JP2008166538A - Organic electroluminescent element - Google Patents

Organic electroluminescent element Download PDF

Info

Publication number
JP2008166538A
JP2008166538A JP2006355176A JP2006355176A JP2008166538A JP 2008166538 A JP2008166538 A JP 2008166538A JP 2006355176 A JP2006355176 A JP 2006355176A JP 2006355176 A JP2006355176 A JP 2006355176A JP 2008166538 A JP2008166538 A JP 2008166538A
Authority
JP
Japan
Prior art keywords
layer
organic
compound
light emitting
organic electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006355176A
Other languages
Japanese (ja)
Inventor
Yahui Wang
亜輝 王
Tetsuya Tominaga
哲也 富永
Shinji Kubo
久保紳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Finechemicals Co Ltd
Original Assignee
Fujifilm Finechemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Finechemicals Co Ltd filed Critical Fujifilm Finechemicals Co Ltd
Priority to JP2006355176A priority Critical patent/JP2008166538A/en
Publication of JP2008166538A publication Critical patent/JP2008166538A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL element of high brightness and high durability by incorporating an organic material having high film formation property, high carrier mobility and thermal stability. <P>SOLUTION: The organic EL element exhibits high light output and high durability by incorporating a compound No.1-1, for example (a compound expressed by a general formula (1) wherein R1 to R4 are methyl group). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はディスプレイ、照明光源、複写機の露光光源、表示板、標識灯などに利用される有機電界発光素子に関するものである。   The present invention relates to an organic electroluminescent element used for a display, an illumination light source, an exposure light source of a copying machine, a display board, a marker lamp, and the like.

有機電界発光素子(以下、有機EL素子と略記する)とは、陽極と陰極間に蛍光性有機化合物を含む薄膜物質を挟持させて、各電極からホールおよび電子を注入することにより蛍光性化合物の励起子を生成し、この励起子が基底状態に戻る際に放射する光を利用する素子である。有機材料の電界発光現象は1963年にPopeらがアントラセン単結晶で初めて観測し(非特許文献1)、続いて1965年にHelfinchとSchneiderが注入効率の良い溶液電極系で比較的強い注入型ELの観測に成功している(非特許文献2)。以来、共役の有機ホスト化合物と縮合ベンゼン環を有する共役の有機活性化剤とからなる有機蛍光性物質の研究が盛んになり、有機ホスト化合物にナフタレン、アントラセン、フェナントレン、テトラセン、ピレン、ベンゾピレン、クリセン、ピセン、カルバゾール、フルオレン、ビフェニル、ターフェニル等を、有機活性化剤にアントラセン、テトラセン、ペンタセン等を用いた種々の有機蛍光性物質が試みられてきた(特許文献1)。しかしこれらの有機蛍光性物質はいずれも1μmを越える厚さを持つ単一層であり発光には高電界が必要であったため、次に薄膜素子の研究が進められた(非特許文献3)。 An organic electroluminescent element (hereinafter abbreviated as an organic EL element) is a fluorescent compound formed by sandwiching a thin film material containing a fluorescent organic compound between an anode and a cathode and injecting holes and electrons from each electrode. An element that generates excitons and uses light emitted when the excitons return to the ground state. The electroluminescent phenomenon of organic materials was first observed by Pope et al. In 1963 in anthracene single crystals (Non-Patent Document 1), followed by 1965 Helfinch and Schneider in a solution electrode system with good injection efficiency and relatively strong injection type EL. Has been successfully observed (Non-patent Document 2). Since then, organic fluorescent substances consisting of conjugated organic host compounds and conjugated organic activators having condensed benzene rings have been actively researched. Naphthalene, anthracene, phenanthrene, tetracene, pyrene, benzopyrene, chrysene are used as organic host compounds. Various organic fluorescent substances using, for example, anthracene, tetracene, pentacene and the like as organic activators have been tried (Patent Document 1), picene, carbazole, fluorene, biphenyl, terphenyl and the like. However, all of these organic fluorescent materials are single layers having a thickness exceeding 1 μm, and a high electric field is required for light emission. Therefore, research on a thin film element was advanced (Non-patent Document 3).

近年、Tangらは一対の電極間に極めて薄い電荷輸送層と発光層を真空蒸着で積層した有機EL素子を考案し、低い駆動電圧で高輝度を実現した(非特許文献4)。現在フラットパネルディスプレイや音楽プレイヤー等の需要拡大に伴い、各種表示素子の開発および実用化が急速に進められているが、その中でも特に高解像度、高輝度および高視認性を有する有機EL素子に注目が集まっている。有機EL素子は無機EL素子より低寿命である短所を有しているが、低電圧での駆動が可能であること、広範囲な波長領域に適応できること、大面積化が可能なこと、高輝度であること等の利点を有しており、ディスプレイや各種の光源、照明などの応用が研究されている。 In recent years, Tang et al. Have devised an organic EL element in which a very thin charge transport layer and a light emitting layer are stacked by vacuum deposition between a pair of electrodes, and have achieved high luminance with a low driving voltage (Non-Patent Document 4). Currently, with the growing demand for flat panel displays, music players, etc., various display elements are being developed and put to practical use. Of these, organic EL elements with high resolution, high brightness, and high visibility are particularly focused. Gathered. Organic EL elements have the disadvantage of a shorter lifetime than inorganic EL elements, but they can be driven at a low voltage, can be applied to a wide range of wavelengths, can have a large area, and have high brightness. There are advantages such as that, and applications such as displays, various light sources, and illumination are being studied.

有機EL素子に用いる有機材料に要求される特性としては、(1)熱に安定でアモルファス状態が安定であること、(2)ピンホールの無い良質な薄膜を形成できること、(3)電気的、化学的に安定であること、(4)蒸着時に分解しないこと、(5)優れた電荷輸送能力または発光能力をもつこと等が挙げられる。更に高輝度な光出力および高寿命な素子を得るには電荷注入効率の高い材料と、電荷輸送能力の高い材料と、発光の量子収率の高い材料とを、またはそれらを兼ね備えた材料を適切な接触状態で組み合わせる必要がある。
電荷輸送能力はキャリアの単位電界あたりの移動速度で評価され、キャリアのドリフト移動度と呼ばれる。キャリアのドリフト移動度が高い程、電荷輸送層内を効率良くホールが移動できるので高輝度な発光が得られる可能性がある。ドリフト移動度はある温度、印加電圧条件下において電荷輸送物質に固有のものであり、従って有機EL素子の高輝度な光出力を達成するにはキャリア移動度の高い材料を使用することが好ましいが、未だ高移動度と製膜性、十分な熱安定性を兼ね備えた化合物が見出されていないのが現状である。
従来、有機EL素子用の有機材料においてキャリア移動度に優れたp−ターフェニル化合物を用いるものがいくつか提案されている(例えば、特許文献2〜6)。しかしながらキャリア移動度および熱的安定性は十分とは言えず、また熱的安定性を改善しても溶剤への溶解性が極めて低くなり、精製が困難となるなど依然改善すべき課題が残っている。
The characteristics required for the organic material used for the organic EL element are (1) heat stable and stable amorphous state, (2) a good quality thin film without pinholes, (3) electrical, Examples thereof include chemical stability, (4) no decomposition during vapor deposition, and (5) excellent charge transport ability or light emission ability. In order to obtain a light output with a high luminance and a device with a long lifetime, a material having a high charge injection efficiency, a material having a high charge transport capability, and a material having a high quantum yield of light emission, or a material having both of them is suitable. Need to be combined in a proper contact state.
The charge transport capability is evaluated by the moving speed per unit electric field of carriers, and is called carrier drift mobility. The higher the carrier drift mobility, the more efficiently the holes can move in the charge transport layer, so that there is a possibility that light emission with high luminance can be obtained. The drift mobility is specific to the charge transport material under a certain temperature and applied voltage condition. Therefore, it is preferable to use a material having a high carrier mobility in order to achieve a high luminance light output of the organic EL element. However, at present, no compound having high mobility, film-forming property, and sufficient thermal stability has been found.
Conventionally, some organic materials for organic EL devices using a p-terphenyl compound having excellent carrier mobility have been proposed (for example, Patent Documents 2 to 6). However, carrier mobility and thermal stability cannot be said to be sufficient, and even if the thermal stability is improved, the solubility in the solvent becomes extremely low and purification is difficult. Yes.

“ジャーナル オブ フィジカル ケミストリー(Journal of Physical Chemistry)” 1963年、38巻、2042頁“Journal of Physical Chemistry” 1963, 38, 2042 “フィジカル レビュー レターズ(Physical Review Letters)” 1965年、14巻、229頁“Physical Review Letters” 1965, 14, 229 “シン ソリッド フイルムズ(Thin Solid Films)”1982年、94巻、171頁“Thin Solid Films” 1982, 94, 171 “アプライド フィジックス レターズ(Applied Physics Letters)” 1987年、51巻、913頁“Applied Physics Letters” 1987, 51, 913 米国特許第3,170,167号U.S. Pat. No. 3,170,167 特開平11−35532号JP-A-11-35532 特開平11−167991号JP 11-167991 A 特開2001−52868号JP 2001-52868 A 特開2004−339134号JP 2004-339134 A 国際公開2005/063684号International Publication No. 2005/063684

本発明の目的は、高い製膜性、高いキャリア移動度と熱安定性を有した有機材料を含有させることにより高輝度および耐久性に優れた有機EL素子を提供することである。
本発明者らは鋭意工夫した結果、先行文献でその化合物が開示されておらず、p−ターフェニル化合物の中でも本発明の化合物に限定された構造を有するものだけが極めて高いキャリア輸送能を発現することを初めて見出した。そして、本発明の化合物を有機EL素子に含有することにより高輝度な光出力および高寿命化を達成し本発明を完成した。
An object of the present invention is to provide an organic EL device excellent in high luminance and durability by containing an organic material having high film forming property, high carrier mobility and thermal stability.
As a result of diligent efforts, the present inventors have not disclosed the compound in the prior literature, and among the p-terphenyl compounds, only those having a structure limited to the compound of the present invention exhibit extremely high carrier transport ability. I found out for the first time. And by containing the compound of this invention in an organic EL element, high-intensity light output and lifetime improvement were achieved, and this invention was completed.

即ち本発明の上記目的は以下の構成によって達成される。
(i)一対の電極間に少なくとも発光層を含む一層または複数層の有機薄膜層を形成してなる有機電界発光素子において、該有機薄膜層の少なくとも一層が一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機電界発光素子。
That is, the above object of the present invention is achieved by the following configuration.
(I) In an organic electroluminescent device in which one or more organic thin film layers including at least a light emitting layer are formed between a pair of electrodes, at least one layer of the organic thin film layer is represented by the general formula (1) An organic electroluminescent device comprising an amine compound.

Figure 2008166538

式中、R1〜R4は各々独立して直鎖または環状アルキル基、アリールアルキル基、アリールアルケニル基を表す。
(ii)一般式(1)で示されるアリールアミン化合物を含有する有機薄膜層が発光層、ホール輸送層、ホール注入層からなる群より選択されることを特徴とする(i)の有機電界発光素子。
(iii)一般式(1)で示されるアリールアミン化合物のR1〜R4が炭素数1〜4の低級アルキル基から選択されることを特徴とする(i)〜(ii)の有機電界発光素子。
Figure 2008166538

In the formula, R1 to R4 each independently represent a linear or cyclic alkyl group, an arylalkyl group, or an arylalkenyl group.
(Ii) The organic electroluminescence according to (i), wherein the organic thin film layer containing the arylamine compound represented by the general formula (1) is selected from the group consisting of a light emitting layer, a hole transport layer, and a hole injection layer element.
(Iii) The organic electroluminescent device according to (i) to (ii), wherein R1 to R4 of the arylamine compound represented by the general formula (1) are selected from lower alkyl groups having 1 to 4 carbon atoms.

本発明の有機EL素子は高い光出力を示し、且つ高耐久性であり優れた特性を有している。   The organic EL device of the present invention exhibits high light output, is highly durable, and has excellent characteristics.

以下、本発明を更に詳細に説明する。
本発明の有機電界発光素子は一対の電極間に一層または複数層の有機薄膜層を有し、その有機薄膜層の少なくとも一層に上記一般式(1)で表されるアリールアミン化合物を含有するものである。
上記一般式(1)において、R1〜R4は具体的にはメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシル、ヘキサデシル、オクタデシル等の炭素数1〜20の直鎖アルキル基;シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等の環状アルキル基;ベンジル、ナフチルメチル、フェネチル、アントリルエチル、フェニルプロピル、ナフチルブチル、フェナントリルペンチル、フェニルヘキシル、ナフチルオクチル等のアリールアルキル基、スチリル、ジフェニルビニル、ナフチルビニル、フェニルブタジエニル、ジフェニルブタジエニル、フェニルヘキサトリエニル、ナフチルオクタテトラエニル等のアリールアルケニル基を表す。
一般式(1)で表される化合物は極めて高いキャリア移動度を示すが、R1〜R4が長鎖アルキル基であるとガラス転移温度が低下し、それに伴い耐熱性も低下する傾向にある。ガラス転移温度とはその素材がアモルファス状態で存在できる上限温度であり、一般に素材のガラス転移温度が低いと素子の劣化が早く、高耐久性の素子が得られにくくなる。従って、素子の耐久性の点から、R1〜R4は好ましくは炭素数1〜8の直鎖アルキル基であり、より好ましくは炭素数1〜4の直鎖アルキル基である。
Hereinafter, the present invention will be described in more detail.
The organic electroluminescent element of the present invention has one or more organic thin film layers between a pair of electrodes, and at least one layer of the organic thin film layer contains an arylamine compound represented by the above general formula (1) It is.
In the general formula (1), R1 to R4 are specifically linear alkyl groups having 1 to 20 carbon atoms such as methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl, hexadecyl, octadecyl, and the like; Cyclic alkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl; arylalkyl groups such as benzyl, naphthylmethyl, phenethyl, anthrylethyl, phenylpropyl, naphthylbutyl, phenanthrylpentyl, phenylhexyl, naphthyloctyl; An arylalkenyl group such as styryl, diphenylvinyl, naphthylvinyl, phenylbutadienyl, diphenylbutadienyl, phenylhexatrienyl, naphthyloctatetraenyl and the like is represented.
The compound represented by the general formula (1) exhibits extremely high carrier mobility, but if R1 to R4 are long chain alkyl groups, the glass transition temperature is lowered, and the heat resistance tends to be lowered accordingly. The glass transition temperature is an upper limit temperature at which the material can exist in an amorphous state. Generally, when the glass transition temperature of the material is low, the element is rapidly deteriorated and it is difficult to obtain a highly durable element. Therefore, from the point of durability of the device, R1 to R4 are preferably a linear alkyl group having 1 to 8 carbon atoms, and more preferably a linear alkyl group having 1 to 4 carbon atoms.

R1〜R4の組み合わせとしては、R1とR3、R2とR4が同一であるか、またはR1〜R4の全てが同一である組み合わせが好ましい。また、耐久性の点から本発明においてはR1〜R4のうち少なくとも1つは炭素数4以下の直鎖アルキル基であることが好ましい。
化合物(1)の具体例を下記表1に示す。しかし、これは本発明の化合物(1)の一例示であり、本発明は下記表1で示す化合物に限定されない。なお、表1において、Meはメチル、Etはエチル、n−Prはn−プロピル、n−Buはn−ブチルを示す。
The combination of R1 to R4 is preferably a combination in which R1 and R3, R2 and R4 are the same, or all of R1 to R4 are the same. From the viewpoint of durability, in the present invention, at least one of R1 to R4 is preferably a linear alkyl group having 4 or less carbon atoms.
Specific examples of the compound (1) are shown in Table 1 below. However, this is an example of the compound (1) of the present invention, and the present invention is not limited to the compounds shown in Table 1 below. In Table 1, Me represents methyl, Et represents ethyl, n-Pr represents n-propyl, and n-Bu represents n-butyl.

Figure 2008166538
Figure 2008166538

Figure 2008166538
Figure 2008166538

Figure 2008166538
Figure 2008166538

次に、本発明の化合物(1)の製法について説明する。本発明の化合物(1)は従来から知られている方法を組み合わせて合成することが可能である。その合成法の一例として、R1とR3、R2とR4が同一の場合の合成例を以下に示す。 Next, the manufacturing method of the compound (1) of this invention is demonstrated. Compound (1) of the present invention can be synthesized by combining conventionally known methods. As an example of the synthesis method, a synthesis example in the case where R1 and R3 and R2 and R4 are the same is shown below.

Figure 2008166538
Figure 2008166538

上記の式中、R1、R2は前記と同じ意味を表す。Xは塩素、臭素、またはヨウ素原子を表す。
上記の合成法では、まずアニリン化合物(2)を無水酢酸と反応させてアミド誘導体(3)を合成する。次に得られたアミド誘導体(3)とハロゲノベンゼン化合物(4)とをウルマン(Ullmann)反応により化合物(5)に導いた後、塩基で加水分解してジアリールアミン化合物(6)を得る。次いで、銅触媒存在下でジハロ−p−ターフェニル(7)を反応させる方法(特開2005−350416号等)、またはパラジウム触媒を用いたジハロ−p−ターフェニル(7)とのカップリング反応(J.Org.Chem.,2000年,65巻,5327頁)等により目的化合物(1A)を得ることが出来る。
上記において、出発物質のアニリン化合物(2)は種々市販されており、容易に入手可能である。もう一方の出発物質であるジハロ−p−ターフェニル(7)も、p−ターフェニルから公知の方法(特開平11−128739号等)で容易に導くことができる。
一方、R1〜R4の置換基が全て同一である場合には、塩化アルミニウム触媒存在下でアニリン化合物(2)同士を縮合してジアリールアミン化合物(6a)を得、次いで前記の方法でジハロ−p−ターフェニル(7)を反応させることにより、更に簡便に目的化合物(1a)を合成することができる。
In the above formula, R1 and R2 represent the same meaning as described above. X represents a chlorine, bromine, or iodine atom.
In the above synthesis method, first, the aniline compound (2) is reacted with acetic anhydride to synthesize the amide derivative (3). Next, the resulting amide derivative (3) and halogenobenzene compound (4) are led to the compound (5) by the Ullmann reaction, and then hydrolyzed with a base to obtain the diarylamine compound (6). Next, a method of reacting dihalo-p-terphenyl (7) in the presence of a copper catalyst (Japanese Patent Application Laid-Open No. 2005-350416, etc.), or a coupling reaction with dihalo-p-terphenyl (7) using a palladium catalyst (J. Org. Chem., 2000, 65, 5327) and the like, the target compound (1A) can be obtained.
In the above, various starting aniline compounds (2) are commercially available and are readily available. The other starting material, dihalo-p-terphenyl (7), can also be easily derived from p-terphenyl by a known method (JP-A-11-128739, etc.).
On the other hand, when all the substituents of R1 to R4 are the same, the aniline compound (2) is condensed with each other in the presence of an aluminum chloride catalyst to obtain a diarylamine compound (6a). -By reacting terphenyl (7), the target compound (1a) can be synthesized more easily.

Figure 2008166538
Figure 2008166538

上記の式中、R1、Xは前記と同じ意味を表す。
上記の2つの反応における原料モル比、反応溶媒、反応温度等の条件は公知の方法に従って行えばよい。
なお、R1〜R4が全て異なる場合や上記以外のR1〜R4の組み合わせの場合でも、上記の合成法に準じて合成することができる。
更に、本発明の化合物は製造工程で容易に精製することが可能であり、それを用いることによって高輝度、高耐久性の有機EL素子を得ることができる。
In the above formula, R 1 and X represent the same meaning as described above.
Conditions such as raw material molar ratio, reaction solvent, reaction temperature and the like in the above two reactions may be carried out according to known methods.
In addition, even when R1 to R4 are all different or a combination of R1 to R4 other than the above, they can be synthesized according to the above synthesis method.
Furthermore, the compound of the present invention can be easily purified in the production process, and by using it, an organic EL device having high luminance and high durability can be obtained.

次に、本発明の化合物を含有する有機電界発光素子について詳しく説明する。
本発明の有機電界発光素子において、形成する有機薄膜層は一つの機能を有する層であっても、各々他の機能を備えた層であってもよい。例えば発光層に用いる化合物が、ホール注入機能、ホール輸送機能(および/または電子注入機能)、電子輸送機能等をも有している場合は、発光層にホール注入/輸送機能(および/または電子注入輸送機能)を含めた一層型の素子構成とすることができる。反対に、発光層に用いる化合物がホール注入機能および/またはホール輸送機能に乏しい場合は発光層の陽極側にホール注入輸送層を設けた二層型の素子構成とすることができ、電子注入機能および/または電子輸送機能に乏しい場合には発光層の陰極側に電子注入輸送層を設けた二層型の素子構成とすることができる。更には、発光層をホール注入輸送層と電子注入輸送層とで挟み込んだ構成の三層型の素子構成にしてもよい。また、ホール注入輸送層、電子注入輸送層、発光層の各々の層は一層構造であっても多層構造であってもよく、ホール注入輸送層および電子注入輸送層は各々電荷の注入機能を有する層と、電荷の輸送機能を有する層を別々に設けた構造にすることもできる。
Next, the organic electroluminescent element containing the compound of the present invention will be described in detail.
In the organic electroluminescent element of the present invention, the organic thin film layer to be formed may be a layer having one function or a layer having another function. For example, when the compound used for the light emitting layer also has a hole injection function, a hole transport function (and / or an electron injection function), an electron transport function, etc., a hole injection / transport function (and / or an electron in the light emitting layer) It is possible to obtain a single-layer element configuration including an injection transport function. On the other hand, when the compound used for the light emitting layer is poor in the hole injection function and / or the hole transport function, a two-layer device configuration in which a hole injection transport layer is provided on the anode side of the light emitting layer can be obtained. If the electron transport function is poor, a two-layer device structure in which an electron injection transport layer is provided on the cathode side of the light emitting layer can be obtained. Furthermore, a three-layer type device configuration in which the light emitting layer is sandwiched between a hole injection transport layer and an electron injection transport layer may be used. Each of the hole injecting and transporting layer, the electron injecting and transporting layer, and the light emitting layer may have a single layer structure or a multilayer structure, and the hole injecting and transporting layer and the electron injecting and transporting layer each have a charge injection function. A structure in which a layer and a layer having a charge transporting function are provided separately can also be employed.

更に素子構成について詳しく説明する。
本発明の有機電界発光素子における素子構成は特に限定されるものではないが、例えば陽極/ホール注入輸送層/発光層/電子注入輸送層/陰極型素子(図1)、陽極/ホール注入輸送層/発光層/陰極型素子(図2)、陽極/発光層/電子注入輸送層/陰極型素子(図3)、陽極/発光層/陰極型素子(図4)等が挙げられる。図4の一層型の素子構成では、例えば発光層として発光成分を一層形態で一対の電極間に挟持させた素子、発光層としてホール注入輸送成分および発光成分を混合させた一層形態で一対の電極間に挟持させた素子、発光層として発光成分および電子注入輸送成分を混合させた一層形態で一対の電極間に挟持させた素子が挙げられる。
Further, the element configuration will be described in detail.
The element structure in the organic electroluminescent element of the present invention is not particularly limited. For example, anode / hole injection / transport layer / light emitting layer / electron injection / transport layer / cathode type element (FIG. 1), anode / hole injection / transport layer / Light emitting layer / cathode type element (FIG. 2), anode / light emitting layer / electron injection / transport layer / cathode type element (FIG. 3), anode / light emitting layer / cathode type element (FIG. 4), and the like. In the single-layer element configuration of FIG. 4, for example, an element in which a light-emitting component is sandwiched between a pair of electrodes as a light-emitting layer, and a pair of electrodes in a single-layer form in which a hole injection transport component and a light-emitting component are mixed as a light-emitting layer. Examples include an element sandwiched between a pair of electrodes in a single layer form in which a light emitting component and an electron injecting and transporting component are mixed as a light emitting layer.

本発明では化合物(1)を有機薄膜層に含有させることにより目的を達成することができるが、これは目的化合物(1)が陽極と陰極の一対の電極間に設けられる発光層、更には必要に応じて設けられるホール注入層、ホール輸送層、電子輸送層、電子注入層等に少なくとも1種含有されていればよく、2種以上を適宜に組み合わせて使用してもよい。
この中でも、本発明の化合物(1)は特にホール注入層、ホール輸送層、発光層を形成する有機材料として有用であり、好ましくはホール注入層および/またはホール輸送層に含有することである。また、本発明の化合物(1)と公知のホール輸送性化合物とを混合してホール注入層および/またはホール輸送層に使用することもでき、また化合物(1)と公知のホール輸送性化合物とを各々の層に単独で使用することもできる。
In the present invention, the object can be achieved by incorporating the compound (1) in the organic thin film layer. This is because the object compound (1) is a light emitting layer provided between a pair of electrodes of an anode and a cathode, and further required. The hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, and the like provided according to the above may be contained at least one kind, and two or more kinds may be used in appropriate combination.
Among these, the compound (1) of the present invention is particularly useful as an organic material for forming a hole injection layer, a hole transport layer, and a light emitting layer, and is preferably contained in the hole injection layer and / or the hole transport layer. Further, the compound (1) of the present invention and a known hole transporting compound can be mixed and used in a hole injection layer and / or a hole transporting layer. Can be used alone in each layer.

本発明の化合物(1)と混合、または単独で使用できる公知のホール輸送性化合物は特に限定されないが、例えば、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン等の3級芳香族アミンユニットを連結した芳香族ジアミン化合物(特開昭59−194393号等);4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族アミン(特開平5−234681号等);トリフェニルベンゼン誘導体でスターバースト構造を有する芳香族トリアミン(米国特許第4,923,774号等);N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)ビフェニル−4,4’−ジアミン等の芳香族ジアミン(米国特許第4,764,625号等);分子全体として立体的に非対称なトリフェニルアミン誘導体(特開平4−129271号等);ピレニル基に芳香族ジアミノ基が複数個置換した化合物(特開平4−175395号等);3級芳香族アミンユニットをエチレン基で連結した芳香族ジアミン(特開平4−264189号など);スチリル基を有する芳香族ジアミン(特開平4−290851号等);3級芳香族アミンユニットをチオフェン基で連結したもの(特開平4−304466号等);スターバースト型芳香族トリアミン(特開平4−308688号等);ベンジルフェニル化合物(特開平4−364153号等);3級アミンをフルオレン基で連結したもの(特開平5−25473号等);トリアミン化合物(特開平5−239455号等);ビスジピリジルアミノビフェニル(特開平5−320634号等);N,N,N−トリフェニルアミン誘導体(特開平6−1972号等);フェノキサジン構造を有する芳香族ジアミン(特開平7−138562号等);ジアミノフェニルフェナントリジン誘導体(特開平7−252474号等);ヒドラゾン化合物(特開平2−311591号等);シラザン化合物(米国特許第4,950,950号等);シラナミン誘導体(特開平6−49079号等);ホスファミン誘導体(特開平6−25659号等);キナクリドン化合物等が挙げられる。これらの化合物は、一種で用いても良いし、複数種組み合わせて使用してもよい。 The known hole transporting compound that can be used alone or mixed with the compound (1) of the present invention is not particularly limited, but for example, tertiary such as 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane Aromatic diamine compounds in which aromatic amine units are linked (Japanese Patent Laid-Open No. 59-194393, etc.); two or more typified by 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl An aromatic amine having a starburst structure with a triphenylbenzene derivative (US Pat. No. 5,234,681); 4,923,774 etc.); aromatic diamines such as N, N′-diphenyl-N, N′-bis (3-methylphenyl) biphenyl-4,4′-diamine (rice Patent No. 4,764,625, etc.); a sterically asymmetric triphenylamine derivative as a whole molecule (JP-A-4-129271, etc.); a compound in which a pyrenyl group is substituted with a plurality of aromatic diamino groups (JP-A-4 1994) Aromatic diamines in which tertiary aromatic amine units are linked by ethylene groups (JP-A-4-264189, etc.); aromatic diamines having styryl groups (JP-A-4-290851, etc.); tertiary Aromatic amine units linked by a thiophene group (JP-A-4-304466, etc.); Starburst type aromatic triamine (JP-A-4-308688, etc.); Benzylphenyl compound (JP-A-4-364153, etc.); A tertiary amine linked by a fluorene group (JP-A-5-25473, etc.); a triamine compound (JP-A-5-23945) Bisdipyridylaminobiphenyl (JP-A-5-320634, etc.); N, N, N-triphenylamine derivatives (JP-A-6-1972, etc.); Aromatic diamines having a phenoxazine structure (JP-A-5-1993) Diaminophenylphenanthridine derivatives (JP-A-7-252474, etc.); hydrazone compounds (JP-A-2-311591, etc.); silazane compounds (US Pat. No. 4,950,950, etc.); Examples thereof include silanamine derivatives (JP-A-6-49079, etc.); phosphamine derivatives (JP-A-6-25659, etc.); quinacridone compounds and the like. These compounds may be used alone or in combination of two or more.

また、上記の化合物の他にも、ポリビニルカルバゾールやポリシラン(Appl.Phys.Lett.,59巻,2760頁,1991年)、ポリフォスファゼン(特開平5−310949号等)、ポリアミド(特開平5−310949号、特開平5−310949号等)、ポリビニルトリフェニルアミン(特開平7−53953号等)、トリフェニルアミン単位をメチレン基等で連結した高分子(Synthetic Metals,55−57巻,4163頁,1993年等)、芳香族アミンを含有するポリメタクリレート(J.Polym.Sci.,Polym.Chem.Ed.,21巻,969頁,1983年)等のホール輸送性高分子化合物が使用できる。
ホール注入層およびホール輸送層の膜厚は特に限定されないが、通常は1nm〜3μm、好ましくは5nm〜1μm、より好ましくは10nm〜500nmである。
In addition to the above-mentioned compounds, polyvinylcarbazole, polysilane (Appl. Phys. Lett., 59, 2760, 1991), polyphosphazene (JP-A-5-310949, etc.), polyamide (JP-A-5-315) -310949, JP-A-5-310949, etc.), polyvinyltriphenylamine (JP-A-7-53953, etc.), a polymer in which triphenylamine units are linked by a methylene group or the like (Synthetic Metals, 55-57, 4163). Hole transport polymer compounds such as polymethacrylates containing aromatic amines (J. Polym. Sci., Polym. Chem. Ed., 21, 969, 1983) can be used. .
The thicknesses of the hole injection layer and the hole transport layer are not particularly limited, but are usually 1 nm to 3 μm, preferably 5 nm to 1 μm, and more preferably 10 nm to 500 nm.

本発明で用いる発光層材料は、固体状態で高い蛍光または燐光量子収率を示し、ホールおよび/または電子を効率良く輸送する化合物であって、従来有機EL素子に用いられているものを用いることができる。例えば、8−ヒドロキシキノリンのアルミニウム錯体等の金属錯体、10−ヒドロキシベンゾ[h]キノリンの金属錯体、ビススチリルベンゼン誘導体、(2−ヒドロキシフェニル)ベンゾチアゾールの金属錯体、ビピリジル金属錯体、フェニル、ピリジン金属錯体、シロール誘導体等が挙げられる。 The light emitting layer material used in the present invention is a compound that exhibits high fluorescence or phosphorescence quantum yield in the solid state and efficiently transports holes and / or electrons, and has been used in conventional organic EL devices. Can do. For example, a metal complex such as an aluminum complex of 8-hydroxyquinoline, a metal complex of 10-hydroxybenzo [h] quinoline, a bisstyrylbenzene derivative, a metal complex of (2-hydroxyphenyl) benzothiazole, a bipyridyl metal complex, phenyl, pyridine Examples include metal complexes and silole derivatives.

本発明で用いる電子注入層および電子輸送層は、陰極より電子を注入する機能、注入された電子を伝達する機能、陽極から注入されたホールを障壁する機能のいずれかを有していればよく、従来有機EL素子に用いられているものを用いることができる。例えば、フルオレノン誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、オキサジアゾール誘導体、トリアゾール誘導体、フレオレニリデンメタン誘導体、アントロン誘導体等が挙げられる。電子注入層および電子輸送層の膜厚は特に限定されないが、通常1nm〜3μm、好ましくは5nm〜1μm、より好ましくは10nm〜500nmである。
また、ホール輸送材料に電子受容物質を、電子輸送材料に電子供与性物質を添加することにより増感させることもできる。
The electron injection layer and the electron transport layer used in the present invention may have any one of the function of injecting electrons from the cathode, the function of transmitting injected electrons, and the function of blocking holes injected from the anode. Those conventionally used in organic EL elements can be used. For example, a fluorenone derivative, an anthraquinodimethane derivative, a diphenylquinone derivative, a thiopyrandioxide derivative, an oxadiazole derivative, a triazole derivative, a fluorenylidenemethane derivative, an anthrone derivative, and the like can be given. Although the film thickness of an electron injection layer and an electron carrying layer is not specifically limited, Usually, 1 nm-3 micrometers, Preferably they are 5 nm-1 micrometer, More preferably, they are 10 nm-500 nm.
Further, it can be sensitized by adding an electron accepting substance to the hole transport material and an electron donating substance to the electron transport material.

支持基板を構成する素材としては、ガラス、透明プラスチック、石英等を挙げることができる。
陽極を構成する素材としては、4eVより小さな仕事関数の金属、合金、金属酸化物、電気伝導性化合物等、従来有機EL素子に用いられているものを用いることができる。例えば酸化インジウムスズ(ITO)、酸化スズ、酸化亜鉛等の金属酸化物;金、銀、クロム、ニッケル等の金属;ヨウ化銅、硫化銅等の無機導電性材料;ポリアニリン、ポリチオフェン、ポリピロール等の有機伝導性材料が挙げられるが、これらに限定されるものではない。これらの中で好ましくはITOである。陽極は電極から発光が取り出されるため、光透過率が10%以上であることが好ましく、また陽極としてのシート抵抗は数百Ω/cm以下が好ましい。陽極の膜厚は素材によっても異なるが、通常1nm〜5μm、好ましくは5nm〜1μm、より好ましくは10〜500nmである。
Examples of the material constituting the support substrate include glass, transparent plastic, and quartz.
As a material constituting the anode, materials conventionally used in organic EL elements such as metals, alloys, metal oxides, electrically conductive compounds having a work function smaller than 4 eV can be used. For example, metal oxides such as indium tin oxide (ITO), tin oxide and zinc oxide; metals such as gold, silver, chromium and nickel; inorganic conductive materials such as copper iodide and copper sulfide; polyaniline, polythiophene and polypyrrole Examples include, but are not limited to, organic conductive materials. Of these, ITO is preferred. Since the anode emits light from the electrode, the light transmittance is preferably 10% or more, and the sheet resistance as the anode is preferably several hundred Ω / cm 2 or less. The film thickness of the anode varies depending on the material, but is usually 1 nm to 5 μm, preferably 5 nm to 1 μm, more preferably 10 to 500 nm.

陰極を構成する素材としては、4eVより大きな仕事関数の金属、合金、金属酸化物、電気伝導性化合物等、従来有機EL素子に用いられているものを用いることができる。具体的にはリチウム、ナトリウム、カリウム等のアルカリ金属またはそのフッ化物;マグネシウム、カルシウム等のアルカリ土類金属またはそのフッ化物;金、銀、鉛、アルミニウム等の金属;ナトリウム−カリウム、リチウム−アルミニウム、マグネシウム−銀等の合金またはそれらの混合金属;インジウム、イッテリビウム等の希土類金属等であり、好ましくはアルミニウム、リチウム−アルミニウム合金、マグネシウム−銀合金等である。陰極としてのシート抵抗は数百Ω/cm以下が好ましい。陰極の膜厚は素材によっても異なるが、通常1nm〜5μm、好ましくは5nm〜1μm、より好ましくは10〜500nmである。 As a material constituting the cathode, materials conventionally used in organic EL elements such as metals, alloys, metal oxides, and electrically conductive compounds having a work function larger than 4 eV can be used. Specifically, alkali metals such as lithium, sodium and potassium or fluorides thereof; alkaline earth metals such as magnesium and calcium or fluorides thereof; metals such as gold, silver, lead and aluminum; sodium-potassium, lithium-aluminum And alloys such as magnesium-silver or mixed metals thereof; rare earth metals such as indium and ytterbium; and preferably aluminum, lithium-aluminum alloy, magnesium-silver alloy, and the like. The sheet resistance as the cathode is preferably several hundred Ω / cm 2 or less. Although the film thickness of a cathode changes with materials, it is 1 nm-5 micrometers normally, Preferably it is 5 nm-1 micrometer, More preferably, it is 10-500 nm.

本発明の有機EL素子を製造する場合、薄膜化の方法としては、スピンコート法やキャスト法等のコーティング法、真空蒸着法、LB法、印刷法、インクジェット法等が用いられるが、この中でも真空蒸着法またはスピンコート法が好ましい。真空蒸着法では、例えば一般的な真空蒸着装置を使用して、予め陽極としてのITOが形成されている支持基板上に、順次各材料を蒸着すればよい。蒸着の条件は、使用する化合物の種類によって異なるが、通常支持基板温度は−50〜300℃、真空度は1×10−6〜1×10−2Pa、蒸着速度は0.01〜50nm/分の範囲で適宜選択することが望ましい。スピンコート法の場合、塗布溶媒はポリマーによって自由に選択することができ、例えばメタノール、エタノール等のアルコール類、酢酸等の酸類、エチレングリコール等のグリコール系溶媒、
水、その他高極性溶媒、または芳香族炭化水素類、ハロゲン系炭化水素類、その他低極性溶媒等が挙げられる。
When manufacturing the organic EL device of the present invention, as a method for thinning, a coating method such as a spin coating method or a casting method, a vacuum deposition method, an LB method, a printing method, an ink jet method, or the like is used. Vapor deposition or spin coating is preferred. In the vacuum deposition method, for example, each material may be sequentially deposited on a support substrate on which ITO as an anode is formed in advance using, for example, a general vacuum deposition apparatus. Deposition conditions vary depending on the type of compound used, but the temperature of the supporting substrate is usually −50 to 300 ° C., the degree of vacuum is 1 × 10 −6 to 1 × 10 −2 Pa, and the deposition rate is 0.01 to 50 nm / It is desirable to select appropriately within the range of minutes. In the case of the spin coating method, the coating solvent can be freely selected depending on the polymer, for example, alcohols such as methanol and ethanol, acids such as acetic acid, glycol solvents such as ethylene glycol,
Examples thereof include water, other highly polar solvents, aromatic hydrocarbons, halogenated hydrocarbons, and other low polarity solvents.

次に実施例を用いて本発明を更に説明するが、本発明はこれに限定されない。 EXAMPLES Next, although this invention is further demonstrated using an Example, this invention is not limited to this.

合成例1 例示化合物No.1−1の合成
p−トルイジン88.9g(0.83モル)、1,2,3,4−テトラヒドロナフタレン56ml、無水塩化カルシウム25.6g(0.23モル)、無水塩化アルミニウム30.8g(0.23モル)を仕込み、窒素雰囲気下210〜220℃で4時間反応した。反応終了後冷却し、反応液にトルエン130mlを加え、これを氷水150gに投入して攪拌、静置後、水層と有機層を分離した。有機層を5%炭酸水素ナトリウム水溶液100mlで洗浄し、更に水100mlで洗浄し、有機溶剤を減圧留去した。これにメタノール70mlを加え晶析後、濾別して白色結晶としてジ(p−トリル)アミン56.2g(収率68.7%)を得た。
Synthesis Example 1 Synthesis of Exemplary Compound No. 1-1 88.9 g (0.83 mol) of p-toluidine, 56 ml of 1,2,3,4-tetrahydronaphthalene, 25.6 g (0.23 mol) of anhydrous calcium chloride, Anhydrous aluminum chloride 30.8 g (0.23 mol) was charged and reacted at 210 to 220 ° C. for 4 hours in a nitrogen atmosphere. After the completion of the reaction, the reaction solution was cooled, and 130 ml of toluene was added to the reaction solution. The organic layer was washed with 100 ml of 5% aqueous sodium hydrogen carbonate solution and further washed with 100 ml of water, and the organic solvent was distilled off under reduced pressure. 70 ml of methanol was added thereto for crystallization, followed by filtration to obtain 56.2 g (yield 68.7%) of di (p-tolyl) amine as white crystals.

次に、氷酢酸120ml、水60ml、p−ターフェニル57.6g(0.25モル)、ヨウ素32.5g(0.26モル)、塩素酸ナトリウム3.9g(0.036モル)、濃硫酸9mlを仕込み95〜100℃で5時間反応した。反応後、トルエン100mlを加え、その有機層を5%チオ硫酸ナトリウム60mlで洗浄した。更に水100mlで洗浄してメタノール150mlを添加し晶析後、濾別して黄色結晶としてジヨード−p−ターフェニル87.1g(収率72.3%)を得た。 Next, glacial acetic acid 120 ml, water 60 ml, p-terphenyl 57.6 g (0.25 mol), iodine 32.5 g (0.26 mol), sodium chlorate 3.9 g (0.036 mol), concentrated sulfuric acid 9 ml was charged and reacted at 95-100 ° C. for 5 hours. After the reaction, 100 ml of toluene was added, and the organic layer was washed with 60 ml of 5% sodium thiosulfate. After washing with 100 ml of water and adding 150 ml of methanol for crystallization, the mixture was filtered to obtain 87.1 g (yield 72.3%) of diiodo-p-terphenyl as yellow crystals.

ジ(p−トリル)アミン29.6g(0.15モル)、ジヨード−p−ターフェニル24.7g(0.05モル)、硫酸銅五水和物0.098g(0.40ミリモル)、炭酸カリウム14.0g(0.10モル)を仕込み、窒素雰囲気下内温220〜230℃で3時間反応した。反応後、トルエン120ml、水60mlを加えて攪拌し、静置後、有機層と水層を分離した。有機層を減圧留去後酢酸エチル120mlを加えて晶析し、ろ別して微黄色結晶として粗結晶を得た。粗結晶を酢酸エチルから再結晶し、目的化合物25.8g(収率83.2%)を得た。 29.6 g (0.15 mol) of di (p-tolyl) amine, 24.7 g (0.05 mol) of diiodo-p-terphenyl, 0.098 g (0.40 mmol) of copper sulfate pentahydrate, carbonic acid Potassium (14.0 g, 0.10 mol) was charged, and the reaction was performed at an internal temperature of 220 to 230 ° C. for 3 hours under a nitrogen atmosphere. After the reaction, 120 ml of toluene and 60 ml of water were added and stirred. After standing, the organic layer and the aqueous layer were separated. After the organic layer was distilled off under reduced pressure, 120 ml of ethyl acetate was added for crystallization, followed by filtration to obtain crude crystals as slightly yellow crystals. The crude crystals were recrystallized from ethyl acetate to obtain 25.8 g (yield 83.2%) of the target compound.

合成例2 例示化合物No.1−4の製造
トルエン70ml、4−n−ブチルアニリン78.7g(0.53モル)を仕込み、冷却下で無水酢酸55.5g(0.54モル)を滴下し、その後内温90〜95℃で1時間反応した。冷却し、水160mlを加えて攪拌し、静置後に有機層と水層を分離した。有機層を減圧留去し、エタノール200ml、水200mlを加えて晶析後ろ別して、白色結晶として4−(n−ブチル)アセトアニリド91.1g(収率90.3%)を得た。
Synthesis Example 2 Preparation of Exemplified Compound No. 1-4 70 ml of toluene and 78.7 g (0.53 mol) of 4-n-butylaniline were added, and 55.5 g (0.54 mol) of acetic anhydride was added dropwise under cooling. Thereafter, the reaction was carried out at an internal temperature of 90 to 95 ° C. for 1 hour. After cooling, 160 ml of water was added and stirred, and after standing, the organic layer and the aqueous layer were separated. The organic layer was distilled off under reduced pressure, and 200 ml of ethanol and 200 ml of water were added and separated after crystallization to obtain 91.1 g (yield 90.3%) of 4- (n-butyl) acetanilide as white crystals.

4−(n−ブチル)アセトアニリド83.7g(0.44モル)、4−ブロモトルエン121.4g(0.71モル)、硫酸銅五水和物1.09g(0.004モル)、炭酸ナトリウム35.3g(0.33モル)を仕込み、210〜220℃に昇温し、更に4−ブロモトルエン255.1g(1.49モル)を滴下しながら窒素雰囲気下で8時間反応した。反応後、水92mlを加えて攪拌、静置後、有機層と水層を分離した。これにエタノール40ml、水酸化カリウム51.6g(0.92モル)を加えて、更に90〜95℃で1時間反応した。水76ml、ヘキサン100mlを加えて攪拌、静置後、有機層と水層を分離した。有機層を減圧留去し、減圧蒸留により減圧度1〜2Torr、塔温166〜170℃の留分としてN−{4−(n−ブチル)フェニル}−N−(p−トリル)アミン70.0g(収率79.6%)を得た。 4- (n-butyl) acetanilide 83.7 g (0.44 mol), 4-bromotoluene 121.4 g (0.71 mol), copper sulfate pentahydrate 1.09 g (0.004 mol), sodium carbonate 35.3 g (0.33 mol) was charged, the temperature was raised to 210-220 ° C., and further, 255.1 g (1.49 mol) of 4-bromotoluene was added dropwise and reacted for 8 hours in a nitrogen atmosphere. After the reaction, 92 ml of water was added, stirred and allowed to stand, and then the organic layer and the aqueous layer were separated. 40 ml of ethanol and 51.6 g (0.92 mol) of potassium hydroxide were added thereto, and the mixture was further reacted at 90 to 95 ° C. for 1 hour. 76 ml of water and 100 ml of hexane were added and stirred and allowed to stand, and then the organic layer and the aqueous layer were separated. The organic layer was distilled off under reduced pressure, and N- {4- (n-butyl) phenyl} -N- (p-tolyl) amine as a fraction having a degree of vacuum of 1 to 2 Torr and a tower temperature of 166 to 170 ° C. by distillation under reduced pressure. 0 g (yield 79.6%) was obtained.

ジヨード−p−ターフェニル14.8g(0.03モル)、N−{4−(n−ブチル)フェニル}−N−(p−トリル)アミン21.5g(0.09モル)、硫酸銅五水和物0.059g(0.24ミリモル)、炭酸カリウム8.4g(0.06モル)、L−アスコルビン酸0.042g(0.24ミリモル)を仕込み、窒素雰囲気下内温220〜230℃で5時間反応した。トルエン80ml、水40mlを加えて攪拌し、静置後、有機層と水層を分離した。有機層を減圧留去し酢酸エチル90ml、メタノール40mlを加えて晶析し、ろ別して微黄色結晶として粗結晶を得た。粗結晶を酢酸エチルから再結晶して目的化合物を16.7g(収率76.8%)を得た。 Diiodo-p-terphenyl 14.8 g (0.03 mol), N- {4- (n-butyl) phenyl} -N- (p-tolyl) amine 21.5 g (0.09 mol), copper sulfate five 0.059 g (0.24 mmol) of hydrate, 8.4 g (0.06 mol) of potassium carbonate, 0.042 g (0.24 mmol) of L-ascorbic acid were charged, and the internal temperature was 220 to 230 ° C. under a nitrogen atmosphere. For 5 hours. 80 ml of toluene and 40 ml of water were added and stirred, and after standing, the organic layer and the aqueous layer were separated. The organic layer was distilled off under reduced pressure, crystallized by adding 90 ml of ethyl acetate and 40 ml of methanol, and filtered to obtain crude crystals as slightly yellow crystals. The crude crystals were recrystallized from ethyl acetate to obtain 16.7 g (yield 76.8%) of the target compound.

実施例1 移動度の測定
アルミニウム基板上にアモルファスセレンを0.5μmの厚さに真空蒸着し、その上に例示化合物(1−1)およびポリカーボネートAの混合物をジクロロメタンに溶解させた溶液をコーティングした。それを40℃で2時間減圧乾燥させて10μmの厚さの感光層を形成させた。この感光層の表面に金電極を150Åの厚さに蒸着し、510nmレーザーで5nsパルス光を照射し時間飛行(Time of Flight)法によってホール移動度μを測定した。測定条件は文献に記載の方法(Philosophical Magazine B,1988年 58巻 5号 539頁;J.Phys.Chem.,1984年 88巻 20号 4707頁)に従った。
なお、ホール移動度μの電場強度依存性は下記式によって定量的に整理できることが知られている。数式1におけるμ0はゼロ場移動度(Zero Field Mobility)、βはプールフレンケル(Pool−Frenkel)パラメーター、Eは電界強度を表す。
Example 1 Mobility Measurement Amorphous selenium was vacuum-deposited to a thickness of 0.5 μm on an aluminum substrate, and a solution in which a mixture of the exemplified compound (1-1) and polycarbonate A was dissolved in dichloromethane was coated thereon. . It was dried under reduced pressure at 40 ° C. for 2 hours to form a photosensitive layer having a thickness of 10 μm. A gold electrode was deposited on the surface of the photosensitive layer to a thickness of 150 mm, irradiated with 5 ns pulse light with a 510 nm laser, and the hole mobility μ was measured by a time-of-flight method. The measurement conditions were in accordance with the method described in the literature (Philosophy Magazine B, 1988, Vol. 58, No. 5, 539; J. Phys. Chem., 1984, Vol. 88, No. 20, 4707).
It is known that the electric field strength dependence of the hole mobility μ can be quantitatively arranged by the following equation. In Equation 1, μ 0 represents zero field mobility, β represents a Pool-Frenkel parameter, and E represents electric field strength.

Figure 2008166538
Figure 2008166538

実施例2〜20 移動度の測定
合成例1、2と同様の方法で以下の例示化合物を合成し、実施例1と同様の方法で感光層を作成し、同測定条件において移動度を測定した。共に表2にホール移動度μ、β値およびゼロ場移動度μ0を示す。
Examples 2 to 20 Measurement of mobility The following exemplary compounds were synthesized in the same manner as in Synthesis Examples 1 and 2, a photosensitive layer was prepared in the same manner as in Example 1, and the mobility was measured under the same measurement conditions. . Table 2 shows the hole mobility μ, β value, and zero field mobility μ 0 in Table 2.

Figure 2008166538
Figure 2008166538

比較例1〜15
本発明の化合物に代えて下記一般式(X)で表される比較化合物を用い、実施例1と同様の方法で感光層を形成し、移動度を測定した。一般式(X)においてn1〜n4は1または2を表し、n1〜n4が2の場合、各々のR5〜R8は同一でも異なっても良い。R5〜R8の具体的な置換基は表3に示した。比較化合物X−1〜X−15のホール移動度μ、β値およびゼロ場移動度μ0を表3に示す。
Comparative Examples 1-15
Using a comparative compound represented by the following general formula (X) instead of the compound of the present invention, a photosensitive layer was formed in the same manner as in Example 1, and the mobility was measured. In general formula (X), n1-n4 represents 1 or 2, and when n1-n4 is 2, each R5-R8 may be the same or different. Specific substituents for R5 to R8 are shown in Table 3. Table 3 shows the hole mobility μ, β value, and zero field mobility μ 0 of Comparative Compounds X-1 to X-15.

Figure 2008166538
Figure 2008166538

Figure 2008166538
Figure 2008166538

比較例16〜20
本発明の化合物の代わりに下記に示す公知の正電荷輸送性化合物を用い、実施例1と同様の方法で感光層を形成し、移動度を測定した。表4にその結果を示す。
Comparative Examples 16-20
Using a known positive charge transporting compound shown below instead of the compound of the present invention, a photosensitive layer was formed in the same manner as in Example 1, and the mobility was measured. Table 4 shows the results.

<公知の正電荷輸送性化合物> <Known positive charge transporting compound>

Figure 2008166538
Figure 2008166538

Figure 2008166538
Figure 2008166538

数式1より算出されるゼロ場移動度μ0は高電界下でのキャリア挙動を含まないホール移動度を意味する。上記の結果から、高移動度として知られているターフェニル系正電荷輸送材料の中でも、本発明に限定された構造の化合物が極めて高い移動度を有していることが判る。また、本発明の化合物は従来の正電荷輸送材料よりも極めて移動度が高く、キャリアを効率良く輸送できることが判る。 Zero field mobility μ 0 calculated from Equation 1 means hole mobility that does not include carrier behavior under a high electric field. From the above results, it can be seen that among the terphenyl positive charge transport materials known as high mobility, compounds having a structure limited to the present invention have extremely high mobility. Further, it can be seen that the compound of the present invention has extremely higher mobility than conventional positive charge transport materials and can transport carriers efficiently.

実施例21 有機EL素子の作成および特性評価
以下の方法で本発明の化合物を含有する有機EL素子を作成し、発光特性および耐久性を評価した。図2に示すように、ガラス基板1上に透明陽極2としてITO電極、ホール注入層および例示化合物No.1−1を用いたホール輸送層3、発光層(兼電子輸送層)4、陰極としてアルミニウム電極6を順番に蒸着して有機EL素子を作成した。蒸着はITO製膜済みガラス基板をUVおよびオゾン処理して洗浄後蒸着機内に装着し、続いてホール注入材料として銅フタロシアニン、ホール輸送材料として例示化合物1−1、発光材料としてアルミニウムキノリノール錯体、陰極のアルミニウムを順次蒸着した。蒸着は膜厚をモニターしながらホール注入層25nm、ホール輸送層35nm、発光層50nm、陰極100nmまで行った。素子の発光特性は印加電流100mA/cmの場合の初期発光輝度で評価した。
Example 21 Preparation and characteristic evaluation of organic EL device
An organic EL device containing the compound of the present invention was prepared by the following method, and the light emission characteristics and durability were evaluated. As shown in FIG. 2, an ITO electrode, a hole injection layer, and an exemplary compound No. A hole transport layer 3 using 1-1, a light emitting layer (also serving as an electron transport layer) 4, and an aluminum electrode 6 as a cathode were sequentially deposited to prepare an organic EL device. Deposition is performed by cleaning the ITO-coated glass substrate with UV and ozone and mounting it in the vapor deposition machine, followed by copper phthalocyanine as the hole injection material, exemplary compound 1-1 as the hole transport material, aluminum quinolinol complex as the light emitting material, cathode The aluminum was sequentially deposited. Vapor deposition was performed up to a hole injection layer of 25 nm, a hole transport layer of 35 nm, a light emitting layer of 50 nm, and a cathode of 100 nm while monitoring the film thickness. The light emission characteristics of the device were evaluated by the initial light emission luminance when the applied current was 100 mA / cm 2 .

実施例22〜29
ホール輸送層に表5に示す例示化合物を用いた以外は実施例21と同様に素子を作成し、性能評価を行った。
Examples 22-29
A device was prepared in the same manner as in Example 21 except that the exemplified compounds shown in Table 5 were used for the hole transport layer, and performance evaluation was performed.

比較例21〜30
ホール輸送層に表5に示す比較化合物または公知のホール輸送材料を用いた以外は実施例21と同様に素子を作成し、性能評価を行った。実施例21〜29、比較例21〜30の結果を表5に示す。
Comparative Examples 21-30
A device was prepared in the same manner as in Example 21 except that a comparative compound shown in Table 5 or a known hole transport material was used for the hole transport layer, and performance evaluation was performed. Table 5 shows the results of Examples 21 to 29 and Comparative Examples 21 to 30.

Figure 2008166538
Figure 2008166538

表5より本発明のホール輸送材料を含有した有機EL素子は高い光出力を示し、且つ高耐久性であり優れた特性を有していることが判る。 It can be seen from Table 5 that the organic EL device containing the hole transport material of the present invention exhibits high light output, is highly durable, and has excellent characteristics.

本発明のホール輸送材料を用いた積層型有機EL素子の層構成の一例を示す有機EL素子の一部模式図である。It is a partial schematic diagram of the organic EL element which shows an example of the laminated constitution of the laminated organic EL element using the hole transport material of this invention. 本発明のホール輸送材料を用いた積層型有機EL素子の層構成の他の例を示す有機EL素子の一部模式図である。It is a partial schematic diagram of the organic EL element which shows the other example of the laminated constitution of the laminated organic EL element using the hole transport material of this invention. 本発明のホール輸送材料を用いた積層型有機EL素子の層構成の他の例を示す有機EL素子の一部模式図である。It is a partial schematic diagram of the organic EL element which shows the other example of the laminated constitution of the laminated organic EL element using the hole transport material of this invention. 本発明のホール輸送材料を用いた単層型有機EL素子の層構成を示す一層型有機EL素子の一部模式図である。It is a partial schematic diagram of a single layer type organic EL device showing a layer structure of a single layer type organic EL device using the hole transport material of the present invention.

符号の説明Explanation of symbols

1:支持基板 2:陽極 3:ホール注入輸送層 4:発光層
5:電子注入輸送層 6:陰極
1: Support substrate 2: Anode 3: Hole injection / transport layer 4: Light emitting layer 5: Electron injection / transport layer 6: Cathode

Claims (3)

一対の電極間に少なくとも発光層を含む一層または複数層の有機薄膜層を形成してなる有機電界発光素子において、該有機薄膜層の少なくとも一層が一般式(1)で表されるアリールアミン化合物を含有することを特徴とする有機電界発光素子。
Figure 2008166538

式中、R1〜R4は各々独立して直鎖または環状アルキル基、アリールアルキル基、アリールアルケニル基を表す。
In an organic electroluminescent device in which one or more organic thin film layers including at least a light emitting layer are formed between a pair of electrodes, at least one layer of the organic thin film layer includes an arylamine compound represented by the general formula (1) An organic electroluminescent element characterized by containing.
Figure 2008166538

In the formula, R1 to R4 each independently represent a linear or cyclic alkyl group, an arylalkyl group, or an arylalkenyl group.
前記一般式(1)で表される化合物を含有する有機薄膜層が発光層、ホール輸送層、ホール注入層からなる群より選択されることを特徴とする請求項1記載の有機電界発光素子。 The organic electroluminescent device according to claim 1, wherein the organic thin film layer containing the compound represented by the general formula (1) is selected from the group consisting of a light emitting layer, a hole transport layer, and a hole injection layer. 前記一般式(1)において、R1〜R4が各々独立して炭素数1〜4の直鎖アルキル基であることを特徴とする請求項1〜2記載の有機電界発光素子。 In the said General formula (1), R1-R4 is respectively independently a C1-C4 linear alkyl group, The organic electroluminescent element of Claims 1-2 characterized by the above-mentioned.
JP2006355176A 2006-12-28 2006-12-28 Organic electroluminescent element Pending JP2008166538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355176A JP2008166538A (en) 2006-12-28 2006-12-28 Organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355176A JP2008166538A (en) 2006-12-28 2006-12-28 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JP2008166538A true JP2008166538A (en) 2008-07-17

Family

ID=39695605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355176A Pending JP2008166538A (en) 2006-12-28 2006-12-28 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JP2008166538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897690A (en) * 2012-12-27 2014-07-02 海洋王照明科技股份有限公司 Organic electroluminescent material and preparation method thereof as well as organic electroluminescence device
WO2016017594A1 (en) * 2014-07-29 2016-02-04 保土谷化学工業株式会社 Organic electroluminescent element
CN110914235A (en) * 2017-07-21 2020-03-24 京瓷办公信息系统株式会社 Terphenyl compound, electrophotographic photoreceptor, and method for producing terphenyl compound

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897690A (en) * 2012-12-27 2014-07-02 海洋王照明科技股份有限公司 Organic electroluminescent material and preparation method thereof as well as organic electroluminescence device
WO2016017594A1 (en) * 2014-07-29 2016-02-04 保土谷化学工業株式会社 Organic electroluminescent element
JPWO2016017594A1 (en) * 2014-07-29 2017-05-25 保土谷化学工業株式会社 Organic electroluminescence device
CN107078224A (en) * 2014-07-29 2017-08-18 保土谷化学工业株式会社 Organic electroluminescence device
CN107078224B (en) * 2014-07-29 2020-02-28 保土谷化学工业株式会社 Organic electroluminescent device
US11217754B2 (en) 2014-07-29 2022-01-04 Hodogaya Chemical Co., Ltd. Organic electroluminescence device
CN110914235A (en) * 2017-07-21 2020-03-24 京瓷办公信息系统株式会社 Terphenyl compound, electrophotographic photoreceptor, and method for producing terphenyl compound
US11067909B2 (en) * 2017-07-21 2021-07-20 Kyocera Document Solutions Inc. Terphenyl compound, electrophotographic photosensitive member, and method for producing terphenyl compound
CN110914235B (en) * 2017-07-21 2022-12-09 京瓷办公信息系统株式会社 Terphenyl compound, electrophotographic photoreceptor, and method for producing terphenyl compound

Similar Documents

Publication Publication Date Title
JP5619853B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP5562862B2 (en) New organic light emitting device compound and organic light emitting device using the same
KR101694492B1 (en) Amine compound and organic electroluminescent device using the same
JP5343089B2 (en) INDENOFLUORINE ON DERIVATIVE, ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL AND ORGANIC ELECTROLUMINESCENT ELEMENT
JP5249781B2 (en) Material for organic electroluminescence device and organic electroluminescence device
US10825992B2 (en) Spirobifluorene compounds for light emitting devices
JP3606025B2 (en) Organic electroluminescence device material and organic electroluminescence device using the same
WO1996022273A1 (en) Organic electroluminescent element, organic thin film, and triamine compounds
TW200815446A (en) Organic electroluminescent device and material for organic electroluminescent device
JP2008127290A (en) New carbazole derivative and utilization thereof
JPWO2007116750A1 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP2007214364A (en) Organic electroluminescence element
JP4082297B2 (en) Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
KR20100116180A (en) Aromatic amine derivative and organic electroluminescent device using the same
US20050123800A1 (en) Organic compound and organic light emitting device using the same
KR101937932B1 (en) Organic light emitting display device and method of manufacturing an organic light emitting display device
JP5145544B2 (en) Benzodithiophene derivative and organic electroluminescence device using the benzodithiophene derivative as a light emitting layer
JP4424026B2 (en) 2,7-diaminonaphthalene compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
KR20150082156A (en) New compounds and organic light emitting device comprising the same
JP2008166538A (en) Organic electroluminescent element
KR101562882B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
US20070243416A1 (en) Amine Compound and Organic Electroluminescent Element Employing the Same
KR20150044592A (en) Method of preparing amine compound
JP4792687B2 (en) Charge transport material, light-emitting material containing diazapentacene derivative, and organic electroluminescent device using the same
JP2007299825A (en) Organic el device