JP3707669B2 - Method for producing water-in-oil polymer emulsion - Google Patents

Method for producing water-in-oil polymer emulsion Download PDF

Info

Publication number
JP3707669B2
JP3707669B2 JP2000235046A JP2000235046A JP3707669B2 JP 3707669 B2 JP3707669 B2 JP 3707669B2 JP 2000235046 A JP2000235046 A JP 2000235046A JP 2000235046 A JP2000235046 A JP 2000235046A JP 3707669 B2 JP3707669 B2 JP 3707669B2
Authority
JP
Japan
Prior art keywords
water
monomer
hydrogen
aqueous solution
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000235046A
Other languages
Japanese (ja)
Other versions
JP2002114810A (en
Inventor
清 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2000235046A priority Critical patent/JP3707669B2/en
Publication of JP2002114810A publication Critical patent/JP2002114810A/en
Application granted granted Critical
Publication of JP3707669B2 publication Critical patent/JP3707669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Colloid Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油中水型水溶性高分子エマルジョンの製造方法に関するものであり、詳しくは水溶性カチオン性単量体または前記水溶性カチオン性単量体を含有する単量体混合物の水溶液を不連続相とし、油溶性乳化剤を含有する液状炭化水素を連続相とする油中水型エマルジョンを形成させ重合するに際し、過酸化水素のみを添加して重合することを特徴とする油中水型高分子エマルジョンの製造方法に関する。
【0002】
【従来の技術】
油中水型水溶性高分子エマルジョンは、水溶性高分子を高濃度の製品形態に保存可能で、しかも分散液の粘性が非常に低いので高分子凝集剤などの高分子量を要する用途に適した液状製品である。例えば特公昭54−37986号公報には、単量対水溶液30〜70重量%と疎水性有機液体70〜30重量%を界面活性剤をもちいて乳化分散させ油中水型高分子エマルジョンを製造する方法が開示されている。また、重合持、単量体あるいは単量体混合物中にN、N−メチレンビスアクリルアミドのような多官能性単量体を共存させ架橋性あるいは枝分かれした重合体を製造する方法が開示されている。例えば特許第2975618号公報には、油中水型エマルジョン重合において、連鎖移動剤存在下で上記のような多官能性単量体を共存させ、せん断がかけられていない状態の撹拌条件で溶解比が30%以上の分岐した陽イオン性重合体を製造する方法が開示され、この重合体は汚泥の脱水などに好適であることが記載されている。また、特公平8−164号公報には、同様に油中水型エマルジョン重合を用い、せん断を掛けない状態では、水不溶性の粒子からなる油中水型エマルジョンを合成しているが、使用している架橋形成剤はやはり前記のようなN、N−メチレンビスアクリルアミド型の架橋剤である。その他重合体の架橋方法あるいは分岐方法としては、ペルオクソニ硫酸塩やN、N−ジメチルアクリルアミドを用いる方法などが知られているが、油中水型エマルジョン重合法を用いて過酸化水素などを重合開始剤と架橋剤を兼ねた使用法は知られていない。
【0003】
【発明が解決しようとする課題】
本発明の目的は、重合体の架橋方法あるいは分岐方法として従来のように多官能性単量体、N、N−ジメチルアクリルアミド型架橋剤あるいはペルオクソ二硫酸塩を用いず、容易に架橋あるいは分岐した重合体を油中水型エマルジョン重合法により水溶性高分子エマルジョンを製造することである。
【0004】
【課題を解決するための手段】
上記課題を解決するため鋭意研究を重ねた結果、以下のような発明に達した。即ち、本発明の請求項1の発明は、水溶性カチオン性単量体を含有する単量体混合物の水溶液を不連続相とし、油溶性乳化剤を含有する液状炭化水素を連続相とする油中水型エマルジョンを形成させ重合するに際し、過酸化水素のみを添加して重合する方法において、0〜45℃で重合を開始しその後50〜90℃に昇温させ、熱処理を行うことにより架橋反応を促進させることを特徴とする油中水型高分子エマルジョンの製造方法である。
【0005】
請求項2の発明は、前記水溶性カチオン性単量体を含有する単量体混合物が下記一般式(1)で表わされるカチオン性単量体5〜100モル%とアクリルアミドを0〜95モル%と下記一般式(2)で表わされるアニオン性単量体0〜40モル%からなることを特徴とする請求項1に記載の油中水型高分子エマルジョンの製造方法である。
【化3】

Figure 0003707669
R1は水素またはメチル基、R2、R3は炭素数1〜5のアルキル基、アルコキシル基あるいはベンジル基、R4は水素原子、炭素数1〜5のアルキル基、アルコキシル基あるいはベンジル基、Aは酸素原子またはNH、BはC2〜C3のアルキレン基またはアルコキシレン基、Xは陰イオン。
【化4】
Figure 0003707669
R5は水素、メチル基またはカルボキシメチル基、R6は水素またはカルボキシル基、AはSO3 、C64 SO3 、CONHC(CH32 CH2 SO3 あるいはCOO、Yは水素または陽イオン、あるいはCOOZ、Zは水素または陽イオン。
【0006】
請求項3の発明は、前記過酸化水素の単量体あるいは単量体混合物に対する添加量が、0.005〜5重量%であることを特徴とする請求項1あるいは2に記載の油中水型高分子エマルジョンの製造方法である。
【0007】
【発明の実施の形態】
本発明の油中水型高分子エマルジョンの製造方法としては、前記カチオン性単量体と共重合可能な単量体からなる単量体混合物を水、少なくとも水と非混和性の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤を混合し、強撹拌し、油中水型エマルジョンを形成させた後、重合することにより合成する。この時、開始剤として過酸化水素のみを添加して重合を開始させる。重合は過酸化水素単独で開始させる。過酸化水素としての添加量は対単量体0.01〜2.0重量%、好ましくは0.05〜1.0重量%、さらに好ましくは0.1〜0.5重量%である。本発明の重合体の架橋方法は、酸化性雰囲気中で主に重合体中のα−位の水素を引き抜き分子中にラジカルを発生させ、架橋点を生成させ架橋、分岐を作ることにある。
【0008】
本発明で使用するカチオン性単量体の例としては、三級アミノ基含有単量体として、(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミドなどであり、四級アンモニウム基含有単量体の例としては、前記三級アミノ基含有単量体の(メタ)の塩化メチルや塩化ベンジルによる四級化物である(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物などがあげられる。
【0009】
共重合する水溶性の単量体の中で非イオン性の化合物としてあげられるのは、メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドなどである。また、アニオン性の単量体も共重合して両性重合体を製造することもできる。そのような単量体の例として、アクリル酸、メタアクリル酸、イタコン酸、マレイン酸、フマル酸、ビニルスルフォン酸、ビニルベンゼンスルフォン酸あるいはアクリルアミド2−メチルプロパンスルフォン酸などがあげられる。最も好ましい単量体の例はアクリル酸とアクリルアミドである。
【0010】
これら単量体の共重合モル比としては、カチオン性ビニル単量体5〜100モル%とアクリルアミド0〜95モル%であり、好ましくは、カチオン性ビニル単量体30〜100モル%、アクリルアミド0〜70モル%である。またアニオン性ビニル単量体は、0〜50モル%であり、好ましくは0〜30モル%である。
【0011】
分散媒として使用する炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油などの鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度などの特性を有する炭化水素系合成油、あるいはこれらの混合物があげられる。
【0012】
油中水型エマルジョンを形成するに有効な量とHLBを有する少なくとも一種類の界面活性剤の例としては、HLB3〜11のノニオン性界面活性剤であり、その具体例としては、ソルビタンモノオレ−ト、ソルビタンモノステアレ−ト、ソルビタンモノパルミテ−トなどがあげられる。これら界面活性剤の添加量としては、油中水型エマルジョン全量に対して0.5〜10重量%であり、好ましくは1〜5重量%である。
【0013】
三級アミノ基含有単量体を使用する場合は、単量体を酸により中和した後、アクリルアミドなどと混合し、溶液pHを2〜6に調製する。その後、界面活性剤を油状物質に溶解した溶解液を添加し、乳化機などにより油中水型エマルジョンを形成させた後、窒素置換を行い、一定の重合温度に油中水型エマルジョンを設定した後、ラジカル重合開始剤によって重合を開始させる。開始剤は、過酸化水素を使用する。
【0014】
重合濃度は、一般的に10〜60重量%であるが、好ましくは20〜50重量%が重合反応を制御し易く、また製造の効率も良い。また、本発明による架橋法は、温度が一定以上高いと架橋反応が起き易いため、比較的低温で重合を開始させ、一定時間後反応温度を上昇させるほうが好ましい。そのため開始温度は0〜45℃、好ましくは15〜35℃で1〜3時間反応させた後、50〜90℃、好ましくは55〜80℃で1〜3時間昇温させ、熱処理を行うことにより架橋反応を促進させる。
【0015】
本発明の油中水型エマルジョンは重合後、転相剤と呼ばれる親水性界面化成剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中の水溶性高分子が溶解しやすくする処理を行い、水で希釈しそれぞれの用途に用いる。親水性界面化成剤の例としては、カチオン性界面化成剤やHLB9〜15のノニオン性界面化成剤であり、ポリオキシエチレンアルキルエ−テル系などである。
【0016】
本発明の油中水型エマルジョンからなる水溶性高分子は、製紙工業におけるパルプスラッジの脱水、その他食品工業、金属、石油精製の各排水処理、また建材関係の砂利洗浄排水の処理などに適用可能である。特に有効な対象物として下水、し尿あるいは一般産業排水処理で生じる有機性汚泥及び凝集汚泥を含む混合汚泥などである。これら汚泥は、本発明の油中水型エマルジョンからなるカチオン性水溶性高分子を添加し、凝集させた後、ベルトプレス、フィルタ−プレス、デカンタ−あるいはスクリリュ−プレスなどの脱水機により脱水する。添加量としては、排水の種類、懸濁物濃度などのよって変化するものであるが、液量に対して0.1〜1000ppm程度である。また、汚泥に対しては、汚泥ssに対して0.1〜3重量%である。
【0017】
【実施例】
以下、実施例および比較例によって本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。
【0018】
(実施例1)
攪拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込み溶解させた。別に脱イオン水60.0gおよびアクリロイルオキシエチルトリメチルアンモニウム塩化物80%水溶液257.4g、アクリルアミド50(以下AAMと略記)%水溶液37.8gを混合し(単量体のモル比はDMQ:AAM=8:2)溶液のpHを3.72に調節し油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコール10%水溶液0.4g(対単量体0.2重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、過酸化水素の20%水溶液2.3g(単量体0.2重量%)を加え、重合反応を開始させ、3時間反応させた後、60℃に昇温しそのまま30分間保ち、反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル11.0g(対液2.2重量%)を添加混合して試験に供する試料(試料−1)(本発明の凝集剤)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0019】
(実施例2)
撹拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込み溶解させた。別に脱イオン水60.0gおよびアクリロイルオキシエチルトリメチルアンモニウム塩化物80%水溶液182.6g、アクリルアミド50%水溶液107.2g(単量体のモル比はDMQ:AAM=50:50)混合しpHを3.54に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコール1.68g(対単量体0.02重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、過酸化水素の20%水溶液1.2g(単量体0.12重量%)を加え、重合反応を開始させ、3時間反応させた後、60℃に昇温しそのまま30分間保ち、反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル12.0g(対液2.4重量%)を添加混合して試験に供する試料(試料−2)(本発明の凝集剤)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0020】
(実施例3)
撹拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込み溶解させた。別に脱イオン水75.0gおよびアクリロイルオキシエチルトリメチルアンモニウム塩化物80%水溶液117.6g、アクリルアミド50%水溶液161.0g(単量体のモル比はDMQ:AAM=30:70)混合しpHを3.37に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコールの10%水溶液0.9g(対単量体0.05重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、過酸化水素の20%水溶液1.3g(単量体0.15重量%)を加え、重合反応を開始させ、3時間反応させた後、60℃に昇温しそのまま30分間保ち、反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル12.5g(対液2.5重量%)を添加混合して試験に供する試料(試料−3)(本発明の凝集剤)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0021】
(実施例4)
撹拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込み溶解させた。別に脱イオン水80.0g、アクリル酸の80%水溶液14.6g(以下AACと略記)、アクリルアミド50%水溶液138.0g混合し水酸化ナトリウムで85当量%中和したの後、アクリロイルオキシエチルトリメチルアンモニウム塩化物80%水溶液115.5gを中和した溶液に添加した(単量体のモル比はDMQ:AAC:AAM=30:10:60)。その後、油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコール10%水溶液0.8g(対単量体0.05重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、過酸化水素の10%水溶液2.3g(単量体0.1重量%)を加え、重合反応を開始させ、3時間反応させた後、60℃に昇温しそのまま30分間保ち、反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル12.5g(対液2.5重量%)を添加混合して試験に供する試料(試料−4)(本発明の凝集剤)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0022】
(実施例5)
撹拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込み溶解させた。別に脱イオン水85.0g、アクリル酸の80%水溶液24.8g(以下AACと略記)、アクリルアミド50%水溶液39.2g混合し水酸化ナトリウムでアクリル酸の85当量%中和したの後、アクリロイルオキシエチルトリメチルアンモニウム塩化物80%水溶液200.0gを中和した溶液に添加した(単量体のモル比はDMQ:AAC:AAM=60:20:20)。その後、油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコール10%水溶液1.4g(対単量体0.07重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、過酸化水素の10%水溶液2.3g(単量体0.1重量%)を加え、重合反応を開始させ、3時間反応させた後、60℃に昇温しそのまま30分間保ち、反応を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル10.0g(対液2.0重量%)を添加混合して試験に供する試料(試料−5)(本発明の凝集剤)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0023】
(比較例1)
撹拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込みよう明きさせた。別に脱イオン水70.0gおよびアクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液281.3gを混合し溶解させ、pHを4.12に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコール10%水溶液1.1g(対単量体0.05重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、過酸化水素の10%水溶液4.5g(対単量体0.20重量%)を加え、重合反応を開始させた。反応温度を25〜28℃で7時間反応させ重合を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル11.0g(対液2.2重量%)を添加混合して試験に供する試料(比較品−1)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0024】
(比較例2)
撹拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込み溶解させた。別に脱イオン水85.0g、アクリル酸の80%水溶液24.8g(以下AACと略記)、アクリルアミド50%水溶液39.2g混合し水酸化ナトリウムでアクリル酸の85当量%中和したの後、アクリロイルオキシエチルトリメチルアンモニウム塩化物80%水溶液200.0gを中和した溶液に添加した(単量体のモル比はDMQ:AAC:AAM=60:20:20)。その後、油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコール10%水溶液1.4g(対単量体0.07重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、過酸化水素の10%水溶液2.3g(単量体0.1重量%)を加え、重合反応を開始させた。反応温度を25〜28℃で7時間反応させ重合を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル10.0g(対液2.0重量%)を添加混合して試験に供する試料(比較品−2)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0025】
(比較例3)
撹拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込み溶解させた。別に脱イオン水70.0gおよびアクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)80%水溶液281.3gを混合し溶解させ、pHを4.01に調節し、油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコール10%水溶液1.1g(対単量体0.05重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物、2.2g(単量体0.1重量%)を加え、7時間反応させ重合を完結させた。生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル11.0g(対液2.2重量%)を添加混合して試験に供する試料(比較品−3)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表2に示す。
【0026】
(比較例4)
比較例1同様にアクリロイルオキシエチルトリメチルアンモニウム塩化物とアクリルアミドのモル比が50:50からなる重合体の油中水型エマルジョン(比較品−4)を合成し、その後、同様の処、測定を行った。結果を表2に示す。
【0027】
(比較例5)
比較例1同様にアクリロイルオキシエチルトリメチルアンモニウム塩化物とアクリル酸とアクリルアミドのモル比が60:20:20からなる重合体の油中水型エマルジョン(比較品−5)を合成し、その後、同様の処、測定を行った。結果を表2に示す。
【0028】
(比較例6)
撹拌機および温度制御装置を備えた反応槽に沸点190°Cないし230°Cのイソパラフィン126.0gおよびソルビタンモノオレート12.0gを仕込み溶解させた。別に脱イオン水85.0g、アクリル酸の80%水溶液24.8g(以下AACと略記)、アクリルアミド50%水溶液39.2g混合し水酸化ナトリウムでアクリル酸の85当量%中和したの後、アクリロイルオキシエチルトリメチルアンモニウム塩化物80%水溶液200.0g及びN、N−メチレンビスアクリルアミドの10%水溶液0.6gを中和した溶液に添加した(単量体のモル比はDMQ:AAC:AAM=60:20:20)。その後、油と水溶液を混合し、ホモジナイザーにて1000rpmで60分間撹拌乳化した。得られたエマルジョンにイソプロピルアルコール10%水溶液1.4g(対単量体0.07重量%)を加え、単量体溶液の温度を25〜28°Cに保ち、窒素置換を30分行った後、過酸化水素の10%水溶液2.3g(単量体0.1重量%)を加え、重合反応を開始させた。反応温度を25〜28℃で7時間反応させ重合を完結させた。重合後、生成した油中水型エマルジョンに転相剤としてポリオキシエチレントリデシルエ−テル10.0g(対液2.0重量%)を添加混合して試験に供する試料(比較品−6)とした。また、また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。結果を表1に示す。
【0029】
(実施例6〜10)
都市下水余剰汚泥(pH6.85、全ss分19、400mg/L)200mLをポリビ−カ−に採取し、塩化第二鉄溶液を見かけで1000ppm添加しビ−カ−移し変え撹拌10回を行い、表1の試作品−1〜5を対液500ppm添加し、ビ−カ−移し変え撹拌10回行った後、T−1179Lの濾布(ナイロン製)により濾過し、45秒後の濾液量を測定した。また濾過した汚泥をプレス圧2Kg/m2 で1分間脱水する。その後ケ−キ自己支持性(脱水ケ−キの硬さ、含水率と関係)、ケ−キ含水率(105℃で20hr乾燥)および濾布剥離を測定した。結果を表2に示す。
【0030】
(比較例7〜12)
表2の比較合成例の比較品−1〜6を用いた他は、実施例6〜10と同様な試験操作により行った。結果を表2に示す。
【0031】
(実施例11〜15)
実施例6〜10と同種の都市下水余剰汚泥(pH6.85、全ss分19、400mg/L)を用い試験を行った。汚泥200mLをポリビ−カ−に採取し、表1の試作品−1〜5を対液500ppm添加し、ビ−カ−移し変え撹拌10回行った後、アニオン性凝集剤(V−320、アニオン化度20モル%、分子量1200万、ハイモ社製)の0.1%水溶液を200ppm添加しビ−カ−移し変え撹拌10回を行いT−1179Lの濾布(ナイロン製)により濾過し、45秒後の濾液量を測定した。また濾過した汚泥をプレス圧2Kg/m2 で1分間脱水する。その後ケ−キ自己支持性(脱水ケ−キの硬さ、含水率と関係)、ケ−キ含水率(105℃で20hr乾燥)および濾布剥離を測定した。結果を表3に示す。
【0032】
(比較例13〜18)
表2の比較合成例の比較品−1〜6を用いた他は、実施例11〜15と同様な試験操作により行った。結果を表3に示す。
【0033】
(実施例16〜20)
化学工場余剰汚泥(pH7.00、全ss分26、500mg/L)200mLをポリビ−カ−に採取し、表1の試作品−1〜5を対液550ppm添加し、ビ−カ−移し変え撹拌10回行った後、アニオン性凝集剤0.1%水溶液(ハイモロックV−310、アニオン化度10モル%、分子量1200万、ハイモ社製)をそれぞれ対液を250ppm添加し、ビ−カ−移し変え撹拌10回を行った後、T−1179Lの濾布(ナイロン製)により濾過し、45秒後の濾液量を測定した。また濾過した汚泥をプレス圧2Kg/m2 で1分間脱水する。その後ケ−キ自己支持性(脱水ケ−キの硬さ、含水率と関係)、ケ−キ含水率(105℃で20hr乾燥)および濾布剥離を測定した。結果を表4に示す。
【0034】
(比較例19〜24)
表2の比較合成例の比較品−1〜6を用いた他は、実施例16〜20と同様な試験操作により行った。結果を表4に示す。
【0035】
【表1】
Figure 0003707669
【0036】
【表2】
Figure 0003707669
【0037】
【表3】
Figure 0003707669
【0038】
【表4】
Figure 0003707669
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a water-in-oil type water-soluble polymer emulsion. Specifically, an aqueous solution of a water-soluble cationic monomer or a monomer mixture containing the water-soluble cationic monomer is not used. A water-in-oil type, characterized by adding only hydrogen peroxide to form a water-in-oil emulsion with a continuous phase and a liquid hydrocarbon containing an oil-soluble emulsifier as a continuous phase. The present invention relates to a method for producing a molecular emulsion.
[0002]
[Prior art]
Water-in-oil water-soluble polymer emulsions are suitable for applications that require high molecular weight such as polymer flocculants because the water-soluble polymer can be stored in high concentration product form and the viscosity of the dispersion is very low. It is a liquid product. For example, in Japanese Patent Publication No. 54-37986, a water-in-oil type polymer emulsion is prepared by emulsifying and dispersing a single amount of 30 to 70% by weight of an aqueous solution and 70 to 30% by weight of a hydrophobic organic liquid using a surfactant. A method is disclosed. Also disclosed is a method for producing a cross-linkable or branched polymer by allowing a polyfunctional monomer such as N, N-methylenebisacrylamide to coexist in a monomer or monomer mixture. . For example, in Japanese Patent No. 2975618, in water-in-oil emulsion polymerization, a polyfunctional monomer as described above is coexistent in the presence of a chain transfer agent, and a dissolution ratio is obtained under stirring conditions in which no shear is applied. Discloses a method for producing a branched cationic polymer of 30% or more, and it is described that this polymer is suitable for sludge dehydration and the like. In Japanese Patent Publication No. 8-164, a water-in-oil emulsion polymerization comprising water-insoluble particles is synthesized in a state where water-in-oil emulsion polymerization is similarly applied and no shear is applied. The cross-linking agent is an N, N-methylenebisacrylamide type cross-linking agent as described above. Other known methods for crosslinking or branching the polymer include methods using peroxonisulfate and N, N-dimethylacrylamide, but use water-in-oil emulsion polymerization to initiate polymerization of hydrogen peroxide and the like. There is no known method of using both an agent and a crosslinking agent.
[0003]
[Problems to be solved by the invention]
The object of the present invention is to easily crosslink or branch without using a polyfunctional monomer, N, N-dimethylacrylamide type cross-linking agent or peroxodisulfate as a conventional method for crosslinking or branching a polymer. A water-soluble polymer emulsion is produced from a polymer by a water-in-oil emulsion polymerization method.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the following inventions have been achieved. That is, the invention of claim 1 of the present invention is an oil in which an aqueous solution of a monomer mixture containing a water-soluble cationic monomer is a discontinuous phase and a liquid hydrocarbon containing an oil-soluble emulsifier is a continuous phase. In the polymerization method by forming only a water-type emulsion and adding only hydrogen peroxide, the polymerization is started at 0 to 45 ° C., then the temperature is raised to 50 to 90 ° C., and the crosslinking reaction is performed by heat treatment. It is a method for producing a water-in-oil polymer emulsion characterized in that it is promoted.
[0005]
The invention according to claim 2 is characterized in that the monomer mixture containing the water-soluble cationic monomer comprises 5 to 100 mol% of a cationic monomer represented by the following general formula (1) and 0 to 95 mol% of acrylamide. 2. The method for producing a water-in-oil polymer emulsion according to claim 1, comprising 0 to 40 mol% of an anionic monomer represented by the following general formula (2):
[Chemical 3]
Figure 0003707669
R1 is hydrogen or a methyl group, R2 and R3 are alkyl groups having 1 to 5 carbon atoms, alkoxyl groups or benzyl groups, R4 is a hydrogen atom, alkyl groups having 1 to 5 carbon atoms, alkoxyl groups or benzyl groups, and A is an oxygen atom Or NH and B are C2-C3 alkylene or alkoxylene groups, and X is an anion.
[Formula 4]
Figure 0003707669
R5 is hydrogen, methyl group or carboxymethyl group, R6 is hydrogen or carboxyl group, A is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO, Y is hydrogen or cation, Alternatively, COOZ and Z are hydrogen or a cation.
[0006]
The invention according to claim 3 is characterized in that the amount of hydrogen peroxide added to the monomer or monomer mixture is 0.005 to 5% by weight. Type polymer emulsion.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As a method for producing water-in-oil polymer emulsion of the present invention, a monomer mixture consisting of the cations on monomer copolymerizable with the monomer from water, at least water-immiscible hydrocarbon By mixing at least one surfactant having an HLB with an amount effective to form an oily substance, a water-in-oil emulsion, and vigorously stirring to form a water-in-oil emulsion and then polymerizing. Synthesize. At this time, only hydrogen peroxide is added as an initiator to initiate polymerization. The polymerization is initiated with hydrogen peroxide alone. The amount added as hydrogen peroxide is 0.01 to 2.0% by weight, preferably 0.05 to 1.0% by weight, more preferably 0.1 to 0.5% by weight, based on the monomer. The polymer cross-linking method of the present invention is to draw hydrogen at the α-position in the polymer mainly in an oxidizing atmosphere to generate radicals in the molecules, to generate cross-linking points and to form cross-links and branches.
[0008]
Examples of cationic monomers used in the present invention include tertiary amino group-containing monomers such as dimethylaminoethyl (meth) acrylate and dimethylaminopropyl (meth) acrylamide, which contain quaternary ammonium groups. Examples of the monomer include (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxy 2 which is a quaternized product of (meth) methyl chloride or benzyl chloride of the tertiary amino group-containing monomer. -Hydroxypropyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy 2-hydroxypropyldimethylbenzylammonium chloride, (meth) acrylic Etc. yl aminopropyl dimethyl benzyl ammonium chloride and the like.
[0009]
Among the water-soluble monomers to be copolymerized, examples of nonionic compounds include meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, and (meth) acrylic acid 2- Hydroxyethyl, diacetone acrylamide, N-vinyl pyrrolidone, N-vinyl formamide, N-vinyl acetamide and the like. An amphoteric polymer can also be produced by copolymerizing an anionic monomer. Examples of such monomers include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, vinyl sulfonic acid, vinyl benzene sulfonic acid or acrylamide 2-methylpropane sulfonic acid. Examples of the most preferred monomers are acrylic acid and acrylamide.
[0010]
The copolymerization molar ratio of these monomers is 5 to 100 mol% of the cationic vinyl monomer and 0 to 95 mol% of acrylamide, preferably 30 to 100 mol% of the cationic vinyl monomer, and 0% of acrylamide. -70 mol%. Moreover, an anionic vinyl monomer is 0-50 mol%, Preferably it is 0-30 mol%.
[0011]
Examples of oily substances composed of hydrocarbons used as a dispersion medium include paraffins, mineral oils such as kerosene, light oil, and middle oil, or hydrocarbon-based synthetic oils having characteristics such as boiling point and viscosity substantially in the same range as these. Or a mixture thereof.
[0012]
Examples of at least one surfactant having an amount effective to form a water-in-oil emulsion and HLB are HLB 3-11 nonionic surfactants, specific examples of which include sorbitan monooleate Sorbitan monostearate, sorbitan monopalmitate and the like. The amount of these surfactants to be added is 0.5 to 10% by weight, preferably 1 to 5% by weight, based on the total amount of the water-in-oil emulsion.
[0013]
When a tertiary amino group-containing monomer is used, the monomer is neutralized with an acid and then mixed with acrylamide or the like to adjust the solution pH to 2-6. After that, a solution obtained by dissolving a surfactant in an oily substance was added, and after forming a water-in-oil emulsion with an emulsifier or the like, nitrogen substitution was performed, and the water-in-oil emulsion was set to a constant polymerization temperature. Thereafter, polymerization is initiated by a radical polymerization initiator. Hydrogen peroxide is used as the initiator.
[0014]
The polymerization concentration is generally 10 to 60% by weight, but preferably 20 to 50% by weight easily controls the polymerization reaction, and the production efficiency is good. In the crosslinking method according to the present invention, since a crosslinking reaction is likely to occur when the temperature is higher than a certain level, it is preferable to start the polymerization at a relatively low temperature and raise the reaction temperature after a certain time. Therefore, after reacting at a starting temperature of 0 to 45 ° C., preferably 15 to 35 ° C. for 1 to 3 hours, the temperature is raised to 50 to 90 ° C., preferably 55 to 80 ° C. for 1 to 3 hours, and heat treatment is performed. Promotes the cross-linking reaction.
[0015]
In the water-in-oil emulsion of the present invention, after the polymerization, a hydrophilic interfacial modifier called a phase inversion agent is added so that the emulsion particles covered with the oil film can easily become familiar with water, and the water-soluble polymer therein dissolves. To make it easier to use, diluted with water and used for each application. Examples of hydrophilic interfacial chemicals include cationic interfacial chemicals and HLB 9-15 nonionic interfacial chemicals, such as polyoxyethylene alkyl ethers.
[0016]
The water-soluble polymer comprising the water-in-oil emulsion of the present invention can be applied to pulp sludge dewatering in the paper industry, other wastewater treatment in the food industry, metal and oil refining, and treatment of gravel washing wastewater related to building materials. It is. Particularly effective objects include sewage, human waste, or mixed sludge containing organic sludge and agglomerated sludge generated in general industrial wastewater treatment. These sludges are added with a cationic water-soluble polymer comprising the water-in-oil emulsion of the present invention and agglomerated, and then dehydrated by a dehydrator such as a belt press, a filter press, a decanter, or a screw press. The amount added varies depending on the type of waste water, the concentration of the suspension, etc., but is about 0.1 to 1000 ppm with respect to the liquid amount. Moreover, with respect to sludge, it is 0.1 to 3 weight% with respect to sludge.
[0017]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in more detail with an Example and a comparative example, this invention is not restrict | limited to a following example, unless the summary is exceeded.
[0018]
(Example 1)
In a reaction vessel equipped with a stirrer and a temperature control device, 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate were charged and dissolved. Separately, 60.0 g of deionized water, 257.4 g of 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride, and 37.8 g of 50% aqueous solution of acrylamide 50 (hereinafter abbreviated as AAM) were mixed (the monomer molar ratio was DMQ: AAM = 8: 2) The pH of the solution was adjusted to 3.72, the oil and the aqueous solution were mixed, and the mixture was stirred and emulsified with a homogenizer at 1000 rpm for 60 minutes. After adding 0.4 g of 10% aqueous solution of isopropyl alcohol (0.2% by weight of monomer) to the obtained emulsion, maintaining the temperature of the monomer solution at 25 to 28 ° C., and performing nitrogen substitution for 30 minutes , 20% aqueous solution 2.3 g (vs. monomer 0.2 wt%) of hydrogen peroxide was added, the polymerization reaction is started and, after reacting for 3 hours, kept at 60 ° C. was heated for 30 minutes as it reacted Was completed. After polymerization, 11.0 g of polyoxyethylene tridecyl ether (2.2% by weight with respect to the liquid) is added to the resulting water-in-oil emulsion as a phase inversion agent and mixed to prepare a sample (sample-1) (this) Inventive flocculant). Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 1.
[0019]
(Example 2)
In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate were charged and dissolved. Separately, 60.0 g of deionized water and 182.6 g of an 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride and 107.2 g of an aqueous solution of 50% acrylamide (molar ratio of monomers: DMQ: AAM = 50: 50) were mixed to adjust the pH to 3. .54, the oil and the aqueous solution were mixed, and stirred and emulsified with a homogenizer at 1000 rpm for 60 minutes. To the obtained emulsion, 1.68 g of isopropyl alcohol (0.02% by weight of monomer) was added, the temperature of the monomer solution was kept at 25 to 28 ° C., and nitrogen substitution was performed for 30 minutes. was added 20% aqueous solution 1.2 g (vs. monomer 0.12 wt%) of hydrogen, the polymerization reaction is started and, after reacting for 3 hours, kept at 60 ° C. was heated for 30 minutes as it was to complete the reaction It was. After the polymerization, 12.0 g (2.4% by weight of polyoxyethylene tridecyl ether) as a phase inversion agent was added to the resulting water-in-oil emulsion and mixed, and the sample (sample-2) (this sample) was used for the test. Inventive flocculant). Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 1.
[0020]
(Example 3)
In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate were charged and dissolved. Separately, 75.0 g of deionized water, 117.6 g of 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride, and 161.0 g of 50% aqueous solution of acrylamide (molar ratio of monomer is DMQ: AAM = 30: 70), and the pH is 3 37, the oil and the aqueous solution were mixed, and the mixture was emulsified with stirring at 1000 rpm with a homogenizer for 60 minutes. To the obtained emulsion, 0.9 g of a 10% aqueous solution of isopropyl alcohol (0.05% by weight of monomer) was added, the temperature of the monomer solution was kept at 25 to 28 ° C., and nitrogen substitution was performed for 30 minutes. after, 20% aqueous solution 1.3 g (vs. monomer 0.15 wt%) of hydrogen peroxide was added, the polymerization reaction is started and, after reacting for 3 hours, kept at 60 ° C. was heated for 30 minutes as it The reaction was completed. After polymerization, 12.5 g of polyoxyethylene tridecyl ether (2.5% by weight of the liquid) as a phase inversion agent was added to and mixed with the resulting water-in-oil emulsion and used for the test (Sample-3) Inventive flocculant). Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 1.
[0021]
(Example 4)
In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate were charged and dissolved. Separately, 80.0 g of deionized water, 14.6 g of an 80% aqueous solution of acrylic acid (hereinafter abbreviated as AAC) and 138.0 g of an acrylamide 50% aqueous solution were mixed and neutralized with sodium hydroxide at 85 equivalent percent, and then acryloyloxyethyltrimethyl. 115.5 g of an 80% aqueous solution of ammonium chloride was added to the neutralized solution (monomer molar ratio was DMQ: AAC: AAM = 30: 10: 60). Then, oil and aqueous solution were mixed and emulsified with stirring at 1000 rpm with a homogenizer for 60 minutes. After adding 0.8 g of 10% aqueous solution of isopropyl alcohol (0.05% by weight of monomer) to the obtained emulsion, maintaining the temperature of the monomer solution at 25 to 28 ° C., and performing nitrogen substitution for 30 minutes , a 10% aqueous solution 2.3 g (vs. monomer 0.1 wt%) of hydrogen peroxide was added, the polymerization reaction is started and, after reacting for 3 hours, kept at 60 ° C. was heated for 30 minutes as it reacted Was completed. After polymerization, 12.5 g of polyoxyethylene tridecyl ether (2.5% by weight of the liquid) was added to and mixed with the resulting water-in-oil emulsion as a phase inversion agent and used for the test (Sample-4) Inventive flocculant). Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 1.
[0022]
(Example 5)
In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate were charged and dissolved. Separately, 85.0 g of deionized water, 24.8 g of 80% aqueous solution of acrylic acid (hereinafter abbreviated as AAC) and 39.2 g of 50% aqueous solution of acrylamide were mixed and neutralized with 85 eq% of acrylic acid with sodium hydroxide, and then acryloyl. 200.0 g of 80% aqueous solution of oxyethyltrimethylammonium chloride was added to the neutralized solution (monomer molar ratio was DMQ: AAC: AAM = 60: 20: 20). Then, oil and aqueous solution were mixed and emulsified with stirring at 1000 rpm with a homogenizer for 60 minutes. After adding 1.4 g of 10% aqueous solution of isopropyl alcohol (0.07% by weight of monomer) to the obtained emulsion, maintaining the temperature of the monomer solution at 25 to 28 ° C., and performing nitrogen substitution for 30 minutes , a 10% aqueous solution 2.3 g (vs. monomer 0.1 wt%) of hydrogen peroxide was added, the polymerization reaction is started and, after reacting for 3 hours, kept at 60 ° C. was heated for 30 minutes as it reacted Was completed. After polymerization, 10.0 g of polyoxyethylene tridecyl ether (2.0% by weight with respect to the liquid) was added to the resulting water-in-oil emulsion as a phase inversion agent and mixed, and the sample was used for the test (Sample-5) Inventive flocculant). Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 1.
[0023]
(Comparative Example 1)
A reactor equipped with a stirrer and a temperature control device was charged with 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate. Separately, 70.0 g of deionized water and 281.3 g of 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMQ) are mixed and dissolved, the pH is adjusted to 4.12, the oil and the aqueous solution are mixed, and the homogenizer The mixture was emulsified with stirring at 1000 rpm for 60 minutes. After adding 1.1 g of isopropyl alcohol 10% aqueous solution (0.05% by weight of monomer) to the obtained emulsion, keeping the temperature of the monomer solution at 25 to 28 ° C., and performing nitrogen substitution for 30 minutes Then, 4.5 g of a 10% aqueous solution of hydrogen peroxide (0.20% by weight of monomer) was added to initiate the polymerization reaction. The reaction was carried out at a reaction temperature of 25 to 28 ° C. for 7 hours to complete the polymerization. After polymerization, 11.0 g of polyoxyethylene tridecyl ether (2.2% by weight with respect to the liquid) was added and mixed as a phase inversion agent to the resulting water-in-oil emulsion, and a sample for comparison (Comparative product- 1) did. Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 1.
[0024]
(Comparative Example 2)
In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate were charged and dissolved. Separately, 85.0 g of deionized water, 24.8 g of 80% aqueous solution of acrylic acid (hereinafter abbreviated as AAC) and 39.2 g of 50% aqueous solution of acrylamide were mixed and neutralized with 85 eq% of acrylic acid with sodium hydroxide, and then acryloyl. 200.0 g of 80% aqueous solution of oxyethyltrimethylammonium chloride was added to the neutralized solution (monomer molar ratio was DMQ: AAC: AAM = 60: 20: 20). Then, oil and aqueous solution were mixed and emulsified with stirring at 1000 rpm with a homogenizer for 60 minutes. After adding 1.4 g of 10% aqueous solution of isopropyl alcohol (0.07% by weight of monomer) to the obtained emulsion, maintaining the temperature of the monomer solution at 25 to 28 ° C., and performing nitrogen substitution for 30 minutes , a 10% aqueous solution 2.3 g (vs. monomer 0.1 wt%) of hydrogen peroxide was added to initiate the polymerization reaction. The reaction was carried out at a reaction temperature of 25 to 28 ° C. for 7 hours to complete the polymerization. After the polymerization, 10.0 g of polyoxyethylene tridecyl ether (2.0% by weight of the liquid) as a phase inversion agent was added to the resulting water-in-oil emulsion and mixed, and the sample for comparison (Comparative product- 2) did. Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 1.
[0025]
(Comparative Example 3)
In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate were charged and dissolved. Separately, 70.0 g of deionized water and 281.3 g of 80% aqueous solution of acryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMQ) are mixed and dissolved, the pH is adjusted to 4.01, the oil and the aqueous solution are mixed, and the homogenizer The mixture was emulsified with stirring at 1000 rpm for 60 minutes. After adding 1.1 g of isopropyl alcohol 10% aqueous solution (0.05% by weight of monomer) to the obtained emulsion, keeping the temperature of the monomer solution at 25 to 28 ° C., and performing nitrogen substitution for 30 minutes , 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2.2 g of (vs. monomer 0.1 wt%) was added, 7 hours To complete the polymerization. The resulting water-in-oil emulsion was mixed with 11.0 g of polyoxyethylene tridecyl ether (2.2% by weight with respect to the liquid) as a phase inversion agent and used as a sample for comparison (Comparative product-3). Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 2.
[0026]
(Comparative Example 4)
In the same manner as in Comparative Example 1, a polymer water-in-oil emulsion (Comparative product-4) having a molar ratio of acryloyloxyethyltrimethylammonium chloride to acrylamide of 50:50 was synthesized. It was. The results are shown in Table 2.
[0027]
(Comparative Example 5)
In the same manner as in Comparative Example 1, a polymer water-in-oil emulsion (Comparative Product-5) having a molar ratio of acryloyloxyethyltrimethylammonium chloride / acrylic acid / acrylamide of 60:20:20 was synthesized. The measurement was performed. The results are shown in Table 2.
[0028]
(Comparative Example 6)
In a reaction vessel equipped with a stirrer and a temperature controller, 126.0 g of isoparaffin having a boiling point of 190 ° C. to 230 ° C. and 12.0 g of sorbitan monooleate were charged and dissolved. Separately, 85.0 g of deionized water, 24.8 g of 80% aqueous solution of acrylic acid (hereinafter abbreviated as AAC) and 39.2 g of 50% aqueous solution of acrylamide were mixed and neutralized with 85 eq% of acrylic acid with sodium hydroxide, and then acryloyl. 200.0 g of 80% aqueous solution of oxyethyltrimethylammonium chloride and 0.6 g of 10% aqueous solution of N, N-methylenebisacrylamide were added to the neutralized solution (the molar ratio of monomers was DMQ: AAC: AAM = 60). : 20: 20). Then, oil and aqueous solution were mixed and emulsified with stirring at 1000 rpm with a homogenizer for 60 minutes. After adding 1.4 g of 10% aqueous solution of isopropyl alcohol (0.07% by weight of monomer) to the obtained emulsion, maintaining the temperature of the monomer solution at 25 to 28 ° C., and performing nitrogen substitution for 30 minutes , a 10% aqueous solution 2.3 g (vs. monomer 0.1 wt%) of hydrogen peroxide was added to initiate the polymerization reaction. The reaction was carried out at a reaction temperature of 25 to 28 ° C. for 7 hours to complete the polymerization. After polymerization, 10.0 g of polyoxyethylene tridecyl ether (2.0% by weight with respect to the liquid) was added to the resulting water-in-oil emulsion as a phase inversion agent and mixed to prepare a sample for comparison (Comparative Product- 6). It was. Moreover, the weight average molecular weight was measured with the molecular weight measuring device (Otsuka Electronics DLS-7000) by a static light scattering method. The results are shown in Table 1.
[0029]
(Examples 6 to 10)
Collect 200 mL of municipal wastewater surplus sludge (pH 6.85, total ss 19, 19, 400 mg / L) in a poly beaker, add an apparent 1000 ppm ferric chloride solution, transfer the beaker, and change the beaker 10 times. After adding 500 ppm of the prototypes 1 to 5 in Table 1, transferring the beaker and stirring 10 times, filtering through a T-1179L filter cloth (made of nylon), the amount of filtrate after 45 seconds Was measured. The filtered sludge is dehydrated at a press pressure of 2 kg / m 2 for 1 minute. Thereafter, the cake self-supporting property (related to the hardness and water content of the dewatered cake), the cake water content (dried at 105 ° C. for 20 hours) and the peeling of the filter cloth were measured. The results are shown in Table 2.
[0030]
(Comparative Examples 7-12)
The same test operation as in Examples 6 to 10 was performed except that Comparative products -1 to 6 of Comparative Synthesis Examples in Table 2 were used. The results are shown in Table 2.
[0031]
(Examples 11 to 15)
The tests were conducted using the same type of municipal sewage surplus sludge (pH 6.85, total ss content 19, 400 mg / L) as in Examples 6 to 10. 200 mL of sludge was collected in a poly beaker, prototypes 1 to 5 in Table 1 were added to the solution 500 ppm, the beaker was transferred and stirred 10 times, and then an anionic flocculant (V-320, anion). 200 ppm of a 0.1% aqueous solution having a degree of conversion of 20 mol%, a molecular weight of 12 million, manufactured by Hymo Co., Ltd.), transferred to a beaker, stirred 10 times, filtered through a T-1179L filter cloth (made of nylon), 45 The amount of filtrate after 2 seconds was measured. The filtered sludge is dehydrated at a press pressure of 2 kg / m 2 for 1 minute. Thereafter, the cake self-supporting property (related to the hardness and water content of the dewatered cake), the cake water content (dried at 105 ° C. for 20 hours) and the peeling of the filter cloth were measured. The results are shown in Table 3.
[0032]
(Comparative Examples 13-18)
The same test operations as in Examples 11 to 15 were performed except that Comparative products 1 to 6 of Comparative Synthesis Examples in Table 2 were used. The results are shown in Table 3.
[0033]
(Examples 16 to 20)
Chemical factory surplus sludge (pH 7.00, total ss content 26, 500 mg / L) 200 mL was collected in a poly beaker, prototypes 1 to 5 in Table 1 were added to the liquid 550 ppm, and the beaker was transferred. After 10 times of stirring, 250 ppm of an anionic flocculant 0.1% aqueous solution (Himoloc V-310, anionization degree 10 mol%, molecular weight 12 million, manufactured by Hymo Co., Ltd.) was added to the beaker. The mixture was transferred and stirred 10 times, and then filtered through a T-1179L filter cloth (manufactured by nylon), and the amount of filtrate after 45 seconds was measured. The filtered sludge is dehydrated at a press pressure of 2 kg / m 2 for 1 minute. Thereafter, the cake self-supporting property (related to the hardness and water content of the dewatered cake), the cake water content (dried at 105 ° C. for 20 hours) and the peeling of the filter cloth were measured. The results are shown in Table 4.
[0034]
(Comparative Examples 19-24)
The same test operation as in Examples 16 to 20 was performed except that Comparative products 1 to 6 of Comparative Synthesis Examples in Table 2 were used. The results are shown in Table 4.
[0035]
[Table 1]
Figure 0003707669
[0036]
[Table 2]
Figure 0003707669
[0037]
[Table 3]
Figure 0003707669
[0038]
[Table 4]
Figure 0003707669

Claims (3)

水溶性カチオン性単量体を含有する単量体混合物の水溶液を不連続相とし、油溶性乳化剤を含有する液状炭化水素を連続相とする油中水型エマルジョンを形成させ重合するに際し、過酸化水素のみを添加して重合する方法において、0〜45℃で重合を開始しその後50〜90℃に昇温させ、熱処理を行うことにより架橋反応を促進させることを特徴とする油中水型高分子エマルジョンの製造方法。  In the polymerization, an aqueous solution of a monomer mixture containing a water-soluble cationic monomer is used as a discontinuous phase, and a water-in-oil emulsion containing a liquid hydrocarbon containing an oil-soluble emulsifier as a continuous phase is formed and polymerized. In the method of polymerizing by adding only hydrogen, the polymerization is started at 0 to 45 ° C., then the temperature is raised to 50 to 90 ° C., and the crosslinking reaction is promoted by performing a heat treatment. Method for producing molecular emulsion. 前記水溶性カチオン性単量体を含有する単量体混合物が下記一般式(1)で表わされるカチオン性単量体5〜100モル%とアクリルアミドを0〜95モル%と下記一般式(2)で表わされるアニオン性単量体0〜40モル%からなることを特徴とする請求項1に記載の油中水型高分子エマルジョンの製造方法。
Figure 0003707669
R1は水素またはメチル基、R2、R3は炭素数1〜5のアルキル基、アルコキシル基あるいはベンジル基、R4は水素原子、炭素数1〜5のアルキル基、アルコキシル基あるいはベンジル基、Aは酸素原子またはNH、BはC2〜C3のアルキレン基またはアルコキシレン基、Xは陰イオン。
Figure 0003707669
R5は水素、メチル基またはカルボキシメチル基、R6は水素またはカルボキシル基、AはSO3 、C64 SO3 、CONHC(CH32 CH2 SO3 あるいはCOO、Yは水素または陽イオン、あるいはCOOZ、Zは水素または陽イオン。
The monomer mixture containing the water-soluble cationic monomer is 5 to 100 mol% of the cationic monomer represented by the following general formula (1), 0 to 95 mol% of acrylamide, and the following general formula (2) The method for producing a water-in-oil polymer emulsion according to claim 1, comprising 0 to 40 mol% of an anionic monomer represented by the formula:
Figure 0003707669
R1 is hydrogen or a methyl group, R2 and R3 are alkyl groups having 1 to 5 carbon atoms, alkoxyl groups or benzyl groups, R4 is a hydrogen atom, alkyl groups having 1 to 5 carbon atoms, alkoxyl groups or benzyl groups, and A is an oxygen atom Or NH and B are C2-C3 alkylene or alkoxylene groups, and X is an anion.
Figure 0003707669
R5 is hydrogen, methyl group or carboxymethyl group, R6 is hydrogen or carboxyl group, A is SO 3 , C 6 H 4 SO 3 , CONHC (CH 3 ) 2 CH 2 SO 3 or COO, Y is hydrogen or cation, Or COOZ and Z are hydrogen or a cation.
前記過酸化水素の単量体あるいは単量体混合物に対する添加量が、0.005〜5重量%であることを特徴とする請求項1あるいは2に記載の油中水型高分子エマルジョンの製造方法。  The method for producing a water-in-oil polymer emulsion according to claim 1 or 2, wherein the amount of hydrogen peroxide added to the monomer or monomer mixture is 0.005 to 5% by weight. .
JP2000235046A 2000-08-03 2000-08-03 Method for producing water-in-oil polymer emulsion Expired - Fee Related JP3707669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235046A JP3707669B2 (en) 2000-08-03 2000-08-03 Method for producing water-in-oil polymer emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235046A JP3707669B2 (en) 2000-08-03 2000-08-03 Method for producing water-in-oil polymer emulsion

Publications (2)

Publication Number Publication Date
JP2002114810A JP2002114810A (en) 2002-04-16
JP3707669B2 true JP3707669B2 (en) 2005-10-19

Family

ID=18727323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235046A Expired - Fee Related JP3707669B2 (en) 2000-08-03 2000-08-03 Method for producing water-in-oil polymer emulsion

Country Status (1)

Country Link
JP (1) JP3707669B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102251B2 (en) * 2003-05-30 2008-06-18 株式会社ネオス Paint mist treatment agent and treatment method
JP2009039652A (en) * 2007-08-09 2009-02-26 Hymo Corp Sludge dewatering agent and method
KR102158398B1 (en) 2012-08-22 2020-09-22 엠티 아쿠아포리마 가부시키가이샤 Polymer-coagulating agent and method for producing same, and method for dehydrating sludge using same
CN105886132A (en) * 2016-05-07 2016-08-24 毛祝新 Antibacterial biological sticky mud stripping agent and preparation method thereof
FR3096985B1 (en) 2019-06-05 2021-05-14 S N F Sa PROCESS FOR PREPARING STRUCTURED POLYMERS IN THE FORM OF POWDER BY GEL ROUTING

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571703A (en) * 1978-11-25 1980-05-30 Sanyo Chem Ind Ltd Preparation of water-soluble particulate polymer
JP2671249B2 (en) * 1992-11-27 1997-10-29 昭和電工株式会社 Water-in-oil type cationic emulsion, its production method and use as a polymer flocculant
JPH0841114A (en) * 1994-07-26 1996-02-13 Showa Denko Kk Water-in-oil cationic polymer emulsion and its application

Also Published As

Publication number Publication date
JP2002114810A (en) 2002-04-16

Similar Documents

Publication Publication Date Title
JP4167969B2 (en) Aggregation treatment agent and method of using the same
JP4660193B2 (en) Modified polymer flocculant with improved performance characteristics
JP5557366B2 (en) Ionic water-soluble polymer composed of powder, production method thereof and use thereof
JP2004025094A (en) Flocculating and treating agent consisting of cross-linking, ionizable and water-soluble polymer and its use
JP3963361B2 (en) Aggregation treatment agent and method of using the same
JP3886098B2 (en) Sludge dewatering agent and sludge dewatering method
JP3936894B2 (en) Aggregation treatment agent and method of using the same
JP4425528B2 (en) Paper making method
JP3707669B2 (en) Method for producing water-in-oil polymer emulsion
JP4897523B2 (en) Sludge dewatering agent and sludge dewatering method
JP4167974B2 (en) Organic sludge dewatering method
JP5283253B2 (en) Method for dewatering paper sludge
JP3218578B2 (en) Organic sludge dehydrating agent, method for treating organic sludge, and method for producing organic sludge dehydrating agent
JP3714612B2 (en) Sludge dewatering method
JP4167919B2 (en) Sludge dewatering method
JP3681143B2 (en) High salt concentration sludge dewatering agent and sludge dewatering method
JP4058305B2 (en) Water-soluble polymer emulsion
JP4380048B2 (en) Primary amino group-containing polymer emulsion type flocculant
JP2004059750A (en) Amidine-based water-soluble polymer emulsion and method for using the same
JP4753401B2 (en) How to use water-in-oil water-soluble polymer emulsion
JP4367881B2 (en) Sludge dewatering agent and method for dewatering sludge
JP5630782B2 (en) Sludge dewatering agent and sludge dewatering method
JPH10244300A (en) Method for dehydration of sludge
JP4676632B2 (en) Method for controlling solubility of water-in-oil emulsion
JP2005125215A (en) Dehydration method for oil-containing organic sludge

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050421

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees