JP3704117B2 - Conductive copper alloy with heat resistance - Google Patents

Conductive copper alloy with heat resistance Download PDF

Info

Publication number
JP3704117B2
JP3704117B2 JP2002319398A JP2002319398A JP3704117B2 JP 3704117 B2 JP3704117 B2 JP 3704117B2 JP 2002319398 A JP2002319398 A JP 2002319398A JP 2002319398 A JP2002319398 A JP 2002319398A JP 3704117 B2 JP3704117 B2 JP 3704117B2
Authority
JP
Japan
Prior art keywords
alloy
copper alloy
copper
heat resistance
vickers hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002319398A
Other languages
Japanese (ja)
Other versions
JP2004149905A (en
Inventor
明久 井上
久道 木村
賢一郎 笹森
肇 吉田
元紀 西田
治 梶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2002319398A priority Critical patent/JP3704117B2/en
Publication of JP2004149905A publication Critical patent/JP2004149905A/en
Application granted granted Critical
Publication of JP3704117B2 publication Critical patent/JP3704117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、優れた耐熱強度を有した導電性銅合金に関するものである。より詳しくは、高負荷下で使用される電気および電子部品に最適な高導電率と、高強度並びに高い耐熱温度を兼ね備えた高力高電導銅合金に関するものである。
【0002】
【従来の技術】
高負荷下で使用される電気、電子部品用の銅合金としては、これまでに、Cu−Be、Cu−Cr、Cu−Ag、Cu−Ti、Cu−Zr等の合金が知られており、これらの材料は、材料特性により電気、電子部品の端子、コネクター、ケーブル等の様々な用途で使用されている。
一般に、材料の結晶粒が小さくなるほど結晶粒微細化強化機構(ホールペッチの関係)により機械的強度が大きくなることが知られており、母相中に分散粒子が存在すると分散強化機構により機械的強度がさらに高くなることも知られている。これまでに提案されている銅合金としては、例えば下記の特許文献1〜4に記載されているものが挙げられる。
【0003】
【特許文献1】
特開平7−173556号公報
【特許文献2】
特開平9−3572号公報
【特許文献3】
特開平11−181560号公報
【特許文献4】
特開2001−254157号公報
【0004】
前記特許文献1に記載されている高力銅合金は、銅と、銅を非晶質化するためのLa等の元素と、当該元素と銅合金中で共存した際に非晶質相が形成され易くなるAg等の元素との合金であって、少なくとも体積比率で50%以上の非晶質相を含むものであり、高い強度を有し、高応力下での使用に適した電気材料として好適であるが、耐熱強度が充分ではない。
又、前記特許文献2に記載されているCu−Be合金も、ステンレス鋼を凌ぐ強度と高い導電性を備え広く使用されているが、熱処理による時効析出硬化現象を利用して作製されているために耐熱強度が低いと言う問題がある。しかも、合金中のベリリウムは人体に非常に有害であり、将来、製造および環境面から使用できなくなる可能性がある。
更に、上記特許文献に記載の銅合金の中で、前記特許文献3に記載されているCu−Zr合金は非常に高い機械的強度を備えているが、耐熱強度が低下するという問題があり、前記特許文献4に記載されているCu−Mg合金も、同様に耐熱性に欠けるという問題点がある。
【0005】
また、銅合金を急速凝固させることによる合金組織の非晶質化や微細結晶化によって高強度化を図ることも提案されてきているが、このようにして急速凝固された銅合金の場合、非晶質化や微細結晶化が銅の導電性を阻害して、導電率が低下するという問題がある。
【0006】
【発明が解決しようとする課題】
これまでに提案されている上記の銅合金は、優れた導電性と機械的強度を有しているが、近年、電気・電子機器の高性能、高密度化により使用環境が厳しくなり、これらの銅合金においても良好な導電性を保ちつつ、高強度、高耐熱、高耐磨耗性および高耐食性を有する高機能銅基合金の開発が望まれている。
【0007】
【課題を解決するための手段】
本発明者らは、これらの現状に鑑みて、高い導電率と機械的強度を兼ね備え、しかも高い耐熱強度のある銅合金を提供することを目的に鋭意検討を行った。
その結果、特定の組成比率を有したCu−Zr合金に特定割合でTaを添加し、更に、合金組織と分散粒子の微細化を図り、機械的強度を向上させるためにCu−Zr−Ta合金の急速凝固を行ったところ、良好な導電性が阻害されることなく、高強度、高耐熱、高耐磨耗性および高耐食性を有する高機能銅基合金が得られることが見い出された。尚、Cu−Zr−Ta合金の急速凝固は、溶解鋳造法ではTaがCuに固溶せず、Zrに僅か固溶することが知られていることから、TaのCu−Zr合金への固溶源の拡張にも効果があると考えられる。
【0008】
即ち、従来の銅合金における前述の問題点を解決可能な本発明の銅合金は、原子%による組成が、一般式:(Cu1-x Zrx100-y Tay (0<x≦0.1、0≦y≦1)により表され、平均粒子径が20nm以上で500nm以下のナノ結晶から成る合金組織を有していることを特徴とし、この銅合金は、従来の銅合金に比べて格別の耐熱強度を示す。
【0009】
又、本発明は、上記の特徴を有した銅合金において、500K(227℃)の温度で1時間加熱を行った後のビッカース硬さが250Hv以上であることを特徴とするものである。
更に本発明は、上記の特徴を有した銅合金において、導電率が15%IACS(International Annealed Copper Standard)以上であり、ビッカース硬さが70Hv以上であり、しかも引張強さが200MPa以上であることを特徴とするものでもある。
又、本発明は、上記の特徴を有した銅合金において、母相中に平均粒子径が20nm〜200nmである析出粒子が分散した合金組織を有していることを特徴とするものでもある。
【0010】
【発明の実施の形態】
本発明の銅合金(Cu−Zr合金及びCu−Zr−Ta合金)は、原子%による組成が一般式:(Cu1-x Zrx100-y Tay (0<x≦0.1、0≦y≦1)により表され、この際、Zrの比率を示すxが0.1を極端に越えると合金の導電率が低下するので好ましくなく、又、Taの比率を示すyが1を越えても特性の向上が望めず、材料が高価になるので好ましくない。このため、本発明では、導電性、ビッカース硬さ、引張強さ及び耐熱強度の点から、特に好ましいx及びyの範囲は0.01≦x≦0.06、0.3≦y≦0.7である。
y=0の場合、%IACSはほぼ同じであるが、ビッカース硬さおよび引張強さは約25%減少する。それでも洋白(Cu−Ni−Zn)、りん青銅(Cu−Sn−P)、黄銅(Cu70-60 −Zn30-40 )、丹銅(Cu85-80 −Zn15-20 )に比べて、高い耐熱強度を持っていることがわかった。
【0011】
尚、本発明の導電性銅合金においては、合金組織が、平均粒子径20〜500nmのナノ結晶から成っており、この銅合金は、上記の組成を有する合金を液体急冷法にて急冷凝固することにより製造できる。この際、液体急冷法としては、102 〜106 K/sの冷却速度が得られる単ロール法、双ロール法や高圧ガス噴霧法などが利用でき、単ロール法又は双ロール法による場合は、上記組成の合金溶湯をノズル孔を通して、周速2〜50m/sで回転する銅あるいは鋼製などロールに溶湯を噴出することにより、幅0.2〜10mm、厚さ5〜500μm以下の薄帯を容易に作製できる。上記の急冷凝固を行った場合には、母相中に平均粒子径が20nm〜200nmである析出粒子が分散した合金組織となり、これにより、優れた導電性、ビッカース硬さ、引張強さ及び耐熱強度を有した銅合金が得られ、本発明の銅合金は、導電率が15%IACS以上で、ビッカース硬さが70Hv以上で、しかも引張強さが200MPa以上で、耐熱強度の点では、500Kの温度で1時間加熱後のビッカース硬さが250Hv以上である。
また、本発明の銅合金は、液体急冷法や溶解鋳造法で得た銅合金を熱処理することによっても得られ、熱処理を行った場合には、引張強さ及びビッカース硬さを低下させることなく導電率をより一層向上させることができる。
【0012】
一方、高圧ガス噴霧法による場合は、上記組成の合金溶湯をノズル孔から噴出させ、2〜15MPaのガス圧で噴霧・冷却することにより、直径5〜500μmの粉末を作製できる。
上記の方法の他に、スパッタリング、電子ビーム蒸着法により薄膜を作製することができ、回転液中防止法により線材を作製することができる。また、容器に入った合金溶湯を水などの溶液に焼き入れることにより棒状材が作製でき、さらに、合金溶湯をノズル孔を通して、銅などの鋳型に噴出することにより棒状材が作製できる。
【0013】
前述のような合金組成と合金組織を有した本発明の銅合金は、商用の洋白(Cu−Ni−Zn)、りん青銅(Cu−Sn−P)、黄銅(Cu70-60 −Zn30-40 )、丹銅(Cu85-80 −Zn15-20 )に比べて、同程度かそれを上回る導電率と機械的強度を有しており、商用の耐熱Cu−Cr系、Cu−Cd系、Cu−Zr系およびCu−Ag系などの銅合金を上回る耐熱性を示す。
以下、実施例により本発明をより詳しく説明する。
【0014】
【実施例】
〔実施例1〕
本発明による合金組成(Cu1-x Zrx100-y Tay (0<x≦0.1、0≦y≦1)を有した銅合金における、単ロール法および双ロール法で作製した薄帯の導電率(IACS)と引張強さの関係を図1に示す。図1には、比較例として各種銅合金(洋白、りん青銅、黄銅、丹銅)の値も示した。この結果より、本発明による銅合金は従来からの銅合金に比べて、同じ導電率(%IACS)で比較した場合、高い引張強さを有しており、高導電率と高強度を兼ね備えていることがわかる。尚、本発明における導電率は、四端子法により測定されたものであり、引張強さはJIS規格に準じて測定されたものである。
電子顕微鏡による観察から、双ロール法で作製した(Cu0.96Zr0.0499.5Ta0.5 合金の時の結晶の粒子径は100〜350nmであり、20〜170nm径の析出粒子が分散した合金組織を有していることがわかった。
【0015】
〔実施例2〕
双ロール法で作製した本発明による合金組成(Cu1-x Zrx100-y Tay (0<x≦0.1、0≦y≦1)を有した銅合金を、300〜900Kの各温度で1時間保持後、空冷することにより得られた熱処理材のビッカース硬さの変化を図2に示す。図2には、比較として商用Cu−Cr合金、Cu・Al23 複合材、純Cuの値も示されている。尚、本発明におけるビッカース硬さは、ビッカース硬度計を用いて荷重50gにて測定されたものである。
この図2の結果から、本発明による銅合金は、商用の銅合金に比べて各段に高い耐熱温度を有しており(特にCuの場合、500K×1時間の加熱により急激なビッカース硬さの減少が見られる)、500〜900K×1時間の熱処理後においても180Hv以上のビッカース硬さを有していることがわかる。
【0016】
〔実施例3〕
双ロール法で作製した本発明の(Cu0.96Zr0.0499.5Ta0.5 合金と、これを850K(約577℃)で1時間加熱を行って得られた熱処理材の引張強さ、ビッカース硬さおよび導電率の変化を表1に示す。
【0017】
【表1】

Figure 0003704117
【0018】
この表1の結果は、本発明による銅合金にあっては、熱処理を行うことによって引張強さとビッカース硬さが大きく損なわれることなく、導電率の向上が達成できることを示している。
【0019】
〔実施例4〕
合金組成が(Cu1-x Zrx99.5Ta0.5 で、x=0.01、0.02、0.03、0.04である本発明の銅合金を単ロール法及び双ロール法にて作製した。一方、比較としてx=0の銅合金も同様に作製した。
そして、上記の5種類の銅合金についてそれぞれ、ビッカース硬さ、導電率、引張強さを測定した。この測定結果を図3〜図5に示す。又、図6及び図7は、実施例4で得られた測定結果を基にして作成した、導電率とビッカース硬さとの関係、導電率と引張強さとの関係を示すグラフである。
【0020】
【発明の効果】
上記図3〜図7の実験結果からもわかるように、本発明の導電性銅合金は、従来の銅合金に比べて、高い導電率と強度を備えた上に高い耐熱強度を有しており、合金中におけるZrの割合及びTaの割合を、本発明にて規定される範囲内で適宜選択することによって、高負荷下で使用される各種の電気・電子部品の高性能・高密度化と世の中の環境対応に最適な材料として広く利用することが可能である。
【図面の簡単な説明】
【図1】単ロール法および双ロール法にて作製した、本発明の導電性銅合金より成る薄帯(厚さ10〜500μm)の導電率と引張強さの関係を示す図であり、従来の商用の銅合金との物性比較が示されている。
【図2】種々の温度にて熱処理された後の、双ロール法にて作製した本発明の導電性銅合金のビッカース硬さの変化を示す図であり、従来の商用の銅合金の場合との比較が示されている。
【図3】合金中におけるZrの割合を変化させた時のビッカース硬さの変化を示す図である。
【図4】合金中におけるZrの割合を変化させた時の導電率の変化を示す図である。
【図5】合金中のZrの割合を変化させた時の引張強さの変化を示す図である。
【図6】実施例4で得られた測定結果を基にして作成した、導電率とビッカース硬さとの関係を示すグラフである。
【図7】実施例4で得られた測定結果を基にして作成した、導電率と引張強さとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive copper alloy having excellent heat resistance. More specifically, the present invention relates to a high-strength, high-conductivity copper alloy that has high electrical conductivity optimal for electric and electronic parts used under high loads, high strength, and high heat-resistant temperature.
[0002]
[Prior art]
As copper alloys for electric and electronic parts used under high loads, alloys such as Cu-Be, Cu-Cr, Cu-Ag, Cu-Ti, Cu-Zr have been known so far. These materials are used in various applications such as terminals of electrical and electronic parts, connectors, cables, etc., depending on material properties.
In general, it is known that as the crystal grains of a material become smaller, the mechanical strength increases due to the grain refinement strengthening mechanism (relationship of Hall Petch). When dispersed particles exist in the matrix, the mechanical strength is enhanced by the dispersion strengthening mechanism. Is known to be even higher. Examples of copper alloys that have been proposed so far include those described in Patent Documents 1 to 4 below.
[0003]
[Patent Document 1]
JP-A-7-173556 [Patent Document 2]
Japanese Patent Laid-Open No. 9-3572 [Patent Document 3]
Japanese Patent Laid-Open No. 11-181560 [Patent Document 4]
Japanese Patent Laid-Open No. 2001-254157
The high-strength copper alloy described in Patent Document 1 forms an amorphous phase when coexisting in copper, an element such as La for making copper amorphous, and the element in the copper alloy As an electrical material suitable for use under high stress, which is an alloy with an element such as Ag that is easily processed and contains an amorphous phase of at least 50% by volume. Although suitable, the heat resistance strength is not sufficient.
The Cu-Be alloy described in Patent Document 2 is also widely used with strength and high conductivity exceeding that of stainless steel, but is produced by utilizing the aging precipitation hardening phenomenon by heat treatment. However, the heat resistance is low. Moreover, the beryllium in the alloy is very harmful to the human body and may become unusable from a manufacturing and environmental standpoint in the future.
Furthermore, among the copper alloys described in the above-mentioned patent document, the Cu-Zr alloy described in the above-mentioned patent document 3 has a very high mechanical strength, but there is a problem that the heat resistance strength is reduced, The Cu—Mg alloy described in Patent Document 4 also has a problem of lacking heat resistance.
[0005]
In addition, it has been proposed to increase the strength by making the alloy structure amorphous or microcrystalline by rapidly solidifying the copper alloy, but in the case of a copper alloy rapidly solidified in this way, There is a problem that the crystallization and fine crystallization hinder the conductivity of copper and the conductivity is lowered.
[0006]
[Problems to be solved by the invention]
The copper alloys proposed so far have excellent electrical conductivity and mechanical strength. However, in recent years, the usage environment has become severe due to the high performance and high density of electrical and electronic equipment. There is a demand for the development of a high-performance copper-based alloy having high strength, high heat resistance, high wear resistance, and high corrosion resistance while maintaining good conductivity in copper alloys.
[0007]
[Means for Solving the Problems]
In view of the current situation, the present inventors have conducted intensive studies for the purpose of providing a copper alloy having high electrical conductivity and mechanical strength and having high heat resistance.
As a result, Cu is added at a specific ratio to a Cu-Zr alloy having a specific composition ratio, and the Cu-Zr-Ta alloy is used in order to further refine the alloy structure and dispersed particles and improve the mechanical strength. As a result of rapid solidification, it was found that a highly functional copper-based alloy having high strength, high heat resistance, high wear resistance and high corrosion resistance can be obtained without hindering good electrical conductivity. The rapid solidification of the Cu—Zr—Ta alloy is known to be such that Ta does not dissolve in Cu but dissolves slightly in Zr in the melt casting method. It is thought that the expansion of the melting source is also effective.
[0008]
That is, the copper alloy of the present invention capable of solving the above-mentioned problems in the conventional copper alloy has a composition by atomic%, the general formula: (Cu 1-x Zr x ) 100-y Ta y (0 <x ≦ 0 0.1, 0 ≦ y ≦ 1), and having an alloy structure composed of nanocrystals having an average particle diameter of 20 nm or more and 500 nm or less, and this copper alloy is compared with a conventional copper alloy Show exceptional heat resistance.
[0009]
Further, the present invention is characterized in that the copper alloy having the above-mentioned characteristics has a Vickers hardness of 250 Hv or more after heating at a temperature of 500 K (227 ° C.) for 1 hour.
Further, according to the present invention, in the copper alloy having the above characteristics, the electrical conductivity is 15% IACS (International Annealed Copper Standard) or more, the Vickers hardness is 70 Hv or more, and the tensile strength is 200 MPa or more. It is also a feature.
The present invention is also characterized in that the copper alloy having the above characteristics has an alloy structure in which precipitated particles having an average particle diameter of 20 nm to 200 nm are dispersed in the matrix phase.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The copper alloy of the present invention (Cu-Zr alloy and Cu-Zr-Ta alloy) has a composition by atomic% of the general formula: (Cu 1-x Zr x ) 100-y Ta y (0 <x ≦ 0.1, 0 ≦ y ≦ 1). In this case, if x indicating the ratio of Zr exceeds 0.1 extremely, the electrical conductivity of the alloy will be lowered, and y indicating the ratio of Ta will be 1. Even if it exceeds, the improvement of characteristics cannot be expected, and the material becomes expensive, which is not preferable. For this reason, in the present invention, particularly preferred ranges of x and y are 0.01 ≦ x ≦ 0.06 and 0.3 ≦ y ≦ 0. 0 in terms of conductivity, Vickers hardness, tensile strength, and heat resistance strength. 7.
When y = 0, the% IACS is approximately the same, but the Vickers hardness and tensile strength are reduced by about 25%. Still compared to Western (Cu-Ni-Zn), phosphor bronze (Cu-Sn-P), brass (Cu 70-60 -Zn 30-40 ), red copper (Cu 85-80 -Zn 15-20 ) It was found to have high heat resistance.
[0011]
In the conductive copper alloy of the present invention, the alloy structure is composed of nanocrystals having an average particle diameter of 20 to 500 nm, and this copper alloy rapidly solidifies the alloy having the above composition by a liquid quenching method. Can be manufactured. At this time, as the liquid quenching method, a single roll method, a twin roll method, a high pressure gas spray method, or the like that can obtain a cooling rate of 10 2 to 10 6 K / s can be used. By blowing the molten alloy having the above composition through a nozzle hole to a roll made of copper or steel rotating at a peripheral speed of 2 to 50 m / s, a thin film having a width of 0.2 to 10 mm and a thickness of 5 to 500 μm or less is obtained. A band can be easily produced. When the above-mentioned rapid solidification is performed, an alloy structure in which precipitated particles having an average particle diameter of 20 nm to 200 nm are dispersed in the matrix phase is obtained, thereby providing excellent conductivity, Vickers hardness, tensile strength, and heat resistance. A copper alloy having strength is obtained, and the copper alloy of the present invention has a conductivity of 15% IACS or more, a Vickers hardness of 70 Hv or more, a tensile strength of 200 MPa or more, and a heat resistance strength of 500 K. The Vickers hardness after heating for 1 hour at a temperature of 250 Hv or more.
Further, the copper alloy of the present invention can also be obtained by heat-treating a copper alloy obtained by a liquid quenching method or a melt casting method, and when heat-treated, without reducing the tensile strength and Vickers hardness. The conductivity can be further improved.
[0012]
On the other hand, when the high pressure gas spraying method is used, a molten alloy having the above composition is ejected from a nozzle hole, and sprayed and cooled at a gas pressure of 2 to 15 MPa, whereby a powder having a diameter of 5 to 500 μm can be produced.
In addition to the above method, a thin film can be produced by sputtering or electron beam evaporation, and a wire can be produced by a rotating liquid prevention method. Moreover, a rod-shaped material can be produced by quenching the molten alloy contained in the container into a solution such as water, and further, the rod-shaped material can be produced by ejecting the molten alloy through a nozzle hole to a mold such as copper.
[0013]
The copper alloy of the present invention having the alloy composition and the alloy structure as described above is commercially available white (Cu—Ni—Zn), phosphor bronze (Cu—Sn—P), brass (Cu 70-60 —Zn 30). -40 ), electric conductivity and mechanical strength comparable to or better than Dan (Cu 85-80 -Zn 15-20 ), commercial heat-resistant Cu-Cr, Cu-Cd Heat resistance exceeding that of copper alloys such as Cu, Zr-based and Cu-Ag-based.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0014]
【Example】
[Example 1]
The copper alloy having the alloy composition (Cu 1-x Zr x ) 100-y Ta y (0 <x ≦ 0.1, 0 ≦ y ≦ 1) according to the present invention was produced by the single roll method and the twin roll method. FIG. 1 shows the relationship between the electrical conductivity (IACS) of the ribbon and the tensile strength. FIG. 1 also shows values of various copper alloys (white, phosphor bronze, brass, and red copper) as comparative examples. As a result, the copper alloy according to the present invention has high tensile strength when compared with the conventional copper alloy at the same conductivity (% IACS), and has both high conductivity and high strength. I understand that. The electrical conductivity in the present invention is measured by a four-terminal method, and the tensile strength is measured in accordance with JIS standards.
From observation with an electron microscope, the crystal grain size of the (Cu 0.96 Zr 0.04 ) 99.5 Ta 0.5 alloy produced by the twin roll method is 100 to 350 nm, and has an alloy structure in which precipitated particles having a diameter of 20 to 170 nm are dispersed. I found out.
[0015]
[Example 2]
A copper alloy having an alloy composition (Cu 1-x Zr x ) 100-y Ta y (0 <x ≦ 0.1, 0 ≦ y ≦ 1) produced by the twin roll method is 300 to 900K. FIG. 2 shows the change in Vickers hardness of the heat-treated material obtained by air cooling after holding at each temperature for 1 hour. FIG. 2 also shows the values of a commercial Cu—Cr alloy, a Cu · Al 2 O 3 composite, and pure Cu for comparison. The Vickers hardness in the present invention is measured with a load of 50 g using a Vickers hardness meter.
From the results shown in FIG. 2, the copper alloy according to the present invention has a higher heat resistance temperature at each stage as compared with a commercial copper alloy (particularly in the case of Cu, the Vickers hardness is abrupt by heating at 500 K × 1 hour. It can be seen that even after the heat treatment of 500 to 900 K × 1 hour, it has a Vickers hardness of 180 Hv or more.
[0016]
Example 3
The (Cu 0.96 Zr 0.04 ) 99.5 Ta 0.5 alloy of the present invention produced by the twin roll method, and the heat treatment material obtained by heating this at 850 K (about 577 ° C.) for 1 hour, the tensile strength, Vickers hardness and The change in conductivity is shown in Table 1.
[0017]
[Table 1]
Figure 0003704117
[0018]
The results shown in Table 1 indicate that, in the copper alloy according to the present invention, improvement in electrical conductivity can be achieved without significant loss of tensile strength and Vickers hardness by performing heat treatment.
[0019]
Example 4
The copper alloy of the present invention having an alloy composition of (Cu 1-x Zr x ) 99.5 Ta 0.5 and x = 0.01, 0.02, 0.03, 0.04 is obtained by a single roll method and a twin roll method. Produced. On the other hand, a copper alloy with x = 0 was produced in the same manner for comparison.
And Vickers hardness, electrical conductivity, and tensile strength were measured about said 5 types of copper alloys, respectively. The measurement results are shown in FIGS. 6 and 7 are graphs showing the relationship between conductivity and Vickers hardness, and the relationship between conductivity and tensile strength, created based on the measurement results obtained in Example 4. FIG.
[0020]
【The invention's effect】
As can be seen from the experimental results shown in FIGS. 3 to 7, the conductive copper alloy of the present invention has a high heat resistance and a high conductivity and strength as compared with the conventional copper alloy. By appropriately selecting the ratio of Zr and the ratio of Ta in the alloy within the range specified in the present invention, high performance and high density of various electric / electronic parts used under high loads can be achieved. It can be widely used as the most suitable material for environmental measures in the world.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the electrical conductivity and tensile strength of a ribbon (thickness 10 to 500 μm) made of a conductive copper alloy of the present invention produced by a single roll method and a twin roll method. Comparison of physical properties with commercial copper alloys is shown.
FIG. 2 is a diagram showing a change in Vickers hardness of a conductive copper alloy of the present invention produced by a twin roll method after being heat-treated at various temperatures, and in the case of a conventional commercial copper alloy; A comparison of is shown.
FIG. 3 is a diagram showing a change in Vickers hardness when the ratio of Zr in the alloy is changed.
FIG. 4 is a diagram showing a change in conductivity when the ratio of Zr in the alloy is changed.
FIG. 5 is a graph showing changes in tensile strength when the proportion of Zr in the alloy is changed.
6 is a graph showing the relationship between electrical conductivity and Vickers hardness, created based on the measurement results obtained in Example 4. FIG.
7 is a graph showing the relationship between electrical conductivity and tensile strength, created based on the measurement results obtained in Example 4. FIG.

Claims (4)

原子%による組成が、一般式:(Cu1-x Zrx100-y Tay (0<x≦0.1、0≦y≦1)により表され、平均粒子径が20nm以上で500nm以下のナノ結晶から成る合金組織を有していることを特徴とする、耐熱強度を有する導電性銅合金。The composition in atomic% is represented by the general formula: (Cu 1-x Zr x ) 100-y Ta y (0 <x ≦ 0.1, 0 ≦ y ≦ 1), and the average particle size is 20 nm or more and 500 nm or less. A conductive copper alloy having a heat-resistant strength, characterized by having an alloy structure composed of nanocrystals. 500Kの温度で1時間加熱を行った後のビッカース硬さが250Hv以上であることを特徴とする請求項1に記載の導電性銅合金。The conductive copper alloy according to claim 1, wherein the Vickers hardness after heating for 1 hour at a temperature of 500K is 250 Hv or more. 導電率が15%IACS以上であり、ビッカース硬さが70Hv以上であり、しかも引張強さが200MPa以上であることを特徴とする請求項1又は2に記載の導電性銅合金。3. The conductive copper alloy according to claim 1, wherein the conductivity is 15% IACS or more, the Vickers hardness is 70 Hv or more, and the tensile strength is 200 MPa or more. 母相中に平均粒子径が20nm〜200nmである析出粒子が分散した合金組織を有していることを特徴とする請求項1〜3のいずれか1項に記載の導電性銅合金。The conductive copper alloy according to any one of claims 1 to 3, which has an alloy structure in which precipitated particles having an average particle diameter of 20 nm to 200 nm are dispersed in a matrix phase.
JP2002319398A 2002-11-01 2002-11-01 Conductive copper alloy with heat resistance Expired - Fee Related JP3704117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319398A JP3704117B2 (en) 2002-11-01 2002-11-01 Conductive copper alloy with heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319398A JP3704117B2 (en) 2002-11-01 2002-11-01 Conductive copper alloy with heat resistance

Publications (2)

Publication Number Publication Date
JP2004149905A JP2004149905A (en) 2004-05-27
JP3704117B2 true JP3704117B2 (en) 2005-10-05

Family

ID=32462259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319398A Expired - Fee Related JP3704117B2 (en) 2002-11-01 2002-11-01 Conductive copper alloy with heat resistance

Country Status (1)

Country Link
JP (1) JP3704117B2 (en)

Also Published As

Publication number Publication date
JP2004149905A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
KR101211984B1 (en) Cu-ni-si-based alloy for electronic material
JP4937815B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
KR101161597B1 (en) Cu-ni-si-co-base copper alloy for electronic material and process for producing the copper alloy
JP3699701B2 (en) Easy-to-process high-strength, high-conductivity copper alloy
KR101297485B1 (en) Cu-ni-si-co-cr alloy for electronic material
CN1329540C (en) Copper alloy having both strength and conductivity and copper alloy manufacturing method
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
JP2011214088A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP2008266787A (en) Copper alloy material and its manufacturing method
WO2018045695A1 (en) Softening resistant copper alloy, preparation method, and application thereof
JP2006265731A (en) Copper alloy
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
TW201343938A (en) Cu-Ni-Si type copper alloy
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP4916206B2 (en) Cu-Cr-Si alloy and Cu-Cr-Si alloy foil for electric and electronic parts
JPH10219374A (en) High strength copper alloy excellent in shearing property
JP2011117055A (en) Copper alloy material
CN101784684B (en) High-strength high-electroconductivity copper alloy possessing excellent hot workability
JP3704117B2 (en) Conductive copper alloy with heat resistance
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
CN112359247B (en) Cu-Hf-Si-Ni-Ce copper alloy material and preparation method thereof
CN114974645A (en) Silver-based multi-element alloy powder material and preparation method and application thereof
JP3344687B2 (en) Copper alloy for lead frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees