JP3706200B2 - 光伝送システム - Google Patents

光伝送システム Download PDF

Info

Publication number
JP3706200B2
JP3706200B2 JP15563896A JP15563896A JP3706200B2 JP 3706200 B2 JP3706200 B2 JP 3706200B2 JP 15563896 A JP15563896 A JP 15563896A JP 15563896 A JP15563896 A JP 15563896A JP 3706200 B2 JP3706200 B2 JP 3706200B2
Authority
JP
Japan
Prior art keywords
signal
digital signal
optical
transmission
console
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15563896A
Other languages
English (en)
Other versions
JPH104388A (ja
Inventor
和夫 丸山
真一 京田
仁志 沖村
尚美 中田
晋作 田畑
Original Assignee
オタリ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オタリ株式会社 filed Critical オタリ株式会社
Priority to JP15563896A priority Critical patent/JP3706200B2/ja
Publication of JPH104388A publication Critical patent/JPH104388A/ja
Application granted granted Critical
Publication of JP3706200B2 publication Critical patent/JP3706200B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、供給された複数のアナログ信号を光デジタル信号に変換して光ファイバーで伝送する光伝送システムに関する。
【0002】
【従来の技術】
音楽の演奏会などでは、ステージ上で生じた音声情報を1本または2本のマイクロフォンだけで収録するのはまれであり、通常は4本から数十本のマイクロフォンを使用する。また、マイクロフォンだけでなく、楽器自体からも直接音情報が出力されるため、その結果、演奏中のステージでは、例えば32チャンネル (ch)又はそれ以上のchの音声信号が発生するのが通常である。
【0003】
一方、音楽の演奏会などにおける音声処理の工程として、ステージ上で生じた複数のchの音声信号をバランスを取りながら加工して出力したり、一部の音声信号を現在演奏中の演奏者にモニター音声として送り返したりする工程が存在する。この音声処理の工程には、コンソールという装置が使用される。このコンソールは、多数のchの信号を受け取り、音量や音質等の様々な加工を施す装置である。
【0004】
また、コンソールは、マイクロフォン等のステージ側の装置と接続されるわけだが、ステージとコンソールとは、必ずしも隣接して設置されるとは限らない (場合によっては、ステージとコンソールは、数十メートルから数百メートルも離れていることがある。)。
【0005】
この場合、従来はステージとコンソールを結ぶのにマルチケーブルというものを使用していた。このマルチケーブルは、多数のケーブルをまとめたもので、ステージからの複数の音声信号を並列にコンソールまで伝送するケーブルである。
【0006】
しかし、このマルチケーブルによる伝送は、ケーブルの重量が重いため、設置のための引き回し(ケーブルの移動等)が困難である。また、マルチケーブルは、アナログ信号をそのまま伝送するため、ケーブル内での信号の劣化や雑音の増加が避けられない。
【0007】
そこで、マルチケーブルによる信号の伝送方法以外に、例えば、特開昭59−17751などに記載されているような光ファイバ通信の技術を要素技術として、ステージ側で複数の音声のchをデジタル信号に変換し、コンソールまで高速デジタル回線で結ぶことが試みられようとしている。高速デジタル回線の伝送媒体として、光ファイバー・ケーブルを使用すれば、多数のch分のアナログ信号を1本のケーブルで伝送することが可能である。また、このようにすることにより、従来のマルチケーブルの引き回しの困難さと信号劣化の問題の大部分を解決することが可能である。
【0008】
この光ファイバを利用して多数のchの信号を伝送する装置は、光ケーブルを伝送媒体に使用した多ch信号伝送装置と呼ばれる(以下、「光伝送システム」という。)。
【0009】
この光伝送システムは、ステージ側に設置されるステージ側伝送装置と、コンソール側に設置されるコンソール側伝送装置と、これら両装置を接続する光ファイバーケーブルとから構成される。
【0010】
ステージ側伝送装置は、ステージの上で発生する多数のchの音声信号(アナログ)をデジタル信号に変換し、光ファイバーケーブルで伝送可能とするものである。
【0011】
また、コンソール側伝送装置は、光ファイバーケーブルによって送られてきた信号をデジタル信号に変換し、その後、chごとにアナログ信号に復元して、コンソールまで信号を伝送するものである。
【0012】
【発明が解決しようとする課題】
しかしながら、上記のような従来の光伝送システムは、マルチケーブルによる信号の伝送と比較して、信号劣化の問題やケーブルの引き回しの困難さが少ない反面、その設置手順が複雑であるという問題がある。
【0013】
また、光伝送システムにおいては、各伝送装置が正常に動作してはじめてマイクロフォンの動作テストやコンソールの動作テストが可能となるが、それにもかかわらず、ステージ側伝送装置、コンソール側伝送装置及び光ファイバーケーブルの全部の設置及び接続が完了しないと、伝送装置自体の動作テストができないという問題がある。また、伝送装置が動作テストの結果正常に動作しなかったとしても、ステージ側伝送装置、コンソール側伝送装置及び光ファイバーケーブルのうちのどの部分に障害が発生したかを判別することが困難である。そのため、障害を復旧するために、予定外の時間が掛かる場合がある。
【0014】
そこで、本発明は上記事情に鑑みてなされたものであり、容易に各伝送装置単体での動作テストを可能とするとともに、障害が発生した場所の特定を速やかに行うことが可能な光伝送システムを提供することを目的とする。
【0015】
【課題を解決するための手段】
上記課題を解決するために本発明は、光ファイバーにより接続された第1及び第2の光伝送装置間で、電気的な複数のアナログ信号を光デジタル信号に変換して伝送する光伝送システムにおいて、前記第1及び第2の光伝送装置は、電気的に入力された複数のアナログ信号を光デジタル信号に変換して前記光ファイバーに送出する送信部と、前記光ファイバーを介して供給された光デジタル信号をアナログ信号に変換して受信する受信部と、自装置内の受信部へ供給するデジタル信号を生成するデジタル信号生成手段と、このデジタル信号生成手段からのデジタル信号を前記受信部に供給するか否かの選択を行う選択手段と、この選択手段の選択結果に基づいて前記受信部へのデジタル信号の供給を他装置の送信部の供給から前記デジタル信号生成手段の供給に切り換える切換手段及び前記切換手段の動作に連動して動作して同期信号発信手段に切換える切換手段とを備え、これらの切換手段の切り換え動作に基づいて前記受信部に前記デジタル信号生成手段からデジタル信号が供給された場合に、自装置内の前記受信部と送信部間で前記供給されたデジタル信号をループを形成させて自装置内における信号伝達経路の障害検出を含む動作テストを行う動作テスト部とを有する。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。尚、以下の実施の形態は、本発明の一態様を示すものであり、この発明を限定するものではなく本発明の範囲内で任意に変更可能である。
【0017】
図1は本発明の実施の一形態に係る光伝送システムの概略構成を示すシステム構成図である。尚、以下の説明では、実施の一形態として本発明の光伝送システムを音楽コンサート等の会場に適用した場合の例を示す。
【0018】
同図に示したように、本システムは、例えばコンサート等が実演されるステージ側に配置されるステージ側伝送装置10と、ステージ側で発生した音声信号を加工するコンソール側に配置されるコンソール側伝送装置20と、これら両伝送装置間を結ぶ2つのケーブル31、32からなる光ファイバー・ケーブル(以下、単に「光ファイバー」という。)30とを有して構成される。
【0019】
上記ステージ側伝送装置10は、送信部111、受信部112及びテスト部113を備え通常の伝送動作を行う主伝送路110と、この主伝送路110とほぼ同様の内部構成を有して主伝送路110に何らかの障害が発生した場合に動作する副伝送路120とを具備して構成される。
【0020】
上記コンソール側伝送装置20は、ステージ側伝送装置10と基本的な構成はほぼ同様であり、受信部211、送信部212及びテスト部213を備え通常の伝送動作を行う主伝送路210と、この主伝送路210に何らかの障害が発生した場合に動作する副伝送路220とを具備して構成される。
【0021】
このような全体構成を有する光伝送システムにおいて、ステージ上の楽器、マイク等から出力された複数チャンネル(例えば48チャンネル)のアナログの音声信号は(以下、「チャンネル」を「ch」という。)、入力端子11からステージ側伝送装置10に入力され、光ファイバー30を介して所定の伝送レート (例えば122.8MBPS)でコンソール側伝送装置20に伝送される。次に、コンソール側伝送装置20は、伝送されてきた音声信号を出力端子21からさらにコンソールに送る。コンソール側では、この音声信号に対し、音質加工、ミキシング加工等の各種音声加工を施し、この加工した音声信号を所定のch数(例えば16ch)で再び入力端子23からコンソール側伝送装置20に出力する。コンソール側伝送装置20は、コンソール側からのアナログの音声信号を光デジタル信号に変換して光ファイバー30を介してステージ側伝送装置10に伝送する。ステージ側伝送装置10は、例えば16chの音声信号を出力端子13からステージ側に配置される不図示のスピーカ等に供給する。また、ステージ側伝送装置10及びコンソール側伝送装置20は、それぞれ送信部111,212から分岐した出力端子12,出力端子22に音声信号を出力することでモニター用の音源を確保することができるようになっている。このような光ファイバー30を用いた信号の伝送により、信号伝達における時間遅れがなく、従来の電線を使用した場合に生ずる信号伝達の誤り、訂正の処理も不要となる。
【0022】
さらに、コンソール側伝送装置20は、Thru Out端子を備えており、コンソール側伝送装置20と同様の機能を有する複数の伝送装置を接続して多数のコンソール側の装置に対応可能となっている。すなわち、ステージ上の音声信号を加工する目的だけでなく、音声収録、放送用等の多種の目的で設置される専用のコンソール等、複数のコンソールに対応可能である。
【0023】
図2、図3は、それぞれステージ側伝送装置10、コンソール側伝送装置20のより詳細な構成を示す詳細ブロック図である。尚、各伝送装置における主伝送路と副伝送路の構成はほぼ同様であるため、以下の説明では主伝送路を代表して説明する。
【0024】
まず、ステージ側伝送装置10内の詳細な構成説明を行う。
【0025】
図2に示したように、上記ステージ側伝送装置10の送信部111は、例えば48ch分の入力端子11から入力された電気的な複数のアナログ信号を増幅する各ch分の増幅器51と、この増幅器51で増幅された電気的な複数のアナログ信号をデジタル信号に変換する各ch分のA/D変換器52と、送信部111内の各伝送回路を制御する伝送制御回路53と、コンソール側伝送装置20との信号の通信制御を行う通信制御回路54と、伝送制御回路53及び通信制御回路54を介してA/D変換器52より出力された電気的なデジタル信号を光デジタル信号に変換する電気/光(E/O)変換器55と、装置内の各部に供給するクロック信号(CLK)を発生するクロック信号発生器(X’TAL)56とを有して構成される。このような構成の送信部111により、入力端子11を介して入力されたステージからの電気的な複数のアナログ信号は、光デジタル信号に変換されE/O変換器55に接続された光通信端子14から光ファイバー31を介してコンソール側伝送装置20に送信される。尚、ステージ側伝送装置10から送信される信号は、クロック信号発生器56から供給されるクロック信号(CLK)の成分を含んでいる。コンソール側伝送装置20は、通常の動作では、ステージ側伝送装置10から送信されてくる信号の中からこのクロック信号を分離し、当該分離したクロック信号に基づいて動作する。
【0026】
また、上記ステージ側伝送装置10の受信部112は、光ファイバー32,光通信端子15を介してコンソール側伝送装置20から送信された光デジタル信号を電気信号に変換する光/電気(O/E)変換器61と、受信部112内の各伝送回路を制御する通信制御回路62と、コンソール側伝送装置20との信号の通信制御を行う伝送制御回路63と、通信制御回路62及び伝送制御回路63を介してO/E変換器61より出力された電気的なデジタル信号を例えば16chの各chに応じてアナログ信号に変換するD/A変換器64と、このD/A変換器64から入力された電気的なアナログ信号を各chに応じて増幅する増幅器65とを有して構成される。このような構成の受信部112により、光ファイバー32,光通信端子15を介してコンソール側伝送装置20から送信された光デジタル信号は、電気的な複数のアナログ信号に変換された後、増幅器65に接続された出力端子13を介してステージ側のスピーカ等に供給される。
【0027】
また、上記ステージ側伝送装置10のテスト部113は、自装置内にデジタル信号をループさせて自装置内における信号伝達経路の障害検出を含む動作テストを行う動作テスト部分である。このテスト部113は、一端が増幅器65に接続された受信部112用の例えば16ch分のテストスイッチ66と、一端が増幅器51及びA/D変換器52間に接続された送信部112用の例えば48ch分のテストスイッチ67と、所定のデジタル信号を生成しこの生成したデジタル信号を受信部112へ供給するデジタル信号生成手段としてのオシレータ(OSC)68と、このOSC68からのデジタル信号を受信部112に供給するか否かの選択を行う選択手段としてのOSC用選択スイッチ69と、伝送制御回路63内に設けられOSC用選択スイッチ69の選択動作に連動して動作し、受信部112へのデジタル信号の供給をOSC68からの供給に切り換える切換手段としての切換スイッチ57とを有して構成される。また、テスト部113は、テストスイッチ66、67の他端に接続され、OSC68で生成されたデジタル信号の受信部112及び送信部111の所定の部位における信号レベルを検出する信号レベル検出手段としてのレベルメータLM1及び使用者がヘッドホンを用いて直接音声を聴くためのヘッドホン端子(Phone)等を具備している。
【0028】
ここで、上記OSC用選択スイッチ69は、通常の通信時に選択されるOFF端子と、テスト時に選択される−20dB端子及び−60dB端子とで構成される。
【0029】
この選択スイッチ69で−20dB端子又は−60dB端子が選択された場合には、OSC68からそれぞれ−20dB、−60dBの音圧のテストシグナル(デジタル信号)が発せられる。
【0030】
切換スイッチ57は、通常の通信時(選択スイッチ69がOFF時)には、通信制御回路62側の切換端子(NORM)に接続されているが、選択スイッチ69の−20dB端子又は−60dB端子が選択された場合には、NORM端子からOSC68側の接続端子(TEST)に切り換わるようになっている。これにより、OSC68からのテストシグナルが装置内に供給され、ステージ側伝送装置10単体での動作チェックが可能となる。
【0031】
次に、コンソール側伝送装置20内の詳細な構成説明を行う。尚、コンソール側伝送装置20内の各ブロックの構成回路は、上記ステージ側伝送装置10の各ブロックの回路と同様の機能を示すものが多いため、説明が重複する部分についてはその詳細説明を省略する。
【0032】
コンソール側伝送装置20は、通常の通信時にはステージ側伝送装置10から送信されたクロック信号に基づいて動作するものである。また、このコンソール側伝送装置20の受信部211は、図3に示したように、光通信端子24に接続されたO/E変換器71と、このO/E変換器71に接続された通信制御回路72と、この通信制御回路72に接続された伝送制御回路75と、この伝送制御回路75に接続されたD/A変換器76と、このD/A変換器76に接続された増幅器77とを有して構成される。
【0033】
このように、コンソール側伝送装置20の受信部211は、ステージ側伝送装置10の受信部112とほぼ同様のブロック構成を有するが、コンソール側伝送装置20の受信部211は、さらに、通信制御回路72に接続されステージ側伝送装置10から送信されたデジタル信号に含まれるクロック信号に基づいたタイミングで送信されたデジタル信号に同期した信号を発振する電圧制御発振回路 (VCO)73と、後述の自己ループスイッチ90に接続されステージ側伝送装置10から送られてきたデジタル信号に対して同期を掛けて自装置を動作させるのか、内部のクロック信号を使って自装置を動作させるのかを切り換えるVCO用切換スイッチ74とを具備して構成される。このようなコンソール側伝送装置20の受信部211により、通常の通信時には光ファイバー31,光通信端子24を介してステージ側伝送装置10から送信されたデジタル信号は、通信制御回路72に入力される。通信制御回路72では、送信されたデジタル信号に含まれるクロック信号に基づいて、例えば256FSのタイミング信号をVCO73に送信する。VCO73では、信号256FSのタイミングに同期したクロック信号(CLK)を生成し、装置内の各部に出力する。そして、ステージ側伝送装置10から送信されたデジタル信号はアナログ信号に変換された後、増幅器77に接続された出力端子21を介してコンソールに送信される。
【0034】
また、コンソール側伝送装置20の送信部212は、入力端子23に接続された増幅器81と、この増幅器81に接続されたA/D変換器82と、このA/D変換器82に接続された伝送制御回路83と、この伝送制御回路83に接続されるとともに、VCO73及びVCO用切換スイッチ74に接続された通信制御回路84と、この通信制御回路84に接続されたE/O変換器85とを有して構成される。このように、コンソール側伝送装置20の送信部212は、ステージ側伝送装置10の送信部111の各ブロックとほぼ同様の機能を持った回路で構成される。このような構成の送信部212により、入力端子23を介して入力されたコンソールからの電気的な複数のアナログ信号は、光デジタル信号に変換されE/O変換器85に接続された光通信端子25から光ファイバー32を介して所定の伝送レート(例えば128.8MBPS)でステージ側伝送装置10に送信される。
【0035】
また、コンソール側伝送装置20のテスト部213は、一端が増幅器77に接続された受信部211用の例えば48ch分のテストスイッチ86と、一端が増幅器81及びA/D変換器82間に接続された送信部212用の例えば16ch分のテストスイッチ87と、所定のデジタル信号を生成しこの生成したデジタル信号を受信部211へ供給するデジタル信号生成手段としてのオシレータ(OSC)88と、このOSC88からのデジタル信号を受信部211に供給するか否かの選択を行う選択手段としてのOSC用選択スイッチ89と、一端がVCO73に接続された自己ループスイッチ90と、伝送制御回路75内に設けられOSC用選択スイッチ89の選択動作に連動して動作し、受信部211へのデジタル信号の供給をOSC88からの供給に切り換える切換手段としての切換スイッチ91とを有して構成される。また、テスト部213は、テストスイッチ86、87の他端に接続され、OSC88で生成されたデジタル信号の受信部211及び送信部212の所定の部位における信号レベルを検出する信号レベル検出手段としてのレベルメータLM2及び使用者がヘッドホンを用いて直接音声を聴くためのヘッドホン端子(Phone)等を具備している。
【0036】
ここで、上記OSC用選択スイッチ89は、通常の通信時に選択されるOFF端子と、テスト時に選択される−20dB端子及び−60dB端子とで構成される。
【0037】
このコンソール側伝送装置20のテスト部213と上記ステージ側伝送装置10のテスト部113との構成の大きな違いは自己ループスイッチ90を設けた点である。通常コンソルール側伝送装置20は、単にOSC88で生成されたデジタル信号を出力しただけでは、信号の同期が取れないが、自己ループスイッチ90を設けて、VCO用切換スイッチ74を切り換えることにより内部のクロック信号を使って自装置を動作するようになっている。
【0038】
このように、コンソール側伝送装置20のテスト部213は、自己ループスイッチ90とOSC用選択スイッチ89とを連動させることにより自装置単体での動作テストを行えるようにしている。例えば、自己ループスイッチ90をONにして、OSC用選択スイッチ89を−20dBに設定すると、コンソルール側伝送装置20は、自分の内部同期により動作するようになる。
【0039】
尚、上記において図2に示すステージ側伝送装置10の受信部112の通信制御回路62には、エラー表示手段としてのエラー表示器401が設けられている。また、図3に示すコンソール側伝送装置20の受信部211の通信制御回路72には、同様にエラー表示手段としてのエラー表示器402が設けられている。このエラー表示器401及び402は、それぞれ通信制御回路62及び72がエラーを検出した場合に点灯して、エラーがあることを表示する。
【0040】
図4は、図3に示すコンソール側伝送装置20の送信部212の通信制御回路84のより詳細な構成を説明するものである。
【0041】
通信制御回路84は、コマンド入力端子404,データ入力端子403,ストローブ入力端子406,クロック入力端子407及びシリアル出力端子405を備えている。コマンド入力端子404及びデータ入力端子403は、伝送制御回路83の出力に接続され、シリアル出力端子405は、E/O変換器85に接続されている。コマンド入力端子404には、4ビットのパラレルコマンドが入力され、データ入力端子403には8ビットパラレルのデータが入力される。デジタル信号に変換された音声データは、8ビットごとに分割されてデータ入力端子403に入力される。
【0042】
408は、ラッチであり、409はエンコーダであり、410は、シフトレジスタである。ラッチ408は、データを一時的に保持する。エンコーダは、4ビット−5ビット変換のエンコードを行う。シフトレジスタ410は、5ビットのパラレルデータをシリアルデータに変換する。コマンド入力端子404から入力されたコマンドのデータまたはデータ入力端子403から入力されたデータは、ラッチ408で保持される。ラッチ408で保持されたデータは、エンコーダ409に転送され、エンコーダ409によって、4ビット−5ビット変換が行われる。この4ビット−5ビット変換は、デジタル信号の伝送に一般的に使用される手法であり、例えば5ビットで表現可能な32種類のデータに、4ビットで表現可能な16種類のデータを、効率よく伝送できるようにマッピングするものである。エンコーダ409によって5ビットデータに変換されたデータは、シフトレジスタ410に転送され、シリアルデータとしてシリアル出力端子405から出力される。
【0043】
411は、クロック発生回路(GEN)で、412はストローブ制御回路である。クロック発生回路411は、クロック入力端子407から入力されるクロック信号に基づいて、通信制御回路84で使用されるクロック信号を発生する。ストローブ制御回路412は、ストローブ入力端子406から入力されるストローブ信号に基づいて、ラッチ408を制御する。
【0044】
図5は、通信制御回路84の動作をタイミングチャートで示したものである。CLKは、クロック入力端子407に供給されるクロック信号である。DATAは、データ入力端子403から入力されるデータであって、DATA1,DATA2のように、クロックに同期してデータの内容が変化する。Strobeは、ストローブ信号である。ストローブ信号は、クロック信号に同期して、必要に応じて入力される。Serialは、出力端子405から出力されるシリアル信号である。
【0045】
図5に示すように、通信制御回路84は、データとストローブが両方そろったときに、データ入力端子403から入力されたデータを4ビット−5ビット変換を施したうえで、シリアルデータとして出力端子405から出力する。もし、ストローブ信号がないときは、ラッチ408が特別な4ビットパターンを生成し、エンコーダ409に転送する。そうすると、出力端子405からは、図5に示すSYNCという特別なビットパターンが出力される。尚、コマンド入力端子404から入力されるコマンドのデータは、本質的に、データ入力端子403から入力されるデータと変わるところはなく、コマンドのデータは、コンソール側伝送装置20の制御等に利用される。
【0046】
以上のように、通信制御回路84は、音声データの有無やコマンドデータの有無に関係なく、常に出力端子405から、何らかのシリアルデータを連続して出力する。
【0047】
図6は、図3に示すコンソール側伝送装置20の受信部211の通信制御回路72の構成をより詳細に示したものである。413は、シリアル入力端子、414はクロック入力端子、415はデータ出力端子であり、416はエラー出力端子である。シリアル入力端子413は、O/E変換器71に接続され、データ出力端子416は、伝送制御回路75に接続され、エラー出力端子416はエラー表示器402に接続されている。
【0048】
417はシフトレジスタ、418はラッチ、419はデコーダ、420は ラッチである。シリアル入力端子413から入力されたシリアルデータは、シフトレジスタ417によってパラレルデータに変換される。パラレルデータに変換されたデータは、ラッチ418によって一時的に保持される。ラッチ418によって保持されたデータは、デコーダ419によって、5ビット−4ビット変換が行われる。デコーダ419によって4ビットに戻されたデータは、ラッチ420によって一時的に保持されたあと、データ出力端子415から出力される。421は、PLL回路である。PLL回路は、クロック入力端子414に入力されるクロック信号を、シリアル入力端子413に入力されるシリアル信号のクロックに同期させて、通信制御回路72で必要なクロック信号を発生する。
【0049】
デコーダ419及びラッチ420は、エラー検出回路を含んでいる。デコーダ419は、ラッチ418から受け取ったデータを5ビット−4ビット変換を行おうとするときに、変換不能な場合にエラー信号を出力する。
【0050】
尚、図2に示すステージ側伝送装置10の通信制御回路54及び通信制御回路62も通信制御回路84及び通信制御回路72と同様の構成で実施可能であるため、説明は省略する。
【0051】
次に、上記構成の光伝送システムの動作説明を行う。尚、以下の説明では、本発明の主体である動作テスト機能部分を中心に説明を行う。
【0052】
本システムでは、従来のようにステージ側伝送装置10、コンソール側伝送装置20及び光ファイバー30の全部の設置及び接続を行わなくとも、伝送装置自体の動作テストが可能である。すなわち本システムでは、システム全体の接続を行う前に、各伝送装置個別に動作テストを行うことができる。
【0053】
このテストを行う場合には、まず、図3に示すコンソール側伝送装置20のデシタル送受信部のみの動作テストを行う。そのためには、まず光通信端子25(送信側)と、光通信端子24(送信側)とをあらかじめ正常に動作することが確認されているテスト用の光ケーブルで接続する。そして、スイッチ89をOFFから−60または−20へ切り換える。そうすると、スイッチ74がNORM(通常動作モード)からTEST(テストモード)へ切り換わる。また、スイッチ90を動作させてVCO73を動作させる。そのことによって、通信制御回路72と通信制御回路84には、まったく同一のクロックが供給される。さらに、直ちに送信部212の通信制御回路84は、シリアルデータをE/O変換器85に向けて送信を始める。
【0054】
E/O変換器85から出力された光信号は、テストのために接続された光ケーブルを通過して、O/E変換器71に到達する。受信部211の通信制御回路72は、O/E変換器71から出力されるシリアルデータが正常であれば、エラー表示器402に、「正常」の表示をする。もし、シリアルデータが異常か、または存在しない時は、エラー表示器402に「エラー」の表示を行う。
【0055】
すなわち、エラー表示器402に「エラー」が表示されなければ、コンソール側伝送装置20のデジタル送受信部は正常である。
【0056】
次に、ステージ側伝送装置10のデシタル送受信部のみのテストも同様にテスト用の光ケーブルを利用してテストすることができる。以上のデジタル送受信部のテストが完了したならば、次に各伝送装置の内部のその他の構成部分の動作テストを行う。
【0057】
まず、ステージ側伝送装置10の動作テストを行う場合には、入力端子11−出力端子13間をテスト用の電気ケーブルで接続し、光通信端子14−光通信端子15間をテスト用の光ファイバーで接続する。また、動作テストを行う場合には、OSC用選択スイッチ69を−20dB端子又は−60dB端子に切り換える(このとき切換スイッチ57がTEST側端子に切り換わる)。OSC用選択スイッチ69が切り換えられると、OSC68からはデジタル信号が受信部112の伝送制御回路63に供給される。この供給されたデジタル信号は、D/A変換器64でアナログ信号に変換されるとともに、増幅器65で信号増幅され、出力端子13から入力端子11を経て送信部111に送信される。ここまでの信号伝達経路において増幅器65を出た後の信号レベルは、レベルメータLM1で検出できる(この際テストスイッチ66でどのchの信号レベルをチェックするかを選択できる)。
【0058】
また、送信部112に送信された信号は、増幅器51で信号増幅され、A/D変換器52で再びデジタル信号に変換されるとともに、伝送制御回路53,通信制御回路54を介して,E/O変換器55で光デジタル信号に変換された後、出力端子14から入力端子15を経て受信部112に送信される。ここまでの信号伝達経路において増幅器51を出た後の信号レベルは、レベルメータLM1で検出できる(この際テストスイッチ67でどのchの信号レベルをチェックするかを選択できる)。
【0059】
以上のように、OSC68からのデジタル信号は、自装置内で受信部112→送信部111→受信部112という経路で自己ループが形成される。
【0060】
次に、コンソール側伝送装置20の動作テストを行う場合には、入力端子23−出力端子21間をテスト用の電気ケーブルで接続し、光通信端子24−光通信端子25間をテスト用の光ファイバーで接続する。また、動作テストを行う場合には、自己ループスイッチ90をONにするとともに、OSC用選択スイッチ89を−20dB端子又は−60dB端子に切り換える(このとき切換スイッチ91,VCO用切換スイッチ74がTEST側端子に切り換わり、外部のクロック信号を使用せずに内部のクロック信号により内部同期を可能とする)。自己ループスイッチ90,OSC用選択スイッチ89が切り換えられると、OSC88からはデジタル信号が受信部211の伝送制御回路75に供給される。この供給されたデジタル信号は、D/A変換器76でアナログ信号に変換されるとともに、増幅器77で信号増幅され、出力端子21から入力端子23を経て送信部212に送信される。ここまでの信号伝達経路において増幅器77を出た後の信号レベルは、レベルメータLM2で検出できる(この際テストスイッチ86でどのchの信号レベルをチェックするかを選択できる)。
【0061】
また、送信部212に送信された信号は、増幅器81で信号増幅され、A/D変換器82で再びデジタル信号に変換されるとともに、伝送制御回路83,通信制御回路84を介して,E/O変換器85で光デジタル信号に変換された後、出力端子25から入力端子24を経て受信部211に送信される。ここまでの信号伝達経路において増幅器81を出た後の信号レベルは、レベルメータLM2で検出できる(この際テストスイッチ87でどのchの信号レベルをチェックするかを選択できる)。
【0062】
以上のように、OSC88からのデジタル信号は、自装置内で受信部211→送信部212という経路で自己ループが形成される。
【0063】
上記のような各伝送装置の動作テストが終了し、各伝送装置の機能が正常ということが確認できたら、入力端子11及び出力端子13をステージ上の楽器、マイク等のステージ側装置に接続する。また、光通信端子14−光通信端子24間と、光通信端子15−光通信端子25間とを光ファイバー30で接続し、出力端子21及び入力端子23をコンソール側に接続する。これらの接続を行うことにより通常の通信が行われる。
【0064】
以上説明したように、本実施の形態によれば、動作テストを行うテスト部113,213を設けたことにより、容易に各伝送装置個別に機能単位の動作テストが可能となる。また、各ch毎にテストスイッチを設けたので、多数のchのうちのどこのchで障害が発生しているかをレベルメータLM等により調べることも容易にできる。
【0065】
【発明の効果】
以上詳述した本発明によれば、自装置内でデジタル信号を生成し、この生成したデジタル信号を自装置内でループを形成させることで自装置内の信号伝達経路の障害を検出するので、各伝送装置単体での動作テストが可能となる。
【0066】
また、自装置内の所定の部位における信号レベルを検出する信号レベル検出手段を備えているので、障害が発生した場所の特定を速やかに行うことが可能である。
【図面の簡単な説明】
【図1】本発明による光伝送システムのシステム構成図
【図2】ステージ側伝送装置10のより詳細な構成を示す詳細ブロック図
【図3】コンソール側伝送装置20のより詳細な構成を示す詳細ブロック図
【図4】コンソール側伝送装置20の通信制御回路84(送信側)の詳細ブロック図
【図5】通信制御回路84の動作を示すタイミングチャート
【図6】コンソール側伝送装置20の通信制御回路72(受信側)の詳細ブロック図
【符号の説明】
10 ステージ側伝送装置
20 コンソール側伝送装置
111,212 送信部
112,211 受信部
113,213 テスト部
68,88 オシレータ(OSC、デジタル信号生成手段)
69,89 OSC用選択スイッチ(選択手段)
57,91 切換スイッチ(切換手段)

Claims (2)

  1. 光ファイバーにより接続された第1及び第2の光伝送装置間で、電気的な複数のアナログ信号を光デジタル信号に変換して伝送する光伝送システムにおいて、
    前記第1及び第2の光伝送装置は、電気的に入力された複数のアナログ信号を光デジタル信号に変換して前記光ファイバーに送出する送信部と、
    前記光ファイバーを介して供給された光デジタル信号をアナログ信号に変換して受信する受信部と、
    自装置内の受信部へ供給するデジタル信号を生成するデジタル信号生成手段と、このデジタル信号生成手段からのデジタル信号を前記受信部に供給するか否かの選択を行う選択手段と、この選択手段の選択結果に基づいて前記受信部へのデジタル信号の供給を他装置の送信部の供給から前記デジタル信号生成手段の供給に切り換える切換手段及び前記切換手段の動作に連動して動作して同期信号発信手段に切り換える切換手段とを備え、これらの切換手段の切り換え動作に基づいて前記受信部に前記デジタル信号生成手段からデジタル信号が供給された場合に、自装置内の前記受信部と送信部間で前記供給されたデジタル信号をループを形成させて自装置内における信号伝達経路の障害検出を含む動作テストを行う動作テスト部とを有することを特徴とする光伝送システム。
  2. 前記動作テスト部は、前記デジタル信号生成手段で生成されたデジタル信号が自装置内でループが形成されている場合に、自装置内の所定の部位における信号レベルを検出する信号レベル検出手段を備えたことを特徴とする請求項記載の光伝送システム。
JP15563896A 1996-06-17 1996-06-17 光伝送システム Expired - Fee Related JP3706200B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15563896A JP3706200B2 (ja) 1996-06-17 1996-06-17 光伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15563896A JP3706200B2 (ja) 1996-06-17 1996-06-17 光伝送システム

Publications (2)

Publication Number Publication Date
JPH104388A JPH104388A (ja) 1998-01-06
JP3706200B2 true JP3706200B2 (ja) 2005-10-12

Family

ID=15610356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15563896A Expired - Fee Related JP3706200B2 (ja) 1996-06-17 1996-06-17 光伝送システム

Country Status (1)

Country Link
JP (1) JP3706200B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110830105A (zh) * 2019-11-18 2020-02-21 四川光发科技有限公司 一种基于光纤通信收发器的故障排查装置

Also Published As

Publication number Publication date
JPH104388A (ja) 1998-01-06

Similar Documents

Publication Publication Date Title
US9301051B2 (en) Digital audio distribution
KR100337243B1 (ko) 신호압축장치및신호전송장치
JP5661785B2 (ja) オーディオ監視システム
US7006642B1 (en) Audio control apparatus and audio processing apparatus in a mixing system
CN109005679B (zh) 一种用于会议讨论系统冗余设计的音频同步系统
JP3706200B2 (ja) 光伝送システム
JP2000068986A (ja) 伝送システム
JP3010357B1 (ja) スピーカラインの検査装置
JPH0666765B2 (ja) デ−タウエイシステムにおける音声伝送方法
JP2009200535A (ja) シリアルデータ伝送装置
EP0715425A2 (en) Method and apparatus for fault isolation in communications equipment using loopback testing
KR100741437B1 (ko) 양방향 무선통신을 위한 설정 정보 자동 동기화 기능을가지는 휴대/고정 장치 및 그 방법
JP5458716B2 (ja) 音響信号処理システム
JP6480779B2 (ja) 伝送システム、送信装置および受信装置
US20010004602A1 (en) Announcement device with virtual recorder
JP3120659B2 (ja) インタフェース試験器
JP2010166534A (ja) 制御装置及び音声出力装置及びシアターシステム、及び制御方法並びにプログラム
JP2836678B2 (ja) 映像音声多重装置
JP5316283B2 (ja) 音響信号処理システム
JP2000347673A (ja) ミキシング・システムにおける音声制御装置および音声処理装置
JP2000217199A (ja) 音声制御装置、音声処理装置およびミキシング・システム
JP3094874B2 (ja) 二重化atis装置
KR930002774B1 (ko) 양방향(兩方向)방송 스위칭장치
JPH0936825A (ja) 帯域圧縮/伸長試験装置、音声多重/分離装置、音声多重装置、音声分離装置
JP3167167B2 (ja) 空間光受信装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees