloroform, purified by column chromatography, and 4-phenyl-1,2,3,3a, 4,8b-hexahydrocyclopent [b] indole-7-boronic acid [Exemplary Compound ( 10-02)] was obtained 1.93 g (yield 34.3%).

(2)上記(1)で得られた4−フェニル−1,2,3,3a,4,8b−ヘキサヒドロシクロペント[b]インドール−7−ボロン酸1.93g(6.91ミリモル)、4,4′−ジブロモビフェニル〔例示化合物(12−08)・市販品〕1.07g(3.43ミリモル)、酢酸パラジウム51mg(0.227ミリモル)、トリ−o−トリルフォスフィン0.49g(1.61ミリモル)、炭酸カリウム2モル水溶液8.7ml及び1,2−ジメトキシエタン14mlの混合物を窒素気流下、90℃で8時間、加熱撹拌して反応を完結させる。室温に戻した後、析出結晶を濾取して粗結晶1.10gを得る。これをヘキサン/クロロホルムで再結晶して目的とするビス三環性アミン置換アリーレン誘導体〔例示化合物(1−15)〕0.27g(収率12.7%)を得た。融点は187〜190℃であった。   (2) 1.93 g (6.91 mmol) of 4-phenyl-1,2,3,3a, 4,8b-hexahydrocyclopent [b] indole-7-boronic acid obtained in (1) above, 4,7'-dibromobiphenyl [Exemplary compound (12-08) / commercially available product] 1.07 g (3.43 mmol), palladium acetate 51 mg (0.227 mmol), tri-o-tolylphosphine 0.49 g ( 1.61 mmol), a mixture of 8.7 ml of a 2 mol aqueous solution of potassium carbonate and 14 ml of 1,2-dimethoxyethane is heated and stirred at 90 ° C. for 8 hours under a nitrogen stream to complete the reaction. After returning to room temperature, the precipitated crystals are collected by filtration to obtain 1.10 g of crude crystals. This was recrystallized from hexane / chloroform to obtain 0.27 g (yield 12.7%) of the desired bis-tricyclic amine-substituted arylene derivative [Exemplary Compound (1-15)]. The melting point was 187-190 ° C.

ビス三環性アミン置換アリーレン誘導体〔例示化合物(1−15)〕は、H−NMR(δ,ppm,CDCl)において、7.54〜7.78(m,12H)、7.28〜7.52(m,8H)、7.06〜7.22(m,4H)、4.83(m,2H)、3.91(m,2H)、1.83〜2.16(m,8H)、1.65〜1.74(m,2H)、1.50〜1.63(m,2H)のピークを示していることから、その構造が確認された。 The bistricyclic amine-substituted arylene derivative [Exemplary Compound (1-15)] is 7.54 to 7.78 (m, 12H), 7.28 to 7 H-NMR (δ, ppm, CDCl 3 ). 7.52 (m, 8H), 7.06 to 7.22 (m, 4H), 4.83 (m, 2H), 3.91 (m, 2H), 1.83 to 2.16 (m, 8H), 1.65 to 1.74 (m, 2H), and 1.50 to 1.63 (m, 2H), indicating the structure.

ビス三環性アミン置換アリーレン誘導体〔例示化合物(1−15)〕について、熱分析による分解点の測定を行ったところ、熱分解温度は350℃以上という結果が得られた。   When the decomposition point of the bistricyclic amine-substituted arylene derivative [Exemplary Compound (1-15)] was measured by thermal analysis, the result was that the thermal decomposition temperature was 350 ° C. or higher.

(実施例3)
(1)2,7−ジブロモフルオレン〔例示化合物(12−28)・市販品〕10.0g(30.86ミリモル)、ブロモエタン33.6g(308.34ミリモル)、テトラブチルアンモニウム クロリド0.46g(1.66ミリモル)、50%水酸化ナトリウム水溶液90ml(1721ミリモル)及びトルエン90mlを混合し、窒素気流下50℃で10時間加熱、撹拌する。放冷後、有機層を分離し、飽和食塩水で2回洗浄、無水硫酸マグネシウムで乾燥した後、溶剤を留去して粗結晶11.29gを得る。これをヘキサン/クロロホルム(3/1)で再結晶し、得られた結晶をさらにエタノールで再結晶して、2,7−ジブロモ−9,9−ジエチルフルオレン〔例示化合物(12−31)〕の精製結晶6.74g(収率57.5%)を得た。融点は158.9〜159.2℃であった。
Example 3
(1) 2,7-dibromofluorene [Exemplary compound (12-28) / commercially available product] 10.0 g (30.86 mmol), bromoethane 33.6 g (308.34 mmol), tetrabutylammonium chloride 0.46 g ( 1.66 mmol), 90 ml (1721 mmol) of 50% aqueous sodium hydroxide solution and 90 ml of toluene are mixed, heated and stirred at 50 ° C. for 10 hours under a nitrogen stream. After allowing to cool, the organic layer is separated, washed twice with saturated brine and dried over anhydrous magnesium sulfate, and then the solvent is distilled off to obtain 11.29 g of crude crystals. This was recrystallized with hexane / chloroform (3/1), and the obtained crystal was further recrystallized with ethanol to obtain 2,7-dibromo-9,9-diethylfluorene [Exemplary Compound (12-31)]. 6.74 g (yield 57.5%) of purified crystals were obtained. Melting point was 158.9-159.2 ° C.

(2)上記(1)で得られた例示化合物(12−31)6.08g(15.99ミリモル)をテトラヒドロフラン160mlに溶かし、窒素気流下、−78℃で冷却、撹拌している中へ、n−ブチルリチウムの15%ヘキサン溶液(約1.6モル/l)25.0ml(40.0ミリモル)を加える。そのまま−78℃で2時間撹拌した後、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン7.74g(41.60ミリモル)を加え、−78℃で2時間撹拌した後、冷却器を止めて、窒素気流下、撹拌しながら自然に室温まで戻す。反応液を水350mlに注入し、酢酸エチル400mlで抽出、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧で溶剤を留去し6.92gの粗結晶を得る。これをトルエンを溶剤に用い、カラムクロマトで精製して9,9−ジエチルフルオレン−2,7−ビスボロン酸エステル〔例示化合物(9−12)〕4.72g(収率62.2%)を得た。融点は257〜260℃であった。   (2) 6.08 g (15.99 mmol) of the exemplary compound (12-31) obtained in the above (1) was dissolved in 160 ml of tetrahydrofuran, and cooled and stirred at −78 ° C. under a nitrogen stream. 25.0 ml (40.0 mmol) of a 15% hexane solution of n-butyllithium (about 1.6 mol / l) is added. After stirring for 2 hours at -78 ° C, 7.74 g (41.60 mmol) of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane was added, and the temperature was -78 ° C. After stirring for 2 hours, the cooler is turned off, and the temperature is naturally returned to room temperature while stirring under a nitrogen stream. The reaction solution is poured into 350 ml of water, extracted with 400 ml of ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate, and then the solvent is distilled off under reduced pressure to obtain 6.92 g of crude crystals. This was purified by column chromatography using toluene as a solvent to obtain 4.72 g (yield 62.2%) of 9,9-diethylfluorene-2,7-bisboronic acid ester [Exemplary Compound (9-12)]. It was. The melting point was 257-260 ° C.

(3)上記(2)で得られた例示化合物(9−12)1.491g(3.14ミリモル)、実施例1の(1)で得られた例示化合物(7−02)1.98g(6.30ミリモル)、テトラキス(トリフェニルフォスフィン)パラジウム72.8mg(0.063ミリモル)、炭酸カリウム2モル水溶液18ml、及びトルエン30mlの混合物を窒素気流下、90℃で22時間、加熱撹拌して反応を完結させる。室温に戻した後、反応液を水150mlに注入し、次いでトルエン250mlで抽出、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧で溶剤を留去し2.42gの粗結晶を得る。これをトルエンを溶剤に用い、カラムクロマトで精製して精製結晶2.10gを得る。この精製結晶をさらにヘキサン/トルエンで再結晶して、目的とするビス三環性アミン置換アリーレン誘導体〔例示化合物(1−38)〕0.55g(収率25.4%)を得た。融点は195〜205℃であった。   (3) 1.491 g (3.14 mmol) of Exemplified Compound (9-12) obtained in (2) above, 1.98 g of Exemplified Compound (7-02) obtained in (1) of Example 1 ( 6.30 mmol), tetrakis (triphenylphosphine) palladium 72.8 mg (0.063 mmol), potassium carbonate 2 mol aqueous solution 18 ml, and toluene 30 ml were stirred and heated at 90 ° C. for 22 hours under nitrogen stream. To complete the reaction. After returning to room temperature, the reaction solution was poured into 150 ml of water, then extracted with 250 ml of toluene, washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 2.42 g of crude crystals. obtain. This is purified by column chromatography using toluene as a solvent to obtain 2.10 g of purified crystals. This purified crystal was further recrystallized from hexane / toluene to obtain 0.55 g (yield 25.4%) of the desired bis-tricyclic amine-substituted arylene derivative [Exemplary Compound (1-38)]. The melting point was 195 to 205 ° C.

ビス三環性アミン置換アリーレン誘導体〔例示化合物(1−38)〕は、H−NMR(δ,ppm,CDCl)において、7.60〜7.80(m,6H)、7.52〜7.58(m,6H)、7.30〜7.50(m,10H)、4.86(m,2H)、3.95(m,2H)、2.10〜2.20(m,4H)、1.52〜2.08(m,12H)、0.43(t,6H)のピークを示していることから、その構造が確認された。 The bis-tricyclic amine-substituted arylene derivative [Exemplary Compound (1-38)] is 7.60 to 7.80 (m, 6H), 7.52 to 1 H-NMR (δ, ppm, CDCl 3 ). 7.58 (m, 6H), 7.30-7.50 (m, 10H), 4.86 (m, 2H), 3.95 (m, 2H), 2.10-2.20 (m, 4H), 1.52 to 2.08 (m, 12H), and 0.43 (t, 6H) peaks, which confirmed the structure.

ビス三環性アミン置換アリーレン誘導体〔例示化合物(1−38)〕について、熱分析による分解点の測定を行ったところ、熱分解温度は350℃以上という結果が得られた。   When the decomposition point of the bistricyclic amine-substituted arylene derivative [Exemplary Compound (1-38)] was measured by thermal analysis, the result was that the thermal decomposition temperature was 350 ° C. or higher.

(実施例4)
実施例1の(1)で得られた例示化合物(7−02)と、実施例2の(1)と同様の方法で例示化合物(12−02)より得られた例示化合物(8−02)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−02)を収率11.5%で得た。構造の確認はH−NMRで行った。
Example 4
Example Compound (7-02) obtained in Example 1 (1) and Example Compound (8-02) obtained from Example Compound (12-02) in the same manner as Example 2 (1) Were reacted in the same manner as (2) of Example 1 to obtain the exemplary compound (1-02) in a yield of 11.5%. The structure was confirmed by 1 H-NMR.

(実施例5)
実施例1の(1)で得られた例示化合物(7−02)と、実施例2の(1)と同様の方法で例示化合物(12−03)より得られた例示化合物(8−03)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−07)を収率6.52%で得た。構造の確認はH−NMRで行った。
(Example 5)
Exemplified compound (8-03) obtained from Exemplified compound (12-03) in the same manner as Exemplified compound (12-03) obtained in Example 1 (1) and Example 2 (1) Were reacted in the same manner as (2) of Example 1 to obtain Exemplified Compound (1-07) in a yield of 6.52%. The structure was confirmed by 1 H-NMR.

(実施例6)
実施例1の(1)で得られた例示化合物(7−02)と、実施例2の(1)と同様の方法で例示化合物(12−04)より得られた例示化合物(8−04)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−06)を収率10.1%で得た。構造の確認はH−NMRで行った。
(Example 6)
Example compound (7-02) obtained in Example 1 (1) and Example compound (8-04) obtained from Example compound (12-04) in the same manner as Example 2 (1) Were reacted in the same manner as (2) of Example 1 to obtain the exemplified compound (1-06) in a yield of 10.1%. The structure was confirmed by 1 H-NMR.

(実施例7)
実施例1の(1)で得られた例示化合物(7−02)と、実施例2の(1)と同様の方法で例示化合物(12−09)より得られた例示化合物(8−09)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−16)を収率20.2%で得た。構造の確認はH−NMRで行った。
(Example 7)
Exemplified compound (8-09) obtained from Exemplified compound (12-09) in the same manner as Exemplified compound (7-02) obtained in Example 1 (1) and Example 2 (1) Were reacted in the same manner as (2) of Example 1 to obtain the exemplary compound (1-16) in a yield of 20.2%. The structure was confirmed by 1 H-NMR.

(実施例8)
実施例1の(1)で得られた例示化合物(7−02)と、実施例2の(1)と同様の方法で例示化合物(12−10)より得られた例示化合物(8−10)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−17)を収率8.59%で得た。構造の確認はH−NMRで行った。
(Example 8)
Exemplified compound (8-10) obtained from Exemplified compound (12-10) in the same manner as Exemplified compound (7-02) obtained in Example 1 (1) and Example 2 (1) Were reacted in the same manner as in Example 1 (2) to give Exemplified Compound (1-17) in a yield of 8.59%. The structure was confirmed by 1 H-NMR.

(実施例9)
(1)4−(p−ビフェニル)−1,2,3,3a,4,8b−ヘキサヒドロシクロペント[b]インドール〔例示化合物(13−06)〕6.23g(20.0ミリモル)のクロロホルム160ml溶液に、室温で撹拌しながら臭素3.15g(21.94ミリモル)を1時間かけて滴下する。滴下後、さらに室温で5時間撹拌した後、減圧で溶剤を留去し、得られた粗生成物8.66gをクロマト精製して7−ブロモ−4−(p−ビフェニル)−1,2,3,3a,4,8b−ヘキサヒドロシクロペント[b]インドール〔例示化合物(7−06)〕7.65g(収率98.0%)を得た。
Example 9
(1) 4- (p-biphenyl) -1,2,3,3a, 4,8b-hexahydrocyclopent [b] indole [Exemplary Compound (13-06)] 6.23 g (20.0 mmol) To a 160 ml solution of chloroform, 3.15 g (21.94 mmol) of bromine is added dropwise over 1 hour while stirring at room temperature. After the dropwise addition, the mixture was further stirred at room temperature for 5 hours, the solvent was distilled off under reduced pressure, and 8.66 g of the resulting crude product was purified by chromatography to give 7-bromo-4- (p-biphenyl) -1,2, 3.65 g (yield: 98.0%) of 3,3a, 4,8b-hexahydrocyclopent [b] indole [Exemplary Compound (7-06)] was obtained.

(2)実施例9の(1)で得られた例示化合物(7−06)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−04)を収率13.2%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (7-06) obtained in (1) of Example 9 and benzene-1,4-diboronic acid [Exemplary compound (8-01) / commercially available product] of Example 1 The reaction was conducted in the same manner as in (2) to obtain Exemplified Compound (1-04) in a yield of 13.2%. The structure was confirmed by 1 H-NMR.

(実施例10)
実施例9の(1)と同様の方法で例示化合物(13−04)を臭素化して得られた例示化合物(7−04)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕を、実施例1の(2)と同様の方法で反応させて、例示化合物(1−03)を収率10.4%で得た。構造の確認はH−NMRで行った。
(Example 10)
Exemplified compound (7-04) obtained by brominating Exemplified compound (13-04) in the same manner as in Example 9 (1) and benzene-1,4-diboronic acid [Exemplified compound (8-01) ) · Commercial product] was reacted in the same manner as (2) of Example 1 to obtain Exemplified Compound (1-03) in a yield of 10.4%. The structure was confirmed by 1 H-NMR.

(実施例11)
(1)4−[4−(2,2−ジフェニルエテニル)フェニル)]−1,2,3,3a,4,8b−ヘキサヒドロシクロペント[b]インドール〔例示化合物(13−01)〕4.13g(9.99ミリモル)のクロロホルム80ml溶液に、室温で撹拌しながら臭素1.92g(12.04ミリモル)を40分かけて滴下する。滴下後、さらに室温で2.5時間撹拌した後、減圧で溶剤を留去し、得られた粗生成物6.17g(溶剤含む)をクロマト精製して7−ブロモ−4−[4−(2,2−ジフェニルエテニル)フェニル)]−1,2,3,3a,4,8b−ヘキサヒドロシクロペント[b]インドール〔例示化合物(7−01)〕4.44g(収率90.2%)を得た。
(Example 11)
(1) 4- [4- (2,2-diphenylethenyl) phenyl)]-1,2,3,3a, 4,8b-hexahydrocyclopent [b] indole [Exemplary Compound (13-01)] To a solution of 4.13 g (9.99 mmol) in chloroform (80 ml), 1.92 g (12.04 mmol) of bromine is added dropwise over 40 minutes while stirring at room temperature. After the dropwise addition, the mixture was further stirred at room temperature for 2.5 hours, the solvent was distilled off under reduced pressure, and 6.17 g (including solvent) of the resulting crude product was purified by chromatography to give 7-bromo-4- [4- ( 2,2-diphenylethenyl) phenyl)]-1,2,3,3a, 4,8b-hexahydrocyclopent [b] indole [Exemplary Compound (7-01)] 4.44 g (yield 90.2) %).

(2)実施例11の(1)で得られた例示化合物(7−01)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−05)を収率14.1%で得た。構造の確認はH−NMRで行った。 (2) Example compound (7-01) obtained in (1) of Example 11 and benzene-1,4-diboronic acid [Exemplary compound (8-01), commercially available product] The reaction was conducted in the same manner as in (2) to obtain Exemplified Compound (1-05) in a yield of 14.1%. The structure was confirmed by 1 H-NMR.

(実施例12)
(1)実施例11の(1)と同様の方法で例示化合物(13−21)を臭素化し、例示化合物(7−21)を収率89.7%で得た。
Example 12
(1) The exemplified compound (13-21) was brominated by the same method as (1) of Example 11 to obtain the exemplified compound (7-21) in a yield of 89.7%.

(2)実施例12の(1)で得られた例示化合物(7−21)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−09)を収率19.8%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (7-21) obtained in (1) of Example 12 and benzene-1,4-diboronic acid [Exemplary compound (8-01) / commercial product] of Example 1 The reaction was conducted in the same manner as in (2) to obtain Exemplified Compound (1-09) in a yield of 19.8%. The structure was confirmed by 1 H-NMR.

(実施例13)
(1)実施例11の(1)と同様の方法で例示化合物(13−05)を臭素化し、例示化合物(7−05)を収率87.1%で得た。
(Example 13)
(1) The exemplified compound (13-05) was brominated in the same manner as in (1) of Example 11 to obtain the exemplified compound (7-05) in a yield of 87.1%.

(2)実施例13の(1)で得られた例示化合物(7−05)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−08)を収率22.6%で得た。構造の確認はH−NMRで行った。 (2) Example compound (7-05) obtained in (1) of Example 13 and benzene-1,4-diboronic acid [Exemplary compound (8-01), commercially available product] The reaction was conducted in the same manner as in (2) to obtain Exemplified Compound (1-08) in a yield of 22.6%. The structure was confirmed by 1 H-NMR.

(実施例14)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−05)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−11)を収率12.8%で得た。構造の確認はH−NMRで行った。
(Example 14)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-05) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -11) was obtained in a yield of 12.8%. The structure was confirmed by 1 H-NMR.

(実施例15)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−06)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−12)を収率14.0%で得た。構造の確認はH−NMRで行った。
(Example 15)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-06) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -12) was obtained in a yield of 14.0%. The structure was confirmed by 1 H-NMR.

(実施例16)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−07)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−13)を収率8.15%で得た。構造の確認はH−NMRで行った。
(Example 16)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-07) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -13) was obtained in a yield of 8.15%. The structure was confirmed by 1 H-NMR.

(実施例17)
(1)実施例2の(1)と同様の方法で例示化合物(7−03)をボロン酸に変換し、例示化合物(10−03)を収率35.1%で得た。
(Example 17)
(1) Exemplified compound (7-03) was converted to boronic acid by the same method as (2) of Example 2 to obtain Exemplified compound (10-03) in a yield of 35.1%.

(2)実施例17の(1)で得られた例示化合物(10−03)と、1,4−ジブロモベンゼン〔例示化合物(12−01)・市販品〕とを、実施例2の(2)と同様の方法で反応させて、例示化合物(1−10)を収率22.2%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (10-03) obtained in (1) of Example 17 and 1,4-dibromobenzene [Exemplary compound (12-01), commercially available product] ) To give Exemplified Compound (1-10) in a yield of 22.2%. The structure was confirmed by 1 H-NMR.

(実施例18)
(1)実施例2の(1)と同様の方法で、実施例11の(1)で得られた例示化合物(7−01)をボロン酸に変換し、例示化合物(10−01)を収率41.9%で得た。
(Example 18)
(1) In the same manner as in (2) of Example 2, the exemplified compound (7-01) obtained in (1) of Example 11 was converted to boronic acid, and the exemplified compound (10-01) was recovered. Obtained at a rate of 41.9%.

(2)実施例18の(1)で得られた例示化合物(10−01)と、1,2−ジブロモベンゼン〔例示化合物(12−07)・市販品〕とを、実施例2の(2)と同様の方法で反応させて、例示化合物(1−14)を収率20.8%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (10-01) obtained in Example 18 (1) and 1,2-dibromobenzene [Exemplary compound (12-07) / commercially available product] ) To give exemplary compound (1-14) in a yield of 20.8%. The structure was confirmed by 1 H-NMR.

(実施例19)
実施例9の(1)で得られた例示化合物(7−06)と、例示化合物(8−08)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−18)を収率19.9%で得た。構造の確認はH−NMRで行った。
(Example 19)
The exemplified compound (7-06) obtained in Example 9 (1) and the exemplified compound (8-08) are reacted in the same manner as in Example 1 (2) to give the exemplified compound (1 -18) was obtained in a yield of 19.9%. The structure was confirmed by 1 H-NMR.

(実施例20)
実施例18の(1)で得られた例示化合物(10−01)と、4,4′−ジブロモビフェニル〔例示化合物(12−08)・市販品〕とを、実施例2の(2)と同様の方法で反応させて、例示化合物(1−19)を収率13.8%で得た。構造の確認はH−NMRで行った。
(Example 20)
Exemplified compound (10-01) obtained in (1) of Example 18 and 4,4′-dibromobiphenyl [Exemplary compound (12-08), commercially available product] were combined with (2) of Example 2 By reacting in the same manner, Exemplified compound (1-19) was obtained in a yield of 13.8%. The structure was confirmed by 1 H-NMR.

(実施例21)
実施例9の(1)で得られた例示化合物(7−06)と、例示化合物(8−11)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−20)を収率9.82%で得た。構造の確認はH−NMRで行った。
(Example 21)
The exemplified compound (7-06) obtained in Example 9 (1) and the exemplified compound (8-11) are reacted in the same manner as in Example 1 (2) to give the exemplified compound (1 -20) was obtained in a yield of 9.82%. The structure was confirmed by 1 H-NMR.

(実施例22)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−12)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−21)を収率5.31%で得た。構造の確認はH−NMRで行った。
(Example 22)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-12) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -21) was obtained in a yield of 5.31%. The structure was confirmed by 1 H-NMR.

(実施例23)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−13)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−22)を収率10.5%で得た。構造の確認はH−NMRで行った。
(Example 23)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-13) are reacted in the same manner as in (2) of Example 1 to give exemplified compound (1 -22) was obtained in a yield of 10.5%. The structure was confirmed by 1 H-NMR.

(実施例24)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−15)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−24)を収率18.8%で得た。構造の確認はH−NMRで行った。
(Example 24)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-15) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -24) was obtained in a yield of 18.8%. The structure was confirmed by 1 H-NMR.

(実施例25)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−17)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−26)を収率25.5%で得た。構造の確認はH−NMRで行った。
(Example 25)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-17) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -26) was obtained in a yield of 25.5%. The structure was confirmed by 1 H-NMR.

(実施例26)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−19)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−28)を収率11.1%で得た。構造の確認はH−NMRで行った。
(Example 26)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-19) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -28) was obtained in a yield of 11.1%. The structure was confirmed by 1 H-NMR.

(実施例27)
実施例11の(1)で得られた例示化合物(7−01)と、例示化合物(8−21)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−30)を収率14.2%で得た。構造の確認はH−NMRで行った。
(Example 27)
The exemplified compound (1-01) obtained in Example 11 (1) and the exemplified compound (8-21) are reacted in the same manner as in Example 1 (2) to give the exemplified compound (1). -30) was obtained in a yield of 14.2%. The structure was confirmed by 1 H-NMR.

(実施例28)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−23)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−32)を収率12.7%で得た。構造の確認はH−NMRで行った。
(Example 28)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-23) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -32) was obtained in a yield of 12.7%. The structure was confirmed by 1 H-NMR.

(実施例29)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−26)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−34)を収率23.4%で得た。構造の確認はH−NMRで行った。
(Example 29)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-26) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -34) was obtained in a yield of 23.4%. The structure was confirmed by 1 H-NMR.

(実施例30)
(1)実施例2の(1)と同様の方法で、2,7−ジブロモフルオレノン〔例示化合物(12−28)・市販品〕をビスボロン酸に変換し、例示化合物(8−28)を収率21.9%で得た。
(Example 30)
(1) In the same manner as in Example 1, (1), 2,7-dibromofluorenone [Exemplary Compound (12-28) / commercial product] was converted to bisboronic acid, and Exemplified Compound (8-28) was recovered. Obtained at a rate of 21.9%.

(2)実施例30の(1)で得られた例示化合物(8−28)と、実施例1の(1)で得られた例示化合物(7−02)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−36)を収率12.7%で得た。構造の確認はH−NMRで行った。 (2) The exemplary compound (8-28) obtained in (1) of Example 30 and the exemplary compound (7-02) obtained in (1) of Example 1 were combined with (2) of Example 1. ) To give Exemplified compound (1-36) in a yield of 12.7%. The structure was confirmed by 1 H-NMR.

(実施例31)
(1)実施例3の(1)と同様の方法で、ブロモエタンの代わりに沃化メチルを用いて、2,7−ジブロモフルオレノン〔例示化合物(12−28)・市販品〕をビスメチル化して、2,7−ジブロモ−9,9−ジメチルフルオレノン〔例示化合物(12−29)〕を、収率41.8%で得た。
(Example 31)
(1) Bismethylation of 2,7-dibromofluorenone [Exemplary compound (12-28) / commercially available product] using methyl iodide instead of bromoethane in the same manner as in Example 3 (1), 2,7-Dibromo-9,9-dimethylfluorenone [Exemplary Compound (12-29)] was obtained in a yield of 41.8%.

(2)実施例31の(1)で得られた例示化合物(12−29)を、実施例2の(1)と同様の方法でビスボロン酸に変換し、例示化合物(8−29)を収率21.9%で得た。   (2) The exemplified compound (12-29) obtained in (1) of Example 31 was converted to bisboronic acid in the same manner as in (1) of Example 2, and the exemplified compound (8-29) was recovered. Obtained at a rate of 21.9%.

(3)実施例31の(2)で得られた例示化合物(8−29)と、実施例1の(1)で得られた例示化合物(7−02)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−37)を収率14.3%で得た。構造の確認はH−NMRで行った。 (3) The exemplified compound (8-29) obtained in (2) of Example 31 and the exemplified compound (7-02) obtained in (1) of Example 1 were combined with (2) of Example 1. ) To give exemplary compound (1-37) in a yield of 14.3%. The structure was confirmed by 1 H-NMR.

(実施例32)
実施例1の(1)で得られた例示化合物(7−02)と、例示化合物(8−32)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−40)を収率8.34%で得た。構造の確認はH−NMRで行った。
(Example 32)
The exemplified compound (7-02) obtained in (1) of Example 1 and the exemplified compound (8-32) are reacted in the same manner as in (2) of Example 1 to give the exemplified compound (1 -40) was obtained in a yield of 8.34%. The structure was confirmed by 1 H-NMR.

(実施例33)
(1)実施例3の(2)と同様の方法で、2,7−ジブロモナフタレン〔例示化合物(12−33)・市販品〕をビスボロン酸エステルに変換して、例示化合物(9−13)を収率58.8%で得た。
(Example 33)
(1) In the same manner as in Example 3, (2), 2,7-dibromonaphthalene [Exemplary Compound (12-33) / commercially available product] is converted to a bisboronic acid ester to give Exemplified Compound (9-13) Was obtained in a yield of 58.8%.

(2)実施例33の(1)で得られた例示化合物(9−13)と、実施例1の(1)で得られた例示化合物(7−02)とを、実施例3の(3)と同様の方法で反応させて、例示化合物(1−41)を収率19.6%で得た。構造の確認はH−NMRで行った。 (2) The exemplified compound (9-13) obtained in (1) of Example 33 and the exemplified compound (7-02) obtained in (1) of Example 1 were combined with (3) of Example 3 ) To give exemplary compound (1-41) in a yield of 19.6%. The structure was confirmed by 1 H-NMR.

(実施例34)
(1)実施例3の(2)と同様の方法で、1,4−ジブロモナフタレン〔例示化合物(12−37)・市販品〕をビスボロン酸エステルに変換して、例示化合物(9−14)を、収率60.6%で得た。
(Example 34)
(1) In the same manner as in (2) of Example 3, 1,4-dibromonaphthalene [Exemplary Compound (12-37) / commercial product] is converted to a bisboronic acid ester to give Exemplified Compound (9-14) Was obtained in a yield of 60.6%.

(2)実施例34の(1)で得られた例示化合物(9−14)と、実施例1の(1)で得られた例示化合物(7−02)とを、実施例3の(3)と同様の方法で反応させて、例示化合物(1−44)を収率29.1%で得た。構造の確認はH−NMRで行った。 (2) The exemplified compound (9-14) obtained in (1) of Example 34 and the exemplified compound (7-02) obtained in (1) of Example 1 were combined with (3) of Example 3 ) To give Exemplified compound (1-44) in a yield of 29.1%. The structure was confirmed by 1 H-NMR.

(実施例35)
1,4−ジブロモベンゼン〔例示化合物(12−01)・市販品〕と、例示化合物(11−07)とを、実施例3の(3)と同様の方法で反応させて、例示化合物(1−46)を収率4.96%で得た。構造の確認はH−NMRで行った。
(Example 35)
1,4-dibromobenzene [Exemplary compound (12-01) / commercially available product] and Exemplified compound (11-07) are reacted in the same manner as in Example 3 (3) to give Exemplified compound (1 -46) was obtained in a yield of 4.96%. The structure was confirmed by 1 H-NMR.

(実施例36)
1,4−ジブロモベンゼン〔例示化合物(12−01)・市販品〕と、例示化合物(11−08)とを、実施例3の(3)と同様の方法で反応させて、例示化合物(1−47)を収率10.5%で得た。構造の確認はH−NMRで行った。
(Example 36)
1,4-dibromobenzene [Exemplary Compound (12-01) / commercially available product] and Exemplified Compound (11-08) are reacted in the same manner as in Example 3 (3) to give Exemplified Compound (1 -47) was obtained in a yield of 10.5%. The structure was confirmed by 1 H-NMR.

(実施例37)
(1)実施例11の(1)と同様の方法で例示化合物(13−12)を臭素化し、例示化合物(7−12)を収率79.1%で得た。
(Example 37)
(1) The exemplified compound (13-12) was brominated in the same manner as in (1) of Example 11 to obtain the exemplified compound (7-12) in a yield of 79.1%.

(2)実施例37の(1)で得られた例示化合物(7−12)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−49)を収率12.0%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (7-12) obtained in (1) of Example 37 and benzene-1,4-diboronic acid [Exemplary compound (8-01), commercially available product] Reaction was carried out in the same manner as in (2) to give Exemplified Compound (1-49) in a yield of 12.0%. The structure was confirmed by 1 H-NMR.

(実施例38)
(1)実施例11の(1)と同様の方法で例示化合物(13−20)を臭素化し、例示化合物(7−20)を収率95.7%で得た。
(Example 38)
(1) The exemplified compound (13-20) was brominated by the same method as (1) in Example 11 to obtain the exemplified compound (7-20) in a yield of 95.7%.

(2)実施例38の(1)で得られた例示化合物(7−20)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−50)を収率18.4%で得た。構造の確認はH−NMRで行った。 (2) Example compound (7-20) obtained in (1) of Example 38 and benzene-1,4-diboronic acid [Exemplary compound (8-01), commercially available product] Reaction was carried out in the same manner as in (2) to obtain Exemplified Compound (1-50) in a yield of 18.4%. The structure was confirmed by 1 H-NMR.

(実施例39)
(1)実施例3の(2)と同様の方法で、例示化合物(7−19)をビスボロン酸エステルに変換して、例示化合物(11−19)を、収率33.6%で得た。
(Example 39)
(1) Exemplified compound (11-19) was obtained in a yield of 33.6% by converting Exemplified compound (7-19) to bisboronic acid ester in the same manner as (2) of Example 3. .

(2)実施例39の(1)で得られた例示化合物(11−19)と1,4−ジブロモベンゼン〔例示化合物(12−01)・市販品〕とを、実施例3の(3)と同様の方法で反応させて、例示化合物(1−52)を収率11.3%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (11-19) obtained in Example 39 (1) and 1,4-dibromobenzene [Exemplary compound (12-01) / commercially available product] were combined with (3) of Example 3. In the same manner as in Example 1, the exemplary compound (1-52) was obtained in a yield of 11.3%. The structure was confirmed by 1 H-NMR.

(実施例40)
(1)実施例11の(1)と同様の方法で例示化合物(13−22)を臭素化し、例示化合物(7−22)を収率50.9%で得た。
(Example 40)
(1) The exemplified compound (13-22) was brominated in the same manner as in (1) of Example 11 to obtain the exemplified compound (7-22) in a yield of 50.9%.

(2)実施例40の(1)で得られた例示化合物(7−22)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−53)を収率11.5%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (7-22) obtained in Example 40 (1) and benzene-1,4-diboronic acid [Exemplary compound (8-01) / commercially available product] of Example 1 Reaction was carried out in the same manner as in (2) to obtain Exemplified Compound (1-53) in a yield of 11.5%. The structure was confirmed by 1 H-NMR.

(実施例41)
(1)実施例11の(1)と同様の方法で例示化合物(13−18)を臭素化し、例示化合物(7−18)を収率84.9%で得た。
(Example 41)
(1) The exemplified compound (13-18) was brominated by the same method as in (1) of Example 11 to obtain the exemplified compound (7-18) in a yield of 84.9%.

(2)実施例41の(1)で得られた例示化合物(7−18)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−55)を収率6.53%で得た。構造の確認はH−NMRで行った。 (2) Example compound (7-18) obtained in (1) of Example 41 and benzene-1,4-diboronic acid [Exemplary compound (8-01) / commercial product] The reaction was conducted in the same manner as in (2) to obtain Exemplified compound (1-55) in a yield of 6.53%. The structure was confirmed by 1 H-NMR.

(実施例42)
(1)実施例11の(1)と同様の方法で例示化合物(13−17)を臭素化し、例示化合物(7−17)を収率83.5%で得た。
(Example 42)
(1) The exemplified compound (13-17) was brominated in the same manner as in (1) of Example 11 to obtain the exemplified compound (7-17) in a yield of 83.5%.

(2)実施例42の(1)で得られた例示化合物(7−17)と、例示化合物(8−07)とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−57)を収率10.0%で得た。構造の確認はH−NMRで行った。 (2) The exemplified compound (7-17) obtained in (1) of Example 42 and the exemplified compound (8-07) were reacted in the same manner as in (2) of Example 1, and exemplified. Compound (1-57) was obtained with a yield of 10.0%. The structure was confirmed by 1 H-NMR.

(実施例43)
(1)実施例11の(1)と同様の方法で例示化合物(13−13)を臭素化し、例示化合物(7−13)を収率23.1%で得た。
(Example 43)
(1) The exemplified compound (13-13) was brominated by the same method as (1) of Example 11 to obtain the exemplified compound (7-13) in a yield of 23.1%.

(2)実施例43の(1)で得られた例示化合物(7−13)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−65)を収率11.7%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (7-13) obtained in (1) of Example 43 and benzene-1,4-diboronic acid [Exemplary compound (8-01) / commercially available product] of Example 1 Reaction was carried out in the same manner as in (2) to obtain Exemplified Compound (1-65) in a yield of 11.7%. The structure was confirmed by 1 H-NMR.

(実施例44)
(1)実施例11の(1)と同様の方法で例示化合物(13−15)を臭素化し、例示化合物(7−15)を収率93.5%で得た。
(Example 44)
(1) The exemplified compound (13-15) was brominated by the same method as (1) of Example 11 to obtain the exemplified compound (7-15) in a yield of 93.5%.

(2)実施例44の(1)で得られた例示化合物(7−15)と、ベンゼン−1,4−ジボロン酸〔例示化合物(8−01)・市販品〕とを、実施例1の(2)と同様の方法で反応させて、例示化合物(1−66)を収率13.4%で得た。構造の確認はH−NMRで行った。 (2) Exemplified compound (7-15) obtained in (1) of Example 44 and benzene-1,4-diboronic acid [Exemplary compound (8-01), commercially available product] Reaction was carried out in the same manner as in (2) to give Exemplified Compound (1-66) in a yield of 13.4%. The structure was confirmed by 1 H-NMR.

実施例1〜44以外の目的とするビス三環性アミン置換アリーレン誘導体の例示化合物についても、上記の方法に準じて合成を行った。   The target compounds other than Examples 1 to 44 were also synthesized in accordance with the above-described method for the bis-tricyclic amine-substituted arylene derivative exemplified compounds.

例示化合物の内で代表的なもの及び比較化合物のα−NPDについて、精製テトラヒドロフランを溶媒として用い、電気化学的測定法の一種である、サイクリックボルタンメトリー(CV)の測定を行って、それらの酸化半波電位を求めた。支持電解質には過塩素酸テトラブチルアンモニウム(TBAP)を用い、濃度は0.1モル/lで使用した。作用電極は白金円板電極を用い、対極には白金ワイヤーを使用し、参照電極には飽和カロメル電極(SCE)を用いて測定を行った。測定条件は、サンプル濃度:約0.1〜1.0ミリモル/l、X−Yレコーダーの掃引速度(印加電圧)は200mV/secで記録を行った。結果は以下の表1の通りであった。   Among representative compounds and α-NPD as a comparative compound, purified tetrahydrofuran was used as a solvent, and cyclic voltammetry (CV) measurement, which is a kind of electrochemical measurement method, was performed to oxidize them. The half wave potential was determined. Tetrabutylammonium perchlorate (TBAP) was used as the supporting electrolyte, and the concentration was 0.1 mol / l. The measurement was performed using a platinum disk electrode as the working electrode, a platinum wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. The measurement conditions were sample concentration: about 0.1 to 1.0 mmol / l, and recording was performed at an XY recorder sweep rate (applied voltage) of 200 mV / sec. The results were as shown in Table 1 below.

Figure 2010229053
Figure 2010229053

以上のCV測定の結果から、本発明の新規なビス三環性アミン置換アリーレン誘導体は、比較物質のα−NPDよりも250mV前後低い酸化半波電位を有していることがわかる。従来の知見からは、電気化学測定法による酸化半波電位は、エネルギー準位的には、最高被占軌道(Highest Occupied Molecular Orbital:HOMO)に対応するイオン化ポテンシャルとの相関が見られることが知られており、この観点から、これらの化合物は正孔輸送層に用いる正孔輸送材料としての利用の他に、陽極と正孔輸送層の間において、ホールの移動をより容易にする正孔注入層としても有用であることが示唆される。   From the results of the above CV measurement, it can be seen that the novel bis-tricyclic amine-substituted arylene derivative of the present invention has an oxidation half-wave potential lower by about 250 mV than the α-NPD of the comparative substance. From conventional knowledge, it is known that the oxidation half-wave potential obtained by the electrochemical measurement method is correlated with the ionization potential corresponding to the highest occupied molecular orbital (HOMO) in terms of energy level. From this point of view, these compounds are used as a hole transport material used in the hole transport layer, and in addition to hole injection that facilitates the movement of holes between the anode and the hole transport layer. It is suggested that it is also useful as a layer.

(応用例1)
以上の実施例1〜44で得られた例示化合物(1−01)、(1−15)、(1−38)、(1−02)、(1−07)、(1−06)、(1−16)、(1−17)、(1−04)、(1−03)、(1−05)、(1−09)、(1−08)、(1−11)、(1−12)、(1−13)、(1−10)、(1−14)、(1−18)、(1−19)、(1−20)、(1−21)、(1−22)、(1−24)、(1−26)、(1−28)、(1−30)、(1−32)、(1−34)、(1−36)、(1−37)、(1−40)、(1−41)、(1−44)、(1−46)、(1−47)、(1−49)、(1−50)、(1−52)、(1−53)、(1−55)、(1−57)、(1−65)、(1−66)を用いて、有機EL素子を作製し、その正孔輸送材料としての機能を確認した。有機EL素子は、ガラス基板上にITO電極を予め形成してある透明電極の上に、正孔輸送材料として本発明化合物の薄膜を形成し、その上に発光層及び電子輸送層としてアルミキノリン3量体の薄膜を形成、その上にMg/Al電極薄膜をさらに形成することにより作製した。
(Application 1)
Exemplified compounds (1-01), (1-15), (1-38), (1-02), (1-07), (1-06), (1-06) obtained in Examples 1-44 above 1-16), (1-17), (1-04), (1-03), (1-05), (1-09), (1-08), (1-11), (1- 12), (1-13), (1-10), (1-14), (1-18), (1-19), (1-20), (1-21), (1-22) , (1-24), (1-26), (1-28), (1-30), (1-32), (1-34), (1-36), (1-37), ( 1-40), (1-41), (1-44), (1-46), (1-47), (1-49), (1-50), (1-52), (1- 53), (1-55), (1-57), (1-65), (1-66) To produce an EL device was confirmed functions as a hole transporting material. In the organic EL element, a thin film of the compound of the present invention is formed as a hole transport material on a transparent electrode on which an ITO electrode is previously formed on a glass substrate, and aluminum quinoline 3 is formed thereon as a light emitting layer and an electron transport layer. A thin film of a polymer was formed, and an Mg / Al electrode thin film was further formed thereon.

以上のようにして作製した有機EL素子について、定電流装置を用いて100mA/cmの電流を印加したところ、十分な発光輝度で連続して発光することが確認された。いずれの例示化合物を用いた場合も、初期感度が半減するまでの発光寿命は100時間以上であった。 When an electric current of 100 mA / cm 2 was applied to the organic EL element produced as described above using a constant current device, it was confirmed that the organic EL element emitted light continuously with sufficient light emission luminance. When any of the exemplified compounds was used, the light emission lifetime until the initial sensitivity was halved was 100 hours or longer.

(比較応用例1)
これに対し、比較化合物としてα−NPDを用いて、同様の有機EL素子を作製し、同様の定電流装置を用いて100mA/cmの電流を印加したところ、最初は十分な発光輝度で発光したが、発光寿命が例示化合物と比較して短く、約50時間であった。
(Comparative Application Example 1)
On the other hand, when α-NPD was used as a comparative compound, a similar organic EL element was produced, and a current of 100 mA / cm 2 was applied using a similar constant current device. However, the emission lifetime was shorter than that of the exemplified compound, which was about 50 hours.

(応用例2)
次に、正孔輸送層の代わりに正孔注入層として、応用例1で用いた本発明の例示化合物を用い、応用例1で作製した正孔輸送層の代わりに、応用例1で作製した正孔輸送層の約半分の膜厚の正孔注入層を形成させ、その上に、比較物質のα−NPDを用いて、応用例1で作製した正孔輸送層の約半分の膜厚の正孔輸送層を形成させて、通常の構成の正孔輸送層の代わりに、ほぼ同じ膜厚で、正孔注入層/正孔輸送層の2層構成とした素子を作製した。比較応用例1の正孔輸送材料としてα−NPDを用いた通常の構成の素子と比較した結果、2層構成とした素子では、同一の電流密度を与えるのに必要な駆動電圧が、10〜20%低減することが確認できた。
(Application example 2)
Next, the example compound of the present invention used in Application Example 1 was used as the hole injection layer instead of the hole transport layer, and the sample was prepared in Application Example 1 instead of the hole transport layer prepared in Application Example 1. A hole injection layer having a thickness about half that of the hole transport layer is formed, and a comparative example of α-NPD is used on the hole injection layer, and the thickness is about half that of the hole transport layer manufactured in Application Example 1. By forming a hole transport layer, an element having a two-layer structure of a hole injection layer / a hole transport layer having substantially the same film thickness was prepared instead of the hole transport layer having a normal structure. As a result of comparison with a device having a normal configuration using α-NPD as the hole transport material of Comparative Application Example 1, in the device having a two-layer configuration, the driving voltage required to give the same current density is 10 to 10. It was confirmed that it was reduced by 20%.

本発明の活用例として、特に駆動電圧が低く、また発光寿命に優れた有機EL用素子を実現することができる。   As an application example of the present invention, an organic EL device having a particularly low driving voltage and an excellent light emission lifetime can be realized.

Claims (1)

一般式(1)で示されるビス三環性アミン置換アリーレン誘導体。
Figure 2010229053
〔一般式(1)において、Rは、水素原子、C〜Cの低級アルキル基、C〜Cの低級アルコキシ基またはハロゲン原子を示す。Arはそれぞれが置換基を有してもよいアルキル基、アラルキル基、アリール基またはヘテロ環基を示す。Zは、チッ素を含む5員環の2つの炭素と共に、5〜8員環の飽和の炭化水素環あるいは5員環の飽和の複素環を形成するのに必要な原子を示す。Aは一般式(2)〜(6)で示される2価の連結基を示す。〕
Figure 2010229053
〔一般式(2)〜(4)において、R〜Rは、水素原子、C〜Cの低級アルキル基、C〜Cの低級アルコキシ基またはハロゲン原子を示す。一般式(5)において、R及びRは、水素原子、C〜Cの低級アルキル基またはフェニル基を示す。〕
A bis-tricyclic amine-substituted arylene derivative represented by the general formula (1).
Figure 2010229053
[In General Formula (1), R 1 represents a hydrogen atom, a C 1 -C 4 lower alkyl group, a C 1 -C 4 lower alkoxy group, or a halogen atom. Ar 1 represents an alkyl group, an aralkyl group, an aryl group or a heterocyclic group, each of which may have a substituent. Z represents an atom necessary for forming a 5- to 8-membered saturated hydrocarbon ring or a 5-membered saturated heterocyclic ring together with two carbons of a 5-membered ring containing nitrogen. A represents a divalent linking group represented by the general formulas (2) to (6). ]
Figure 2010229053
[In General Formulas (2) to (4), R 2 to R 5 represent a hydrogen atom, a C 1 to C 4 lower alkyl group, a C 1 to C 4 lower alkoxy group, or a halogen atom. In the general formula (5), R 6 and R 7 represents a hydrogen atom, a lower alkyl group or a phenyl group of C 1 -C 4. ]
JP2009076665A 2009-03-26 2009-03-26 Bis-tricyclic amine-substituted arylene derivative Pending JP2010229053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076665A JP2010229053A (en) 2009-03-26 2009-03-26 Bis-tricyclic amine-substituted arylene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076665A JP2010229053A (en) 2009-03-26 2009-03-26 Bis-tricyclic amine-substituted arylene derivative

Publications (1)

Publication Number Publication Date
JP2010229053A true JP2010229053A (en) 2010-10-14

Family

ID=43045207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076665A Pending JP2010229053A (en) 2009-03-26 2009-03-26 Bis-tricyclic amine-substituted arylene derivative

Country Status (1)

Country Link
JP (1) JP2010229053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020183A (en) * 2011-07-13 2013-01-31 Takasago Internatl Corp Electrophotographic photoreceptor
CN103183633A (en) * 2011-12-27 2013-07-03 三星显示有限公司 Condensed-cyclic compound and organic light emitting diode including same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020183A (en) * 2011-07-13 2013-01-31 Takasago Internatl Corp Electrophotographic photoreceptor
CN103183633A (en) * 2011-12-27 2013-07-03 三星显示有限公司 Condensed-cyclic compound and organic light emitting diode including same
US20130175509A1 (en) * 2011-12-27 2013-07-11 Sfc Co., Ltd. Condensed-cyclic compound and organic light emitting diode including the same
KR101407588B1 (en) * 2011-12-27 2014-06-13 에스에프씨 주식회사 A condensed-cyclic compound and an organic light emitting diode comprising the same
US9815821B2 (en) * 2011-12-27 2017-11-14 Samsung Display Co., Ltd. Condensed-cyclic compound and organic light emitting diode including the same
TWI627164B (en) * 2011-12-27 2018-06-21 三星顯示器有限公司 Condensed-cyclic compound and organic light emitting diode including the same
CN109438328A (en) * 2011-12-27 2019-03-08 Sfc 株式会社 Fused ring compound and Organic Light Emitting Diode including the compound
CN109438328B (en) * 2011-12-27 2022-07-12 Sfc 株式会社 Condensed ring compound and organic light emitting diode including the same

Similar Documents

Publication Publication Date Title
JP5566898B2 (en) New organic light emitting device compound and organic light emitting device using the same
KR100843819B1 (en) Anthracene derivatives and organic electroluminescent devices made by using the same
JP5259426B2 (en) Electroluminescent compound containing fluorene group and organic electroluminescent device using the same as luminescent material
KR100846221B1 (en) Light-emitting compound and organic light-emitting diodes using the same
JP6580613B2 (en) Lighting for plant cultivation using a novel triazine compound
JP4327443B2 (en) Phenanthroline derivatives and uses thereof
JP4350960B2 (en) 4,4 ″ -di- (aryl) -3 ′, 4 ′, 5 ′, 6′-tetraphenyl-p-terphenyl derivative, host material comprising the same, and electroluminescence device using the same
JP3549555B2 (en) Novel pyrene derivative and method for producing the same
WO2003080762A1 (en) Functional thin film
JP4797470B2 (en) Quinoline derivative and organic EL device containing the same
JP4320434B2 (en) Organoboron π-electron compound and material containing the same
JP4612846B2 (en) Biskinoxaline compound and organic light-emitting device
JP4411708B2 (en) Bis (aminostyryl) benzene compound
JP2011046627A (en) Bis-tricyclic amine-substituted arylene derivative
JP2010229053A (en) Bis-tricyclic amine-substituted arylene derivative
JP2001106657A (en) Bis(aminostyryl)anthracene compound and its synthetic intermediate, and their production
JP2004115441A (en) High-molecular weight perylene derivative, production method therefor, hole transport material and dopant containing the same, and organic el element using the same
JP2000204051A (en) Aromatic methylidene compound, aromatic aldehyde compound for producing the same, and their production
US6525212B1 (en) Bis(aminostyryl)benzene compounds and synthetic intermediates thereof, and process for preparing the compounds and intermediates
JP2008166538A (en) Organic electroluminescent element
JP2011063550A (en) Bistricyclic amine substituted terphenyl derivative
JP4708732B2 (en) Metal coordination compound for light emitting device and light emitting device using the same
JP2010083767A (en) N, n&#39;-bistricyclic amine-substituted-polyphenylenediamine derivative
JP2004091342A (en) Aromatic methylidene compound, compound for manufacturing the same, their manufacturing method and organoelectroluminescent element obtained by using aromatic methylidene compound
JP4386140B2 (en) Bis (aminostyryl) benzene compound