JP3709619B2 - Cascade control device - Google Patents

Cascade control device Download PDF

Info

Publication number
JP3709619B2
JP3709619B2 JP24323496A JP24323496A JP3709619B2 JP 3709619 B2 JP3709619 B2 JP 3709619B2 JP 24323496 A JP24323496 A JP 24323496A JP 24323496 A JP24323496 A JP 24323496A JP 3709619 B2 JP3709619 B2 JP 3709619B2
Authority
JP
Japan
Prior art keywords
signal
slave
control
proportional
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24323496A
Other languages
Japanese (ja)
Other versions
JPH1091204A (en
Inventor
良久 高塚
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP24323496A priority Critical patent/JP3709619B2/en
Publication of JPH1091204A publication Critical patent/JPH1091204A/en
Application granted granted Critical
Publication of JP3709619B2 publication Critical patent/JP3709619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カスケード式制御装置に関するものである。より詳しくは、自動手動切換器をなくすと共に、応答遅れを減少させ得るようにしたカスケード式制御装置に関するものである。
【0002】
【従来の技術】
二つの制御対象を扱うようにした制御装置は、従来より存在する。
【0003】
これらのうち、制御対象に主制御対象と従制御対象の別があり、従制御対象を制御することによって間接的に主制御対象を制御するようにしたものをカスケード式の制御装置という。
【0004】
このようなカスケード式制御装置の一例として、ボイラの蒸気圧力を制御する場合を、図2を用いて説明する。
【0005】
図中、1はボイラ本体、2はボイラ本体1で発生された蒸気を貯めるための蒸気ドラム、3は蒸気ドラム2に接続された蒸気系統、4は蒸気系統3の途中に設けられた過熱器である。又、5はボイラ本体1に取付けられたバーナ、6はバーナ5へ燃料を送る燃料系統、7は燃料系統6に設けられた燃料流量調整弁などの従制御対象用操作器、8はバーナ5の使用本数を切換えるための開閉弁である。
【0006】
そして、蒸気系統3における過熱器4の出側に、蒸気圧力計などの主側検出器9を取付け、且つ、燃料系統6の燃料流量調整弁などの従制御対象用操作器7入側に燃料流量計などの従側検出器10を取付ける。
【0007】
次いで、蒸気圧力計などの主側検出器9で検出した蒸気圧力などの主側検出信号11と、設定器12に設定した設定蒸気圧力などの主側設定信号13との偏差を取り、蒸気圧力偏差などの主側偏差信号14を出力する減算器15を設け、減算器15が出力した主側偏差信号14を基に比例積分制御を行って燃料流量制御信号などの従制御用信号16を出力する主側比例積分制御器17を設け、主制御系統18を構成する。
【0008】
そして、主側比例積分制御器17が出力した従制御用信号16と、燃料流量計などの従側検出器10で検出した燃料流量などの従側検出信号19との偏差を取り、燃料流量偏差などの従側偏差信号20を出力する減算器21を設け、減算器21が出力した従側偏差信号20を基に比例積分制御を行って流量調整弁開度調整信号などの従側制御信号22を出力する従側比例積分制御器23を設け、従制御系統24を構成する。
【0009】
この際、従側比例積分制御器23に、最大開度制限信号発生器25からの最大開度制限信号26及び最小開度制限信号発生器27からの最小開度制限信号28と、前記流量調整弁開度調整信号などの従側制御信号22とをそれぞれ比較して、従側制御信号22が最大開度制限信号26を上回った場合に最大開度制限信号26を出力し、且つ、従側制御信号22が最小開度制限信号28を下回った場合に最小開度制限信号28を出力するリミッタ29を取付ける。
【0010】
更に、主側比例積分制御器17からの従制御用信号16が、従制御系統24へ送られるようにして燃料流量調整弁などの従制御対象用操作器7の制御を自動的に行わせるようにするか、或いは、従制御用信号16を手動設定信号として従制御系統24が手動設定によって動作させるようにするかのどちらかを選択するための自動手動切換器30を設ける。
【0011】
かかる構成によれば、以下の作動が得られる。
【0012】
先ず、燃料系統6を介してバーナ5へ燃料を送り、ボイラ本体1内で燃料を燃焼させる。そして、燃焼によって発生した燃焼ガスにより、ボイラ本体1内に通されるボイラ水を加熱して蒸気を発生させ、発生した蒸気を蒸気ドラム2に貯め、蒸気ドラム2から蒸気系統3を介して、図示しない蒸気タービンへ蒸気を送り、蒸気タービンを回して発電を行わせる。尚、蒸気系統3には、過熱器4が設けられ、蒸気タービンへ送られる途中、蒸気は、過熱器4によって過熱されることになる。
【0013】
そして、燃料系統6に設けられた燃料流量調整弁などの従制御対象用操作器7の開度を制御することにより、バーナ5における燃料の燃焼量が変り、結果として、蒸気系統3を流れる蒸気圧力が制御されることとなる。
【0014】
そのために、蒸気系統3における過熱器4の出側に、蒸気圧力計などの主側検出器9を取付け、且つ、燃料系統6の燃料流量調整弁などの従制御対象用操作器7入側に燃料流量計などの従側検出器10を取付けて、蒸気圧力計などの主側検出器9で蒸気圧力などの主側検出信号11を検出し、減算器15で、予め設定器12に設定しておいた設定蒸気圧力などの主側設定信号13と、前記蒸気圧力などの主側検出信号11とを比較して両者の偏差を取り、減算器15が出力した蒸気圧力偏差などの主側偏差信号14を基に、主側比例積分制御器17が比例積分制御を行い、燃料流量制御信号などの従制御用信号16を出力する。
【0015】
そして、燃料流量計などの従側検出器10で燃料流量などの従側検出信号19を検出し、減算器21で、主側比例積分制御器17が出力した従制御用信号16と、前記燃料流量などの従側検出信号19とを比較して両者の偏差を取り、減算器21が出力した燃料流量偏差などの従側偏差信号20を基に、従側比例積分制御器23が比例積分制御を行い、流量調整弁開度調整信号などの従側制御信号22を出力して、蒸気系統3における蒸気圧力が設定器12に設定しておいた設定蒸気圧力と等しい一定の値となるよう、燃料流量調整弁などの従制御対象用操作器7の開度を制御する。
【0016】
この際、従側比例積分制御器23に、リミッタ29を取付け、最大開度制限信号発生器25からの最大開度制限信号26及び最小開度制限信号発生器27からの最小開度制限信号28と、流量調整弁開度調整信号などの従側制御信号22とをそれぞれ比較して、従側制御信号22が最大開度制限信号26を上回った場合に最大開度制限信号26を出力させ、且つ、従側制御信号22が最小開度制限信号28を下回った場合に最小開度制限信号28を出力させて従側制御信号22を制限させるようにする。
【0017】
そして、従側比例積分制御器23のリミッタ29が作動した場合、一旦、自動手動切換器30を手操作で手動側へ切換えるようにして、主側比例積分制御器17からの従制御用信号16が、手動設定信号に切換えられる。そして、減算器15が出力した蒸気圧力偏差などの主側偏差信号14の正負が完全に逆転するのを待って、自動手動切換器30を手操作で自動側へ切換えることにより、リミッタ29を解除させると共に、制御を復帰させるようにする。
【0018】
【発明が解決しようとする課題】
しかしながら、上記従来のカスケード式制御装置には、以下のような問題があった。
【0019】
即ち、従側比例積分制御器23にリミッタ29を取付けて、燃料流量調整弁などの従制御対象用操作器7の開度を制限させるようにしており、リミッタ29が作動した場合、自動手動切換器30を、一旦、手操作で手動側へ切換えて、従制御用信号16は手動設定信号に切換えられるので、自動手動切換器30を操作するための手間が掛ると共に、一旦手動側へ切換えてしまうと、自動的に自動手動切換器30を自動側へ切換えさせることができない。
【0020】
又、自動手動切換器30を手操作で自動側へ切換えるタイミングは、減算器15が出力した蒸気圧力偏差などの主側偏差信号14の正負が完全に逆転してからとしていたので、応答遅れが生じるのを避けられない。
【0021】
本発明は、上述の実情に鑑み、自動手動切換器をなくすと共に、応答遅れを減少させ得るようにしたカスケード式制御装置を提供することを目的とするものである。
【0022】
【課題を解決するための手段】
本発明は、主側検出器39で検出した主側検出信号41及び設定器42に設定した主側設定信号43の偏差である主側偏差信号44に基づいて従制御用信号46を出力する主側比例積分制御部47と、従制御用信号46及び従側検出器40で検出した従側検出信号59の偏差である従側偏差信号60に基づいて従制御対象用操作器37へ従側制御信号62を出力することにより間接的に主制御対象を制御させるリミッタ69付きの従側比例積分制御器63とを備えたカスケード式制御装置において、
主側比例積分制御部47を、前記主側偏差信号44及び信号発生器51が発生するホールド信号52のどちらかを出力する切換リレー53と、切換リレー53を通ってきた主側偏差信号44及びホールド信号52のどちらかに基づき積分制御を行い積分制御信号56を出力する積分制御器54と、前記主側偏差信号44に基づき比例制御を行い比例制御信号57を出力する比例制御器55と、前記積分制御信号56及び比例制御信号57を加算して前記従制御用信号46を出力する加算器58とで構成し、
従側比例積分制御器63のリミッタ69に対し、リミッタ69が作動した時に、主側偏差信号44側からホールド信号52側へ出力を切換えさせる切換信号49,50を切換リレー53へ送るモニタスイッチ70,71を設け、切換リレー53によりホールド信号52へ切換えた際には、積分制御器54の積分動作を停止し、比例制御器55の側で、主側偏差信号44に基づき比例制御器55で比例制御を行い、比例制御器55からの比例制御信号57をそのまま従制御用信号46として出力し、
主側偏差信号44が増加から減少に転じた時、又は、主側偏差信号44が減少から増加に転じた時には、加算器58の出力信号が変化して従側偏差信号60、従側制御信号62の値が変り、リミッタ69を自動的に解除するように構成されたことを特徴とするカスケード式制御装置にかかるものである。
【0023】
上記手段によれば、以下のような作用が得られる。
【0024】
主側検出器39で検出した主側検出信号41と、予め設定器42に設定しておいた主側設定信号43との偏差である主側偏差信号44を基に、主側比例積分制御部47が比例積分制御を行い、従制御用信号46を出力し、従側検出器40で検出した従側検出信号59と、主側比例積分制御部47が出力した従制御用信号46との偏差である従側偏差信号60を基に、従側比例積分制御器63が比例積分制御を行い、従側制御信号62を出力して、主制御対象が設定器42に設定しておいた主側設定信号43と等しい一定の値となるよう、従制御対象用操作器37を制御する。
【0025】
この際、従側比例積分制御器63に、リミッタ69を取付け、従側制御信号62を制限させるようにする。
【0026】
そして、従側比例積分制御器63のリミッタ69が作動した場合、本発明では、以下のようにして、リミッタ69を自動的に解除させる。
【0027】
即ち、上記主側比例積分制御部47による比例積分制御を、積分制御器54による積分制御と比例制御器55による比例制御とに分けて、先ず通常時は、従側比例積分制御器63のリミッタ69部分に取付けたモニタスイッチ70,71からの切換信号49,50により、切換リレー53に、前記主側偏差信号44を出力させ、切換リレー53を通ってきた主側偏差信号44に基づき積分制御器54が積分制御を行う一方で、前記主側偏差信号44に基づき比例制御器55が比例制御を行い、加算器58が、積分制御器54からの積分制御信号56及び比例制御器55からの比例制御信号57を加算して前記従制御用信号46を出力するようになっている。
【0028】
そして、リミッタ69が作動すると、従側比例積分制御器63のリミッタ69部分に取付けたモニタスイッチ70,71が切換信号49,50を発生し、モニタスイッチ70,71からの切換信号49,50により、切換リレー53に、信号発生器51が発生するホールド信号52を出力させ、切換リレー53を通ってきたホールド信号52に基づき積分制御器54の積分動作は停止し、結果として、積分制御をホールドさせてしまう。すると、比例制御器55の側はホールドされていないので、前記主側偏差信号44に基づき比例制御器55が比例制御を行い、加算器58は、比例制御器55からの比例制御信号57とホールドされた積分制御器54の出力を加算した信号をそのまま従制御用信号46として出力することになる。
【0029】
比例制御は主側偏差信号44の増減の傾向をモニターしていることと同じ意義となるので、主側偏差信号44が増加から減少に転じた時、又は、主側偏差信号44が減少から増加に転じた時に、加算器58の出力信号が変化し、その結果従側偏差信号60の値が変って、従側比例積分制御器63が出力する従側制御信号62の値が変り、リミッタ69が自動的に解除されることになる。
【0030】
これにより、リミッタ69の解除のために従来のような自動手動切換器を設ける必要がなくなり、自動手動切換器を手操作する手間も省略することができるようになる。
【0031】
又、従来よりも早い時点でリミッタ69を解除させることができるので、応答遅れを大幅に減少させることが可能となる。
【0032】
【発明の実施の形態】
以下、本発明の実施の形態を、図示例と共に説明する。
【0033】
図1は、本発明の実施の形態の一例である。
【0034】
図中、31はボイラ本体、32はボイラ本体31で発生された蒸気を貯めるための蒸気ドラム、33は蒸気ドラム32に接続された蒸気系統、34は蒸気系統33の途中に設けられた過熱器である。又、35はボイラ本体31に取付けられたバーナ、36はバーナ35へ燃料を送る燃料系統、37は燃料系統36に設けられた燃料流量調整弁などの従制御対象用操作器、38はバーナ35の使用本数を切換えるための開閉弁である。
【0035】
そして、蒸気系統33における過熱器34の出側に、蒸気圧力計などの主側検出器39を取付け、且つ、燃料系統36の燃料流量調整弁などの従制御対象用操作器37入側に燃料流量計などの従側検出器40を取付ける。
【0036】
次いで、蒸気圧力計などの主側検出器39で検出した蒸気圧力などの主側検出信号41と、設定器42に設定した設定蒸気圧力などの主側設定信号43との偏差を取り、蒸気圧力偏差などの主側偏差信号44を出力する減算器45を設け、減算器45が出力した主側偏差信号44を基に燃料流量制御信号などの従制御用信号46を出力する主側比例積分制御部47を設け、主制御系統48を構成する。
【0037】
上記主側比例積分制御部47は、後述する切換信号49,50によって、前記減算器45が出力した主側偏差信号44及び信号発生器51が発生するホールド信号52のどちらかを出力する切換リレー53と、切換リレー53を通ってきた主側偏差信号44及びホールド信号52のどちらかに基づき積分制御を行う積分制御器54と、前記減算器45が出力した主側偏差信号44に基づき比例制御を行う比例制御器55と、積分制御器54が出力する積分制御信号56及び比例制御器55が出力する比例制御信号57を加算して前記従制御用信号46を出力する加算器58とで構成されている。
【0038】
そして、主側比例積分制御部47が出力した従制御用信号46と、燃料流量計などの従側検出器40で検出した燃料流量などの従側検出信号59との偏差を取り、燃料流量偏差などの従側偏差信号60を出力する減算器61を設け、減算器61が出力した従側偏差信号60を基に流量調整弁開度調整信号などの従側制御信号62を出力する従側比例積分制御器63を設け、従制御系統64を構成する。
【0039】
この際、従側比例積分制御器63に、最大開度制限信号発生器65からの最大開度制限信号66及び最小開度制限信号発生器67からの最小開度制限信号68と、前記流量調整弁開度調整信号などの従側制御信号62とをそれぞれ比較して、従側制御信号62が最大開度制限信号66を上回った場合に最大開度制限信号66を出力し、且つ、従側制御信号62が最小開度制限信号68を下回った場合に最小開度制限信号68を出力するリミッタ69を取付ける。
【0040】
加えて、最大開度制限信号発生器65からの最大開度制限信号66と、流量調整弁開度調整信号などの従側制御信号62とを比較して、従側制御信号62が最大開度制限信号66を上回った場合に前記切換リレー53をa側へ切換え、従側制御信号62が最大開度制限信号66を下回った場合に前記切換リレー53をb側へ切換えるための前記切換信号49を前記切換リレー53へ出力するモニタスイッチ70を取付ける。
【0041】
同様に、最小開度制限信号発生器67からの最小開度制限信号68と、流量調整弁開度調整信号などの従側制御信号62とを比較して、従側制御信号62が最小開度制限信号68を下回った場合に前記切換リレー53をa側へ切換え、従側制御信号62が最小開度制限信号68を上回った場合に前記切換リレー53をb側へ切換えるための前記切換信号50を前記切換リレー53へ出力するモニタスイッチ71を取付ける。
【0042】
次に、作動について説明する。
【0043】
先ず、燃料系統36を介してバーナ35へ燃料を送り、ボイラ本体31内で燃料を燃焼させる。そして、燃焼によって発生した燃焼ガスにより、ボイラ本体31内に通されるボイラ水を加熱して蒸気を発生させ、発生した蒸気を蒸気ドラム32に貯め、蒸気ドラム32から蒸気系統33を介して、図示しない蒸気タービンへ蒸気を送り、蒸気タービンを回させて発電を行わせる。尚、蒸気系統33には、過熱器34が設けられ、蒸気タービンへ送られる蒸気は、途中、過熱器34によって加熱されることになる。
【0044】
そして、燃料系統36に設けられた燃料流量調整弁などの従制御対象用操作器37の開度を制御することにより、バーナ35における燃料の燃焼量が変り、結果として、蒸気系統33を流れる蒸気圧力が制御されることとなる。
【0045】
そのために、蒸気系統33における過熱器34の出側に、蒸気圧力計などの主側検出器39を取付け、且つ、燃料系統36の燃料流量調整弁などの従制御対象用操作器37入側に燃料流量計などの従側検出器40を取付けて、蒸気圧力計などの主側検出器39で蒸気圧力などの主側検出信号41を検出し、減算器45で、予め設定器42に設定しておいた設定蒸気圧力などの主側設定信号43と、前記蒸気圧力などの主側検出信号41とを比較して両者の偏差を取り、減算器45が出力した蒸気圧力偏差などの主側偏差信号44を基に、主側比例積分制御部47が比例積分制御(K+K/T∫dt ここで、Kはゲイン、Tは積分時間である)を行い、燃料流量制御信号などの従制御用信号46を出力する。
【0046】
そして、燃料流量計などの従側検出器40で燃料流量などの従側検出信号59を検出し、減算器61で、主側比例積分制御部47が出力した従制御用信号46と、前記燃料流量などの従側検出信号59とを比較して両者の偏差を取り、減算器61が出力した燃料流量偏差などの従側偏差信号60を基に、従側比例積分制御器63が比例積分制御を行い、流量調整弁開度調整信号などの従側制御信号62を出力して、蒸気系統33における蒸気圧力が設定器42に設定しておいた設定蒸気圧力と等しい一定の値となるよう、燃料流量調整弁などの従制御対象用操作器37の開度を制御する。
【0047】
この際、従側比例積分制御器63に、リミッタ69を取付け、最大開度制限信号発生器65からの最大開度制限信号66及び最小開度制限信号発生器67からの最小開度制限信号68と、流量調整弁開度調整信号などの従側制御信号62とをそれぞれ比較して、従側制御信号62が最大開度制限信号66を上回った場合に最大開度制限信号66を出力させ、且つ、従側制御信号62が最小開度制限信号68を下回った場合に最小開度制限信号68を出力させて従側制御信号62を制限させるようにする。
【0048】
そして、従側比例積分制御器63のリミッタ69が作動した場合、本発明では、以下のようにして、リミッタ69を自動的に解除させるようにしている。
【0049】
即ち、上記主側比例積分制御部47による比例積分制御(K+K/T∫dt)を、積分制御器54による積分制御(K/T∫dt)と比例制御器55による比例制御(K)とに分けて、先ず通常時は、従側比例積分制御器63のリミッタ69部分に取付けたモニタスイッチ70,71からの切換信号49,50により、切換リレー53に、前記減算器45が出力した主側偏差信号44を出力させ、切換リレー53を通ってきた主側偏差信号44に基づき積分制御器54が積分制御を行う一方で、前記減算器45が出力した主側偏差信号44に基づき比例制御器55が比例制御を行い、加算器58が、積分制御器54からの積分制御信号56及び比例制御器55からの比例制御信号57を加算して前記従制御用信号46を出力するようになっている。
【0050】
そして、リミッタ69が作動すると、従側比例積分制御器63のリミッタ69部分に取付けたモニタスイッチ70,71のうちのどちらかが切換信号49,50を発生し、モニタスイッチ70,71からの切換信号49,50により、切換リレー53に、信号発生器51が発生するホールド信号52を出力させ、切換リレー53を通ってきたホールド信号52に基づき積分制御器54は動作を停止し、結果として、積分制御をホールドさせてしまう。比例制御器55の側はホールドされていないので、前記減算器45が出力した主側偏差信号44に基づき比例制御器55が比例制御を行い、加算器58が、比例制御器55からの比例制御信号57をそのまま従制御用信号46として出力することになる。
【0051】
比例制御は主側偏差信号44の値にKを掛けるだけの制御であるため、主側偏差信号44の増減の傾向をモニターしていることと同じ意義となるので、最大制限開度でリミッタ69が作動した場合には、主側偏差信号44が増加から減少に転じた時に、又、最小制限開度でリミッタ69が作動した場合には、主側偏差信号44が減少から増加に転じた時に、減算器61が出力する燃料流量偏差などの従側偏差信号60の値が変って、従側比例積分制御器63が出力する流量調整弁開度調整信号などの従側制御信号62の値が変りリミッタ69が自動的に解除されることになる。
【0052】
これにより、リミッタ69の解除のために図2のような自動手動切換器30を設ける必要がなくなり、自動手動切換器30を手操作する手間も省略することができるようになる。
【0053】
更に、図2に示すように自動手動切換器30を設けた場合、自動手動切換器30を手操作してリミッタ69を解除するタイミングは、最大開度でリミッタ69が作動した場合には、主側偏差信号44が増加から減少に転じ、更に、主側偏差信号44が0となり、主側偏差信号44の値正負が逆転した後であり、又、最小開度でリミッタ69が作動した場合には、主側偏差信号44が減少から増加に転じ、更に、主側偏差信号44が0となり、主側偏差信号44の値正負が逆転した後であるため、かなりの応答遅れが生じていたが、本発明では、それよりも早い時点でリミッタ69を解除させることができるので、応答遅れを大幅に減少させることが可能となる。
【0054】
尚、本発明は、上述の実施の形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0055】
【発明の効果】
以上説明したように、本発明のカスケード式制御装置によれば、自動手動切換器をなくすと共に、応答遅れを減少させることができるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例の概略制御系統図である。
【図2】従来例の概略制御系統図である。
【符号の説明】
37 従制御対象用操作器
39 主側検出器
40 従側検出器
41 主側検出信号
42 設定器
43 主側設定信号
44 主側偏差信号
46 従制御用信号
47 主側比例積分制御部
49,50 切換信号
51 信号発生器
52 ホールド信号
53 切換リレー
54 積分制御器
55 比例制御器
56 積分制御信号
57 比例制御信号
58 加算器
59 従側検出信号
60 従側偏差信号
62 従側制御信号
63 従側比例積分制御器
69 リミッタ
70,71 モニタスイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cascade control device. More specifically, the present invention relates to a cascade control device that eliminates an automatic manual switching device and can reduce response delay.
[0002]
[Prior art]
Conventionally, there has been a control device that handles two control objects.
[0003]
Among these, there are two types of control objects, the main control object and the sub control object, and the main control object that is indirectly controlled by controlling the sub control object is called a cascade control device.
[0004]
As an example of such a cascade control device, a case where the steam pressure of a boiler is controlled will be described with reference to FIG.
[0005]
In the figure, 1 is a boiler body, 2 is a steam drum for storing steam generated in the boiler body 1, 3 is a steam system connected to the steam drum 2, and 4 is a superheater provided in the middle of the steam system 3. It is. Further, 5 is a burner attached to the boiler body 1, 6 is a fuel system for sending fuel to the burner 5, 7 is a control device for a slave control target such as a fuel flow rate adjusting valve provided in the fuel system 6, and 8 is a burner 5 It is an on-off valve for switching the number of used.
[0006]
Then, a main detector 9 such as a steam pressure gauge is attached to the outlet side of the superheater 4 in the steam system 3, and fuel is supplied to the input side of the slave control target operating device 7 such as a fuel flow rate adjusting valve of the fuel system 6. A slave detector 10 such as a flow meter is installed.
[0007]
Next, a deviation between the main side detection signal 11 such as the steam pressure detected by the main side detector 9 such as a steam pressure gauge and the main side setting signal 13 such as the set steam pressure set in the setting device 12 is taken to determine the steam pressure. A subtractor 15 that outputs a main-side deviation signal 14 such as a deviation is provided, and a proportional-integral control is performed based on the main-side deviation signal 14 output from the subtractor 15 to output a sub-control signal 16 such as a fuel flow rate control signal. The main proportional integral controller 17 is provided, and the main control system 18 is configured.
[0008]
Then, a deviation between the slave control signal 16 output from the primary proportional integral controller 17 and the slave detection signal 19 such as the fuel flow rate detected by the slave detector 10 such as a fuel flow meter is taken to obtain a fuel flow deviation. The subtractor 21 for outputting the subordinate deviation signal 20 is provided, and the proportional control is performed on the basis of the subordinate deviation signal 20 output from the subtractor 21 to perform the subordinate control signal 22 such as a flow rate adjustment valve opening degree adjustment signal. Is provided, and a slave control system 24 is configured.
[0009]
At this time, the secondary proportional integral controller 23 has the maximum opening restriction signal 26 from the maximum opening restriction signal generator 25 and the minimum opening restriction signal 28 from the minimum opening restriction signal generator 27, and the flow rate adjustment. The slave side control signal 22 such as a valve opening degree adjustment signal is respectively compared, and when the slave side control signal 22 exceeds the maximum opening degree limit signal 26, the maximum opening degree limit signal 26 is output, and the slave side A limiter 29 that outputs a minimum opening restriction signal 28 when the control signal 22 falls below the minimum opening restriction signal 28 is attached.
[0010]
Further, the slave control signal 16 from the primary proportional integral controller 17 is sent to the slave control system 24 so that the slave control target operating device 7 such as a fuel flow rate adjusting valve is automatically controlled. Alternatively, an automatic manual switch 30 is provided for selecting whether the slave control system 24 is operated by manual setting using the slave control signal 16 as a manual setting signal.
[0011]
According to this configuration, the following operation can be obtained.
[0012]
First, fuel is sent to the burner 5 through the fuel system 6 to burn the fuel in the boiler body 1. Then, the combustion gas generated by the combustion heats the boiler water passed through the boiler body 1 to generate steam, stores the generated steam in the steam drum 2, and from the steam drum 2 through the steam system 3, Steam is sent to a steam turbine (not shown), and the steam turbine is rotated to generate power. The steam system 3 is provided with a superheater 4, and the steam is superheated by the superheater 4 while being sent to the steam turbine.
[0013]
The amount of fuel burned in the burner 5 is changed by controlling the opening degree of the sub-control target operating unit 7 such as a fuel flow rate adjusting valve provided in the fuel system 6. As a result, the steam flowing through the steam system 3 is changed. The pressure will be controlled.
[0014]
For this purpose, a main detector 9 such as a steam pressure gauge is attached to the outlet side of the superheater 4 in the steam system 3, and the slave control target operation device 7 such as a fuel flow rate adjustment valve of the fuel system 6 is input to the inlet side. A slave side detector 10 such as a fuel flow meter is attached, a main side detector 9 such as a steam pressure gauge detects a main side detection signal 11 such as a steam pressure, and a subtractor 15 presets the setting unit 12. The main side setting signal 13 such as the set steam pressure and the main side detection signal 11 such as the steam pressure are compared to obtain a deviation between them, and a main side deviation such as a steam pressure deviation output from the subtractor 15 is obtained. Based on the signal 14, the main-side proportional-integral controller 17 performs proportional-integral control and outputs a sub-control signal 16 such as a fuel flow rate control signal.
[0015]
Then, a slave detection signal 19 such as a fuel flow rate is detected by the slave detector 10 such as a fuel flow meter, the slave control signal 16 output from the master proportional integral controller 17 is detected by the subtractor 21, and the fuel. The slave side detection signal 19 such as the flow rate is compared to take a deviation between the two, and the slave side proportional integration controller 23 controls the proportional integral control based on the slave side deviation signal 20 such as the fuel flow rate deviation output from the subtractor 21. To output a slave side control signal 22 such as a flow rate adjustment valve opening adjustment signal so that the steam pressure in the steam system 3 becomes a constant value equal to the set steam pressure set in the setting device 12. The opening degree of the operation device for slave control 7 such as a fuel flow rate adjusting valve is controlled.
[0016]
At this time, a limiter 29 is attached to the secondary proportional integration controller 23, and a maximum opening restriction signal 26 from the maximum opening restriction signal generator 25 and a minimum opening restriction signal 28 from the minimum opening restriction signal generator 27. And the secondary control signal 22 such as the flow rate adjustment valve opening adjustment signal, respectively, and when the secondary control signal 22 exceeds the maximum opening restriction signal 26, the maximum opening restriction signal 26 is output. When the slave control signal 22 falls below the minimum opening restriction signal 28, the minimum opening restriction signal 28 is output to restrict the slave control signal 22.
[0017]
When the limiter 29 of the secondary proportional integration controller 23 is activated, the automatic manual switching device 30 is once manually switched to the manual side so that the slave control signal 16 from the primary proportional integration controller 17 is switched. Is switched to the manual setting signal. Then, after the sign of the main side deviation signal 14 such as the steam pressure deviation outputted from the subtractor 15 is completely reversed, the limiter 29 is released by manually switching the automatic manual switching unit 30 to the automatic side. And return control.
[0018]
[Problems to be solved by the invention]
However, the conventional cascade control device has the following problems.
[0019]
In other words, a limiter 29 is attached to the secondary proportional integration controller 23 to limit the opening degree of the slave control target operating unit 7 such as a fuel flow rate adjusting valve. When the limiter 29 is activated, automatic manual switching is performed. Since the secondary control signal 16 is switched to the manual setting signal by manually switching the device 30 to the manual side, it takes time to operate the automatic manual switching device 30, and once it is switched to the manual side. If this happens, the automatic manual switching device 30 cannot be automatically switched to the automatic side.
[0020]
Also, the timing for manually switching the automatic manual changer 30 to the automatic side is that the main side deviation signal 14 such as the steam pressure deviation output from the subtractor 15 is completely reversed, so that there is a response delay. Inevitable.
[0021]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a cascade control device that eliminates an automatic manual switching device and can reduce response delay.
[0022]
[Means for Solving the Problems]
The present invention outputs a slave control signal 46 based on a master side detection signal 41 detected by the master side detector 39 and a master side deviation signal 44 which is a deviation between the master side setting signal 43 set in the setting device 42. Based on the side proportional integration control unit 47, the slave control signal 46 and the slave side deviation signal 60 which is the deviation of the slave side detection signal 59 detected by the slave side detector 40, the slave side control unit 37 is controlled to the slave side. In a cascade control device including a slave proportional integration controller 63 with a limiter 69 that indirectly controls a main control target by outputting a signal 62,
The main-side proportional-plus-integral control unit 47 outputs a switching relay 53 that outputs either the main-side deviation signal 44 or the hold signal 52 generated by the signal generator 51, and the main-side deviation signal 44 that has passed through the switching relay 53 and An integration controller 54 that performs integral control based on one of the hold signals 52 and outputs an integral control signal 56; a proportional controller 55 that performs proportional control based on the main-side deviation signal 44 and outputs a proportional control signal 57; An adder 58 that adds the integral control signal 56 and the proportional control signal 57 and outputs the slave control signal 46;
A monitor switch 70 for sending switching signals 49 and 50 for switching the output from the main deviation signal 44 side to the hold signal 52 side when the limiter 69 is operated with respect to the limiter 69 of the slave proportional integration controller 63. 71, and when switching to the hold signal 52 by the switching relay 53, the integration operation of the integration controller 54 is stopped, and the proportional controller 55 based on the main side deviation signal 44 is stopped on the proportional controller 55 side. Proportional control is performed, and the proportional control signal 57 from the proportional controller 55 is output as the slave control signal 46 as it is.
When the main-side deviation signal 44 changes from increasing to decreasing, or when the main-side deviation signal 44 changes from decreasing to increasing, the output signal of the adder 58 changes to change the slave-side deviation signal 60 and the slave-side control signal. This is a cascade type control device characterized in that the value of 62 changes and the limiter 69 is automatically released .
[0023]
According to the above means, the following operation can be obtained.
[0024]
Based on a main-side deviation signal 44 that is a deviation between the main-side detection signal 41 detected by the main-side detector 39 and the main-side setting signal 43 set in advance in the setting device 42, a main-side proportional integration control unit 47 performs proportional-integral control and outputs a slave control signal 46, and a deviation between the slave-side detection signal 59 detected by the slave-side detector 40 and the slave-control signal 46 output by the master-side proportional-plus-integral control unit 47. On the basis of the slave deviation signal 60, the slave proportional integral controller 63 performs proportional integral control, outputs a slave control signal 62, and the master control target set in the setter 42 is the master side. The slave control target operation device 37 is controlled so as to have a constant value equal to the setting signal 43.
[0025]
At this time, a limiter 69 is attached to the secondary proportional integration controller 63 to limit the secondary control signal 62.
[0026]
When the limiter 69 of the secondary proportional integration controller 63 is activated, the limiter 69 is automatically released as follows in the present invention.
[0027]
That is, the proportional integral control by the main proportional integral control unit 47 is divided into integral control by the integral controller 54 and proportional control by the proportional controller 55. First, in the normal time, the limiter of the slave proportional integral controller 63 is first. The main side deviation signal 44 is output to the switching relay 53 by switching signals 49 and 50 from the monitor switches 70 and 71 attached to the 69 portion, and the integration control is performed based on the main side deviation signal 44 that has passed through the switching relay 53. While the controller 54 performs integral control, the proportional controller 55 performs proportional control based on the main-side deviation signal 44, and the adder 58 includes the integral control signal 56 from the integral controller 54 and the proportional controller 55. The slave control signal 46 is output by adding the proportional control signal 57.
[0028]
When the limiter 69 is activated, the monitor switches 70 and 71 attached to the limiter 69 portion of the slave proportional integration controller 63 generate switching signals 49 and 50, and the switching signals 49 and 50 from the monitor switches 70 and 71 are used. The switching relay 53 outputs a hold signal 52 generated by the signal generator 51, and the integration operation of the integration controller 54 is stopped based on the hold signal 52 that has passed through the switching relay 53, and as a result, the integration control is held. I will let you. Then, since the proportional controller 55 side is not held, the proportional controller 55 performs proportional control based on the main deviation signal 44, and the adder 58 holds the proportional control signal 57 from the proportional controller 55 and the hold. a signal obtained by adding the output of the integral controller 54 will output as従制patronage signal 46 remains fully.
[0029]
Proportional control has the same meaning as monitoring the increase / decrease tendency of the main side deviation signal 44. Therefore, when the main side deviation signal 44 changes from increasing to decreasing, or the main side deviation signal 44 increases from decreasing. The output signal of the adder 58 changes, and as a result, the value of the slave deviation signal 60 changes, the value of the slave control signal 62 output from the slave proportional integral controller 63 changes, and the limiter 69 changes. Will be automatically canceled.
[0030]
As a result, it is not necessary to provide a conventional automatic manual switching device for releasing the limiter 69, and it is possible to eliminate the trouble of manually operating the automatic manual switching device.
[0031]
In addition, since the limiter 69 can be released at an earlier point than before, the response delay can be greatly reduced.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0033]
FIG. 1 is an example of an embodiment of the present invention.
[0034]
In the figure, 31 is a boiler body, 32 is a steam drum for storing steam generated in the boiler body 31, 33 is a steam system connected to the steam drum 32, and 34 is a superheater provided in the middle of the steam system 33. It is. Also, 35 is a burner attached to the boiler body 31, 36 is a fuel system for sending fuel to the burner 35, 37 is a slave control target operating device such as a fuel flow rate adjusting valve provided in the fuel system 36, and 38 is a burner 35. It is an on-off valve for switching the number of used.
[0035]
A main detector 39 such as a steam pressure gauge is attached to the outlet side of the superheater 34 in the steam system 33, and the fuel is supplied to the inlet side of the slave control target operating device 37 such as a fuel flow rate adjusting valve of the fuel system 36. Install the secondary detector 40 such as a flow meter.
[0036]
Next, a deviation between the main-side detection signal 41 such as the steam pressure detected by the main-side detector 39 such as a steam pressure gauge and the main-side setting signal 43 such as the set steam pressure set in the setting device 42 is taken to determine the steam pressure. A subtractor 45 that outputs a main side deviation signal 44 such as a deviation is provided, and a main side proportional integral control that outputs a sub control signal 46 such as a fuel flow rate control signal based on the main side deviation signal 44 output from the subtractor 45. A unit 47 is provided to constitute the main control system 48.
[0037]
The main proportional integral control unit 47 outputs either a main deviation signal 44 output from the subtractor 45 or a hold signal 52 generated by the signal generator 51 in response to switching signals 49 and 50 described later. 53, an integration controller 54 that performs integration control based on either the main-side deviation signal 44 or the hold signal 52 that has passed through the switching relay 53, and proportional control based on the main-side deviation signal 44 that is output from the subtractor 45. And an adder 58 that adds the integral control signal 56 output from the integral controller 54 and the proportional control signal 57 output from the proportional controller 55 and outputs the slave control signal 46. Has been.
[0038]
Then, a deviation between the slave control signal 46 output by the primary proportional integral control unit 47 and the slave detection signal 59 such as the fuel flow rate detected by the slave detector 40 such as a fuel flow meter is taken to obtain a fuel flow deviation. A subtractor 61 that outputs a slave side deviation signal 60 such as a slave side proportional signal that outputs a slave side control signal 62 such as a flow rate adjustment valve opening degree adjustment signal based on the slave side deviation signal 60 output by the subtractor 61 is provided. An integration controller 63 is provided to constitute a sub control system 64.
[0039]
At this time, the secondary proportional integral controller 63 has a maximum opening restriction signal 66 from a maximum opening restriction signal generator 65 and a minimum opening restriction signal 68 from a minimum opening restriction signal generator 67, and the flow rate adjustment. The slave side control signal 62 such as a valve opening degree adjustment signal is compared with each other, and when the slave side control signal 62 exceeds the maximum opening degree limit signal 66, the maximum opening degree limit signal 66 is output, and the slave side A limiter 69 that outputs a minimum opening restriction signal 68 when the control signal 62 falls below the minimum opening restriction signal 68 is attached.
[0040]
In addition, the maximum opening restriction signal 66 from the maximum opening restriction signal generator 65 is compared with the slave control signal 62 such as the flow rate adjustment valve opening adjustment signal, so that the slave control signal 62 has the maximum opening. When the limit signal 66 is exceeded, the switching relay 53 is switched to the a side, and when the slave control signal 62 is below the maximum opening limit signal 66, the switching signal 49 for switching the switching relay 53 to the b side. Is attached to the switching relay 53.
[0041]
Similarly, the minimum opening restriction signal 68 from the minimum opening restriction signal generator 67 is compared with the slave control signal 62 such as the flow rate adjustment valve opening adjustment signal, so that the slave control signal 62 is the minimum opening. The switching signal 53 for switching the switching relay 53 to the b side when the subordinate control signal 62 exceeds the minimum opening degree limiting signal 68 when the subordinate control signal 62 exceeds the minimum opening degree limiting signal 68 when the limiting signal 68 falls below. Is attached to the switching relay 53.
[0042]
Next, the operation will be described.
[0043]
First, the fuel is sent to the burner 35 through the fuel system 36, and the fuel is burned in the boiler body 31. And by the combustion gas generated by the combustion, the boiler water passed through the boiler body 31 is heated to generate steam, the generated steam is stored in the steam drum 32, and from the steam drum 32 through the steam system 33, Steam is sent to a steam turbine (not shown), and the steam turbine is rotated to generate power. The steam system 33 is provided with a superheater 34, and the steam sent to the steam turbine is heated by the superheater 34 in the middle.
[0044]
The amount of fuel burned in the burner 35 is changed by controlling the degree of opening of the slave control target operating device 37 such as a fuel flow rate adjusting valve provided in the fuel system 36. As a result, the steam flowing through the steam system 33 is changed. The pressure will be controlled.
[0045]
For this purpose, a main-side detector 39 such as a steam pressure gauge is attached to the outlet side of the superheater 34 in the steam system 33, and the sub-control target operation unit 37 such as a fuel flow rate adjustment valve of the fuel system 36 is input to the inlet side. A slave side detector 40 such as a fuel flow meter is attached, a main side detection signal 41 such as a steam pressure is detected by a main side detector 39 such as a steam pressure gauge, and a subtractor 45 sets in advance to a setting device 42. The main side setting signal 43 such as the set steam pressure and the main side detection signal 41 such as the steam pressure are compared to obtain a deviation between them, and a main side deviation such as a steam pressure deviation output from the subtractor 45. Based on the signal 44, the main proportional integral control unit 47 performs proportional integral control (K + K / T∫dt, where K is a gain and T is an integral time), and a sub control signal such as a fuel flow rate control signal. 46 is output.
[0046]
Then, a slave detection signal 59 such as a fuel flow rate is detected by a slave detector 40 such as a fuel flow meter, and a slave control signal 46 output from the master proportional integral control unit 47 is output by the subtractor 61, and the fuel. The slave side detection signal 59 such as the flow rate is compared to take the difference between the two, and based on the slave side deviation signal 60 such as the fuel flow rate deviation output from the subtractor 61, the slave side proportional integration controller 63 controls the proportional integral control. And a slave control signal 62 such as a flow rate adjustment valve opening adjustment signal is output so that the steam pressure in the steam system 33 becomes a constant value equal to the set steam pressure set in the setting device 42. It controls the opening degree of the slave control target operating device 37 such as a fuel flow rate adjusting valve.
[0047]
At this time, a limiter 69 is attached to the slave proportional integral controller 63, and a maximum opening restriction signal 66 from the maximum opening restriction signal generator 65 and a minimum opening restriction signal 68 from the minimum opening restriction signal generator 67. And the secondary control signal 62 such as the flow rate adjustment valve opening adjustment signal, respectively, and when the secondary control signal 62 exceeds the maximum opening restriction signal 66, the maximum opening restriction signal 66 is output. When the slave control signal 62 falls below the minimum opening restriction signal 68, the minimum opening restriction signal 68 is output to restrict the slave control signal 62.
[0048]
When the limiter 69 of the secondary proportional integration controller 63 is activated, the limiter 69 is automatically released as follows in the present invention.
[0049]
That is, the proportional integral control (K + K / T∫dt) by the main proportional integral control unit 47 is changed into the integral control (K / T∫dt) by the integral controller 54 and the proportional control (K) by the proportional controller 55. First, in the normal state, the main side output from the subtractor 45 to the changeover relay 53 by the changeover signals 49 and 50 from the monitor switches 70 and 71 attached to the limiter 69 portion of the secondary proportional integration controller 63. A deviation signal 44 is output, and the integration controller 54 performs integration control based on the main side deviation signal 44 that has passed through the switching relay 53, while the proportional controller based on the main side deviation signal 44 output from the subtractor 45. 55 performs proportional control, and an adder 58 adds the integral control signal 56 from the integral controller 54 and the proportional control signal 57 from the proportional controller 55 and outputs the slave control signal 46. That.
[0050]
When the limiter 69 is activated, one of the monitor switches 70 and 71 attached to the limiter 69 portion of the slave proportional integration controller 63 generates a switching signal 49 and 50, and the switching from the monitor switches 70 and 71 is performed. The signals 49 and 50 cause the switching relay 53 to output the hold signal 52 generated by the signal generator 51, and the integration controller 54 stops operating based on the hold signal 52 that has passed through the switching relay 53. As a result, The integration control is held. Since the proportional controller 55 side is not held, the proportional controller 55 performs proportional control based on the main deviation signal 44 output from the subtractor 45, and the adder 58 performs proportional control from the proportional controller 55. The signal 57 is output as the slave control signal 46 as it is.
[0051]
Since the proportional control is a control that simply multiplies the value of the main deviation signal 44 by K, it has the same significance as monitoring the increase / decrease tendency of the main deviation signal 44. When the main side deviation signal 44 changes from increase to decrease, and when the limiter 69 operates at the minimum limit opening degree, the main side deviation signal 44 changes from decrease to increase. The value of the slave side deviation signal 60 such as the fuel flow rate deviation output from the subtractor 61 changes, and the value of the slave side control signal 62 such as the flow rate adjustment valve opening adjustment signal output from the slave proportional integral controller 63 changes. The change limiter 69 is automatically released.
[0052]
Thereby, it is not necessary to provide the automatic manual switching device 30 as shown in FIG. 2 for releasing the limiter 69, and it is possible to eliminate the trouble of manually operating the automatic manual switching device 30.
[0053]
Further, when the automatic manual changer 30 is provided as shown in FIG. 2, the timing for releasing the limiter 69 by manually operating the automatic manual changer 30 is the main timing when the limiter 69 is operated at the maximum opening. The side deviation signal 44 changes from increasing to decreasing, and further after the main side deviation signal 44 becomes 0, the value of the main side deviation signal 44 is reversed, and when the limiter 69 is operated at the minimum opening. The main-side deviation signal 44 has changed from decreasing to increasing, and the main-side deviation signal 44 has become 0, and the value of the main-side deviation signal 44 has been reversed. In the present invention, since the limiter 69 can be released at an earlier time point, the response delay can be greatly reduced.
[0054]
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0055]
【The invention's effect】
As described above, according to the cascade control device of the present invention, it is possible to achieve an excellent effect of eliminating the automatic manual switching device and reducing the response delay.
[Brief description of the drawings]
FIG. 1 is a schematic control system diagram of an example of an embodiment of the present invention.
FIG. 2 is a schematic control system diagram of a conventional example.
[Explanation of symbols]
37 Subordinate control target operating device 39 Main side detector 40 Subordinate detector 41 Main side detection signal 42 Setter 43 Main side setting signal 44 Main side deviation signal 46 Sub control signal 47 Main side proportional integral control units 49, 50 Switching signal 51 signal generator 52 hold signal 53 switching relay 54 integral controller 55 proportional controller 56 integral control signal 57 proportional control signal 58 adder 59 slave detection signal 60 slave deviation signal 62 slave control signal 63 slave proportional Integration controller 69 Limiter 70, 71 Monitor switch

Claims (2)

主側検出器(39)で検出した主側検出信号(41)及び設定器(42)に設定した主側設定信号(43)の偏差である主側偏差信号(44)に基づいて従制御用信号(46)を出力する主側比例積分制御部(47)と、従制御用信号(46)及び従側検出器(40)で検出した従側検出信号(59)の偏差である従側偏差信号(60)に基づいて従制御対象用操作器(37)へ従側制御信号(62)を出力することにより間接的に主制御対象を制御させるリミッタ(69)付きの従側比例積分制御器(63)とを備えたカスケード式制御装置において、
主側比例積分制御部(47)を、前記主側偏差信号(44)及び信号発生器(51)が発生するホールド信号(52)のどちらかを出力する切換リレー(53)と、切換リレー(53)を通ってきた主側偏差信号(44)及びホールド信号(52)のどちらかに基づき積分制御を行い積分制御信号(56)を出力する積分制御器(54)と、前記主側偏差信号(44)に基づき比例制御を行い比例制御信号(57)を出力する比例制御器(55)と、前記積分制御信号(56)及び比例制御信号(57)を加算して前記従制御用信号(46)を出力する加算器(58)とで構成し、
従側比例積分制御器(63)のリミッタ(69)に対し、リミッタ(69)が作動した時に、主側偏差信号(44)側からホールド信号(52)側へ出力を切換えさせる切換信号(49)(50)を切換リレー(53)へ送るモニタスイッチ(70)(71)を設け、切換リレー(53)によりホールド信号(52)へ切換えた際には、積分制御器(54)の積分動作を停止し、比例制御器(55)の側で、主側偏差信号(44)に基づき比例制御器(55)で比例制御を行い、比例制御器(55)からの比例制御信号(57)をそのまま従制御用信号(46)として出力し、
主側偏差信号(44)が増加から減少に転じた時、又は、主側偏差信号(44)が減少から増加に転じた時には、加算器(58)の出力信号が変化して従側偏差信号(60)、従側制御信号(62)の値が変り、リミッタ(69)を自動的に解除するように構成されたことを特徴とするカスケード式制御装置。
Based on a main side deviation signal (44) that is a deviation between the main side detection signal (41) detected by the main side detector (39) and the main side setting signal (43) set in the setting unit (42). A slave side deviation which is a deviation of the slave side detection signal (59) detected by the slave side control signal (46) and the slave side detector (40), the master side proportional integration control unit (47) which outputs the signal (46). A slave proportional control unit with a limiter (69) that indirectly controls the master control object by outputting the slave control signal (62) to the slave control object operating device (37) based on the signal (60). (63)
The main-side proportional-plus-integral control unit (47) includes a switching relay (53) that outputs either the main-side deviation signal (44) or a hold signal (52) generated by the signal generator (51), and a switching relay ( 53) an integration controller (54) that performs integration control based on either the main-side deviation signal (44) or the hold signal (52) that has passed through and outputs an integration control signal (56), and the main-side deviation signal The proportional controller (55) that performs proportional control based on (44) and outputs a proportional control signal (57), and adds the integral control signal (56) and the proportional control signal (57) to add the slave control signal (57). 46) and an adder (58) for outputting,
A switching signal (49) for switching the output from the main deviation signal (44) side to the hold signal (52) side when the limiter (69) is operated with respect to the limiter (69) of the slave proportional integration controller (63). ) (50) is sent to the switching relay (53), and monitor switches (70) (71) are provided . When the switching relay (53) switches to the hold signal (52), the integration controller (54) performs the integration operation. The proportional controller (55) performs proportional control by the proportional controller (55) based on the main side deviation signal (44), and the proportional control signal (57) from the proportional controller (55) is Output as it is as a slave control signal (46),
When the main-side deviation signal (44) changes from increase to decrease, or when the main-side deviation signal (44) changes from decrease to increase, the output signal of the adder (58) changes and the slave-side deviation signal (60) A cascade type control device configured to automatically release the limiter (69) when the value of the slave control signal (62) changes .
主制御対象がボイラの蒸気圧力であり、従制御対象がボイラの燃料流量である請求項1記載のカスケード式制御装置。  The cascade control device according to claim 1, wherein the main control target is a steam pressure of the boiler, and the sub control target is a fuel flow rate of the boiler.
JP24323496A 1996-09-13 1996-09-13 Cascade control device Expired - Fee Related JP3709619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24323496A JP3709619B2 (en) 1996-09-13 1996-09-13 Cascade control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24323496A JP3709619B2 (en) 1996-09-13 1996-09-13 Cascade control device

Publications (2)

Publication Number Publication Date
JPH1091204A JPH1091204A (en) 1998-04-10
JP3709619B2 true JP3709619B2 (en) 2005-10-26

Family

ID=17100839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24323496A Expired - Fee Related JP3709619B2 (en) 1996-09-13 1996-09-13 Cascade control device

Country Status (1)

Country Link
JP (1) JP3709619B2 (en)

Also Published As

Publication number Publication date
JPH1091204A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
JPS6158644B2 (en)
JP3709619B2 (en) Cascade control device
JP3755910B2 (en) Water injection control device for reheat steam desuperheater
JPH11101402A (en) Steam supply control method
JP2002081605A (en) Method for controlling number of thermal instruments
JP2555200B2 (en) Combined power generation facility
JPS6239655B2 (en)
JPS6239653B2 (en)
JPH09287704A (en) Boiler controller
JP2807514B2 (en) Combustion control device
JPS6149487B2 (en)
JPH0660564B2 (en) Air-fuel mixture controller
JPH10141604A (en) Parallel boiler facility
JPH023108B2 (en)
JPS63248904A (en) Control method for main steam bypass valve
JPH01195903A (en) Extraction controller for extraction steam turbine
SU885703A1 (en) System for controlling steam temperature after heat generating unit undustrial superheater
JP3747253B2 (en) Thermal power plant protection system
JPS6227322B2 (en)
JPH0484001A (en) Automatically controlling device and method for boiler plant
JP3272843B2 (en) Turbine control device
JP3769660B2 (en) Water heater
JPH08210700A (en) Hot-water supplier
JPS6239654B2 (en)
JPH035487B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees