JP3705694B2 - Alkaline manganese battery - Google Patents

Alkaline manganese battery Download PDF

Info

Publication number
JP3705694B2
JP3705694B2 JP6708598A JP6708598A JP3705694B2 JP 3705694 B2 JP3705694 B2 JP 3705694B2 JP 6708598 A JP6708598 A JP 6708598A JP 6708598 A JP6708598 A JP 6708598A JP 3705694 B2 JP3705694 B2 JP 3705694B2
Authority
JP
Japan
Prior art keywords
positive electrode
case
conductive
electrode case
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6708598A
Other languages
Japanese (ja)
Other versions
JPH11265702A (en
Inventor
隆士 清水
彰 岩瀬
忠雄 大倉
博 成澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GRAPHITE INDUSTRIES,CO.,LTD., Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical NIPPON GRAPHITE INDUSTRIES,CO.,LTD.
Priority to JP6708598A priority Critical patent/JP3705694B2/en
Publication of JPH11265702A publication Critical patent/JPH11265702A/en
Application granted granted Critical
Publication of JP3705694B2 publication Critical patent/JP3705694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化マンガンと炭素材を主構成材料とした正極合剤を、金属製正極ケース内に密着させて収納したアルカリマンガン電池、特に正極ケースの内面に形成されて正極合剤に接する導電性被膜の改良に関するものである。
【0002】
【従来の技術】
アルカリマンガン電池は、正極端子を兼ねる正極ケースの中に、正極ケースに密着して円筒状の正極合剤が配置され、その中央にセパレータを介してゲル状負極が配置された構造を有する。そして、正極合剤は、あらかじめ成型されたものを正極ケースに挿入した後、ケース内において加圧することにより、正極ケースとの密着を良くするとともに正極合剤の充填量の増加を図っている。
このような構成のアルカリマンガン電池において、正極ケースと正極合剤が直接接する構成であると、電池の保存中に正極合剤などによる酸化作用により、正極ケースの表面に薄い酸化被膜が形成され、ケースと正極合剤との電気的接触状態が悪くなり、電池の保存性能が低下するという問題が生じる。
そこで、従来から正極ケースの内面にカーボン等の導電性被膜をあらかじめ形成し、この被膜を介して正極ケースと正極合剤間の電気的接触状態を良好にする試みがなされている(例えば、特開昭60−240056号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、あらかじめ前述の導電性被膜を形成した正極ケースに、円筒状に成型された正極合剤を挿入し、加圧すると、正極合剤が圧縮されると同時に導電性被膜が剥離するという現象が発生する。そうすると、電池保存中に導電性被膜が剥離した正極ケースの内面に酸化被膜が形成され、特に強負荷放電の電池性能が低下するという問題が生じる。この問題は、特に正極ケース内壁にあらかじめ形成された導電性被膜と正極ケースとの密着強度が十分でない場合に顕著である。
本発明は、このような従来の問題点を解決するもので、正極ケースと正極合剤間の電気的接触状態を良好にし、特に保存後の強負荷特性が向上したアルカリマンガン電池を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、上記目的を達成するために、二酸化マンガンと炭素材を主構成材料として円筒状に成型された正極合剤を、金属製正極ケース内に密着させて収納したアルカリマンガン電池において、正極ケース内壁に形成された導電性被膜として、バインダーとしての10〜20wt%のポリビニルブチラールと、90〜80wt%の導電性炭素材とからなる被膜を用いることを特徴とする。
ここにおいて、導電性炭素材は、黒鉛とカーボンブラックからなり、その配合比が黒鉛60〜75wt%、カーボンブラック40〜25wt%であることが好ましい。
【0005】
【発明の実施の形態】
本発明は、正極ケース内壁に形成する導電性被膜をポリビニルブチラールと導電性炭素材とから構成し、導電性被膜の固形分中のバインダーの割合を10〜20wt%と適切にして、正極ケース内壁との密着性を向上するものである。
導電性被膜の正極ケースとの密着性を向上させるには、導電性被膜の固形分中のバインダーの量を増加すればよいが、そうすると被膜自体の導電性が低下する。本発明は、バインダーとして金属製正極ケースとの密着性に優れているポリビニルブチラールを用いることにより、被膜自体の導電性を損なうことなく正極ケースとの密着性を向上する。また、導電性炭素材として、黒鉛とカーボンブラックを併用し、それらの配合比率を黒鉛60〜75wt%、カーボンブラック40〜25wt%に規制することによって、導電性被膜自体の電気抵抗の増加を抑制することができる。
【0006】
本発明によると、導電性被膜を形成した正極ケース内に、円筒状に成型された正極合剤を挿入し再加圧した際、正極合剤に接している側の被膜表層部分が多少削り取られても、正極ケース内壁自体からの導電性被膜の剥離を抑制することができる。従って、酸化力のある正極二酸化マンガンや電解液によって正極ケースの内壁表面に酸化被膜が形成されることは殆どなく、特に保存中の強負荷放電の電池性能を向上させることができる。
なお、導電性炭素材として黒鉛とカーボンブラックを併用することによる前記のような効果が生じる理由は定かではないが次のように考えられる。すなわち、層状に結晶構造の発達した黒鉛は、層の面方向の導電性は優れているが、層間方向の導電性が悪い。一方、カーボンブラックは、黒鉛ほど結晶構造が発達していないため、導電性に方向性がさほどない。このような黒鉛とカーボンブラックの配合比率が適切な範囲において両者の併用の相乗効果により、導電性被膜の膜厚方向の導電性が向上したものと推定される。
本発明による導電性被膜の好ましい厚さは、約3〜7μmである。
【0007】
図1は本発明の一実施例におけるアルカリ乾電池LR6の一部を断面にした正面図である。
この電池は、以下のようにして製造される。1はニッケルめっきされた鋼からなる正極ケースを表す。この正極ケース1の内面には、図2に示されるように、導電性被膜2が形成されている。まず、正極ケース1の内部に、二酸化マンガンと黒鉛を主構成材とする短筒状の正極合剤成型体の複数個が挿入され、ケース内において再加圧することによりケース1の内面に密着される。こうしてケース内に充填された正極合剤3の内側にセパレータ4および絶縁キャップ5を挿入した後、セパレータの内側にゲル状負極6が注入される。ゲル状負極6は、ゲル化剤のポリアクリル酸ソーダ、アルカリ電解液および負極活物質の亜鉛粉末からなる。次に、樹脂製封口体7、負極端子を兼ねる底板8および絶縁ワッシャ9と一体化された負極集電体10をゲル状負極6中に差し込み、正極ケース1の開口端部を樹脂製封口体7の端部を介して底板8の周縁部にかしめつけて正極ケース1の開口部を密閉する。次いで、正極ケース1の外表面に外装ラベル11を被覆する。こうしてアルカリ乾電池が完成する。
【0008】
【実施例】
以下に本発明の実施例を詳細に説明する。
《実施例1》
ポリビニルブチラール(以下、PVBで表す)、導電性炭素材、およびバインダーの溶媒からなる導電性被膜用塗料を調製し、これを正極ケースの内面に塗布した後、正極ケース自体の電磁誘導加熱によって乾燥し、厚さ約5μmの導電性被膜を形成した。こうして導電性被膜中の固形分であるPVBと導電性炭素材との配合比を表1に示すように種々変えた正極ケースを用いて図1のようなアルカリ乾電池LR6を作製した。
ここに用いた導電性炭素材は、黒鉛とカーボンブラックの混合物で、その比率(重量比)は65:35と一定にした。また、導電性被膜用塗料の溶媒にはメチルエチルケトンとシクロヘキサノンの重量比1:1の混合物を用い、塗料中の溶媒濃度は70wt%とした。
また、比較例として、バインダーにポリ塩化ビニルを用い、導電材とバインダーの固形分比率を62.5:37.5とした他は上記の実施例と同様にして導電性被膜を形成しアルカリ乾電池(表1のNo.7)を作製した。
【0009】
上記のそれぞれの電池について、初度および60℃1ヶ月保存後に、常温下、1500mAの定電流で連続放電を行い、電圧が終止電圧0.9Vに至るまでの持続時間を測定した。表1には、各電池10個の平均値を示した。なお、比較例の電池の初度の持続時間を100として示した。
【0010】
【表1】

Figure 0003705694
【0011】
表1から明らかなように、バインダーとしてPVBを用い導電性被膜中の固形分比率10〜20wt%において、60℃1ヶ月後の1500mA連続放電性能が比較例と比べて向上することが認められる。バインダー量が20%を越えると、正極ケースとの密着性は非常に良好であるが、導電性被膜自体の電気抵抗が増大するため電池性能が劣化する。バインダーとしてPVBを用いた場合には、比較例のPVCと同量の37.5wt%において、60℃1ヶ月後の1500mAの連続放電性能は比較例よりも劣る。これは、PVBがPVCに比べて密着性は優れているが、比抵抗が高いためと考えられる。
なお、バインダーPVBの量が10wt%未満になると、正極ケースとの密着性が低下するため導電性被膜の剥離が発生し、保存後の電池性能が劣化する。
【0012】
《実施例2》
次に、導電性炭素材とバインダー(PVB)の配合比率(重量比)は85:15と一定にし、導電材中の黒鉛とカーボンブラックの配合比を表2に示すように種々変えた他は上記と同様にしてアルカリ乾電池を作製した。
これらの電池について、上記と同様の条件の下で測定した持続時間を表2に示した。
【0013】
【表2】
Figure 0003705694
【0014】
表2に示すように、導電性炭素材の配合比率が黒鉛60〜75wt%、カーボンブラック40〜25wt%の範囲において、それぞれ単独で用いた場合よりも60℃1ヶ月後の1500mAの連続放電性能が向上ことが確認された。
なお、上記の実施例では、正極ケースの内側面にのみ導電性被膜を形成したが、正極合剤と接するケースの内底面部にも導電性被膜を形成するのが好ましい。
【0015】
【発明の効果】
以上のように本発明によれば、正極ケースと正極合剤間の電気的接触状態を良好にし、特に保存後の強負荷特性の向上したアルカリマンガン電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例におけるアルカリ乾電池の一部を断面にした正面図である。
【図2】同電池の要部の拡大断面図である。
【符号の説明】
1 正極ケース
2 導電性被膜
3 正極合剤
4 セパレータ
5 絶縁キャップ
6 ゲル状負極
7 樹脂製封口体
8 底板
9 絶縁ワッシャ
10 負極集電体
11 外装ラベル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkaline manganese battery in which a positive electrode mixture mainly composed of manganese dioxide and a carbon material is housed in a metal positive electrode case, and in particular, a conductive material formed on the inner surface of the positive electrode case and in contact with the positive electrode mixture. It is related with the improvement of an adhesive film.
[0002]
[Prior art]
The alkaline manganese battery has a structure in which a cylindrical positive electrode mixture is disposed in close contact with the positive electrode case in a positive electrode case also serving as a positive electrode terminal, and a gelled negative electrode is disposed in the center thereof via a separator. And after inserting what was shape | molded previously into the positive electrode case and pressurizing in a case, the positive electrode mixture is aiming at the increase in the filling amount of a positive electrode mixture while improving the close_contact | adherence with a positive electrode case.
In the alkaline manganese battery having such a configuration, when the positive electrode case and the positive electrode mixture are in direct contact with each other, a thin oxide film is formed on the surface of the positive electrode case due to an oxidation action by the positive electrode mixture or the like during storage of the battery. The electrical contact state between the case and the positive electrode mixture deteriorates, resulting in a problem that the storage performance of the battery is lowered.
Therefore, conventionally, an attempt has been made to improve the electrical contact between the positive electrode case and the positive electrode mixture through the formation of a conductive film such as carbon in advance on the inner surface of the positive electrode case. No. 60-240056).
[0003]
[Problems to be solved by the invention]
However, when the positive electrode mixture formed in a cylindrical shape is inserted into the positive electrode case in which the conductive film is previously formed and pressed, the phenomenon that the conductive film peels at the same time as the positive electrode mixture is compressed. appear. If it does so, an oxide film will be formed in the inner surface of the positive electrode case from which the electroconductive film peeled during battery preservation, and the problem that the battery performance of especially heavy load discharge will fall arises. This problem is particularly noticeable when the adhesion strength between the conductive film formed in advance on the inner wall of the positive electrode case and the positive electrode case is not sufficient.
The present invention solves such a conventional problem, and provides an alkaline manganese battery in which an electrical contact state between a positive electrode case and a positive electrode mixture is improved, and in particular, a heavy load characteristic after storage is improved. With the goal.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an alkaline manganese battery in which a positive electrode mixture molded into a cylindrical shape using manganese dioxide and a carbon material as main constituent materials is housed in a metal positive electrode case. As the conductive film formed on the inner wall of the case, a film made of 10 to 20 wt% polyvinyl butyral as a binder and 90 to 80 wt% conductive carbon material is used.
Here, the conductive carbon material is composed of graphite and carbon black, and the blending ratio is preferably 60 to 75 wt% of graphite and 40 to 25 wt% of carbon black.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the conductive film formed on the inner wall of the positive electrode case is composed of polyvinyl butyral and a conductive carbon material, and the ratio of the binder in the solid content of the conductive film is appropriately set to 10 to 20 wt%. It improves the adhesiveness.
In order to improve the adhesion of the conductive coating to the positive electrode case, the amount of the binder in the solid content of the conductive coating may be increased, but this will reduce the conductivity of the coating itself. In the present invention, by using polyvinyl butyral having excellent adhesion to a metal positive electrode case as a binder, the adhesion to the positive electrode case is improved without impairing the conductivity of the coating itself. In addition, as a conductive carbon material, graphite and carbon black are used in combination, and their blending ratio is restricted to 60 to 75 wt% graphite and 40 to 25 wt% carbon black, thereby suppressing an increase in electrical resistance of the conductive coating itself. can do.
[0006]
According to the present invention, when the positive electrode mixture formed in a cylindrical shape is inserted into the positive electrode case on which the conductive film is formed and repressurized, the surface layer portion on the side in contact with the positive electrode mixture is somewhat scraped off. However, peeling of the conductive film from the positive electrode case inner wall itself can be suppressed. Therefore, an oxidized film is hardly formed on the inner wall surface of the positive electrode case by the positive electrode manganese dioxide or the electrolytic solution having oxidizing power, and the battery performance of particularly heavy load discharge during storage can be improved.
The reason why the above-described effect is produced by using graphite and carbon black in combination as the conductive carbon material is not clear, but is considered as follows. That is, graphite having a layered crystal structure is excellent in conductivity in the plane direction of the layer, but poor in conductivity in the interlayer direction. On the other hand, since carbon black has a crystal structure that is not as developed as that of graphite, the conductivity is not so directional. It is presumed that the conductivity in the film thickness direction of the conductive coating is improved due to the synergistic effect of the combined use of the graphite and the carbon black in an appropriate range.
The preferred thickness of the conductive coating according to the present invention is about 3-7 μm.
[0007]
FIG. 1 is a front view of a cross section of a part of an alkaline battery LR6 according to an embodiment of the present invention.
This battery is manufactured as follows. 1 represents a positive electrode case made of nickel-plated steel. As shown in FIG. 2, a conductive coating 2 is formed on the inner surface of the positive electrode case 1. First, a plurality of short cylindrical positive electrode mixture molded bodies mainly composed of manganese dioxide and graphite are inserted into the positive electrode case 1 and are brought into close contact with the inner surface of the case 1 by re-pressurization in the case. The After the separator 4 and the insulating cap 5 are inserted inside the positive electrode mixture 3 thus filled in the case, the gelled negative electrode 6 is injected inside the separator. The gelled negative electrode 6 is made of sodium acrylate as a gelling agent, an alkaline electrolyte, and zinc powder as a negative electrode active material. Next, the negative electrode current collector 10 integrated with the resin sealing body 7, the bottom plate 8 also serving as the negative electrode terminal, and the insulating washer 9 is inserted into the gelled negative electrode 6, and the opening end of the positive electrode case 1 is connected to the resin sealing body. The opening of the positive electrode case 1 is sealed by caulking to the peripheral edge of the bottom plate 8 via the end portion of 7. Next, the outer label 11 is coated on the outer surface of the positive electrode case 1. An alkaline battery is thus completed.
[0008]
【Example】
Examples of the present invention will be described in detail below.
Example 1
A paint for conductive film made of polyvinyl butyral (hereinafter referred to as PVB), a conductive carbon material, and a binder solvent is prepared, applied to the inner surface of the positive electrode case, and then dried by electromagnetic induction heating of the positive electrode case itself. Then, a conductive film having a thickness of about 5 μm was formed. In this way, an alkaline dry battery LR6 as shown in FIG. 1 was prepared using a positive electrode case in which the blending ratio of PVB, which is a solid content in the conductive film, and the conductive carbon material was variously changed as shown in Table 1.
The conductive carbon material used here was a mixture of graphite and carbon black, and the ratio (weight ratio) was fixed at 65:35. Further, a mixture of methyl ethyl ketone and cyclohexanone in a weight ratio of 1: 1 was used as the solvent for the coating material for conductive coating, and the solvent concentration in the coating material was 70 wt%.
As a comparative example, an alkaline dry battery was formed by forming a conductive film in the same manner as in the above example except that polyvinyl chloride was used as the binder and the solid content ratio of the conductive material to the binder was 62.5: 37.5. (No. 7 in Table 1) was produced.
[0009]
For each of the above batteries, after initial storage and storage at 60 ° C. for 1 month, continuous discharge was performed at a constant current of 1500 mA at room temperature, and the duration until the voltage reached a final voltage of 0.9 V was measured. Table 1 shows the average value of 10 batteries. The initial duration of the comparative battery is shown as 100.
[0010]
[Table 1]
Figure 0003705694
[0011]
As is apparent from Table 1, it is recognized that the 1500 mA continuous discharge performance after 1 month at 60 ° C. is improved as compared with the comparative example at a solid content ratio of 10 to 20 wt% in the conductive film using PVB as the binder. When the amount of the binder exceeds 20%, the adhesion to the positive electrode case is very good, but the battery performance deteriorates because the electrical resistance of the conductive coating itself increases. When PVB is used as the binder, the continuous discharge performance of 1500 mA after 1 month at 60 ° C. is inferior to that of the comparative example at the same amount of 37.5 wt% as the PVC of the comparative example. This is probably because PVB is superior in adhesion to PVC but has high specific resistance.
When the amount of the binder PVB is less than 10 wt%, the adhesiveness with the positive electrode case is lowered, so that the conductive film is peeled off and the battery performance after storage is deteriorated.
[0012]
Example 2
Next, the mixing ratio (weight ratio) of the conductive carbon material and the binder (PVB) was kept constant at 85:15, and the mixing ratio of graphite and carbon black in the conductive material was variously changed as shown in Table 2. An alkaline battery was produced in the same manner as described above.
For these batteries, the durations measured under the same conditions as described above are shown in Table 2.
[0013]
[Table 2]
Figure 0003705694
[0014]
As shown in Table 2, continuous discharge performance of 1500 mA after 60 months at 60 ° C. compared to the case where each of the conductive carbon materials is used in the range of 60 to 75 wt% graphite and 40 to 25 wt% carbon black. Was confirmed to improve.
In the above embodiment, the conductive film is formed only on the inner surface of the positive electrode case. However, it is preferable to form the conductive film also on the inner bottom surface portion of the case in contact with the positive electrode mixture.
[0015]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an alkaline manganese battery in which the electrical contact state between the positive electrode case and the positive electrode mixture is improved, and in particular, the heavy load characteristics after storage are improved.
[Brief description of the drawings]
FIG. 1 is a front view, partly in section, of an alkaline battery according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of the battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Conductive film 3 Positive electrode mixture 4 Separator 5 Insulation cap 6 Gel-like negative electrode 7 Sealing body 8 made of resin Bottom plate 9 Insulating washer 10 Negative electrode current collector 11 Exterior label

Claims (2)

金属製の正極ケース、正極ケースの内面に形成された導電性被膜、前記正極ケース内に挿入されて前記導電性被膜に接している筒状の正極合剤、正極合剤の内側にセパレータを介して配された負極を具備し、前記導電性被膜が10〜20wt%のポリビニルブチラールと90〜80wt%の導電性炭素材からなることを特徴とするアルカリマンガン電池。A metal positive electrode case, a conductive coating formed on the inner surface of the positive electrode case, a cylindrical positive electrode mixture inserted into the positive electrode case and in contact with the conductive coating, and a separator inside the positive electrode mixture An alkaline manganese battery comprising: a negative electrode arranged in an electrically conductive film, wherein the conductive film is composed of 10 to 20 wt% polyvinyl butyral and 90 to 80 wt% conductive carbon material. 前記導電性炭素材が黒鉛とカーボンブラックからなり、その配合比が黒鉛60〜75wt%、カーボンブラック40〜25wt%である請求項1記載のアルカリマンガン電池。2. The alkaline manganese battery according to claim 1, wherein the conductive carbon material is composed of graphite and carbon black, and the mixing ratio thereof is 60 to 75 wt% graphite and 40 to 25 wt% carbon black.
JP6708598A 1998-03-17 1998-03-17 Alkaline manganese battery Expired - Lifetime JP3705694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6708598A JP3705694B2 (en) 1998-03-17 1998-03-17 Alkaline manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6708598A JP3705694B2 (en) 1998-03-17 1998-03-17 Alkaline manganese battery

Publications (2)

Publication Number Publication Date
JPH11265702A JPH11265702A (en) 1999-09-28
JP3705694B2 true JP3705694B2 (en) 2005-10-12

Family

ID=13334701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6708598A Expired - Lifetime JP3705694B2 (en) 1998-03-17 1998-03-17 Alkaline manganese battery

Country Status (1)

Country Link
JP (1) JP3705694B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663768B (en) * 2014-05-05 2020-06-05 戴瑞米克有限责任公司 Improved lead acid battery separator, electrode, battery and method of manufacture and use thereof

Also Published As

Publication number Publication date
JPH11265702A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP4986629B2 (en) Lithium ion secondary battery and manufacturing method thereof
JPH11504157A (en) Electrolyte cell and electrolytic method
JPS5848361A (en) Alkaline dry cell
JP3705694B2 (en) Alkaline manganese battery
JP4138923B2 (en) Electrode manufacturing method
JP3552194B2 (en) Alkaline battery
JP3478077B2 (en) Lithium secondary battery
JP3216451B2 (en) Non-aqueous electrolyte battery
JPS63121272A (en) Chargeable electrochemical device
JP2871077B2 (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery
JP3348236B2 (en) Air electrode current collecting material for air battery using alkaline electrolyte and air battery using alkaline electrolyte provided with the same
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JPH08264193A (en) Alkaline manganess battery
JP2001332249A (en) Alkaline dry battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPH11144710A (en) Electrode structure for electrochemical element
JP2992781B2 (en) Manganese dry cell
JP2004342452A (en) Nonaqueous electrolyte battery
JPS6023967A (en) Plate battery
JP3043775B2 (en) Cadmium negative electrode for alkaline storage batteries
JP2003017011A (en) Alkaline dry battery
JP2005353434A (en) Alkaline battery
JP2000251880A (en) Lithium secondary battery and manufacture of its electrode plate
JPS63266773A (en) Flat type battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term