JP3698304B2 - Semiconductor-coupled superconducting device and manufacturing method thereof - Google Patents

Semiconductor-coupled superconducting device and manufacturing method thereof Download PDF

Info

Publication number
JP3698304B2
JP3698304B2 JP2000238562A JP2000238562A JP3698304B2 JP 3698304 B2 JP3698304 B2 JP 3698304B2 JP 2000238562 A JP2000238562 A JP 2000238562A JP 2000238562 A JP2000238562 A JP 2000238562A JP 3698304 B2 JP3698304 B2 JP 3698304B2
Authority
JP
Japan
Prior art keywords
layer
superconducting
nbn
semiconductor
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000238562A
Other languages
Japanese (ja)
Other versions
JP2002050802A (en
Inventor
達志 赤崎
英明 高柳
淳作 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000238562A priority Critical patent/JP3698304B2/en
Publication of JP2002050802A publication Critical patent/JP2002050802A/en
Application granted granted Critical
Publication of JP3698304B2 publication Critical patent/JP3698304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体結合超伝導素子とその製造方法に関する。例えば、半導体を結合部に持つ超伝導素子、即ち超伝導体−半導体−超伝導体ジョセフソン素子に関するものである。特に、請求項2は、SnドープInGaAs層を形成し、そのSnドープInGaAs層によりNbN層とGaAs半導体層のオーミック接続を実現するものである。
【0002】
【従来の技術】
従来の半導体結合超伝導素子の素子構造を図5に示す。
1はソース電極であるNbN超伝導電極層、2はドレイン電極であるNbN超伝導電極層、3はゲート電極層、13はノンドープのInAlAs層、14はノンドープのInGaAs層、15は2次元電子ガス、16はノンドープのInAlAs層、17はn型InAlAs層、18はノンドープのInAlAs層、19はInP基板である。
【0003】
2次元電子ガス15は、InGaAs層14とInAlAs層16の界面のInAlAs層16側に形成されている。
ここでは、半導体としてInAlAs/InGaAs変調ドープ構造を用いているが、AlGaSb/InAs変調ドープ構造でも可能である。
これらの構造では、二次元電子ガス15は、InGaAs層又はInAsチャネル層中に形成される。
【0004】
InAs及びIn組成80%以上のInGaAs層は、金属との間にショットキーバリアを形成しない半導体である(K. Kajiyama, Y. Mizushima, and S. Sakata, Appl. Phys. Lett., vol. 23, p.458, 1973.)。
ショットキーバリアは、超伝導電子が超伝導電極層から二次元電子ガスへ入射することを抑制してしまうため、従来の半導体結合超伝導素子では、チャネル層はショットキーバリアの無いInGaAs層又はInAs層を用いている。
【0005】
一方、AlGaAs/GaAs変調ドープ構造は、これらのInAs系変調ドープ構造と比べて、高い移動度と優れたゲート電圧での制御性を有している(例えば、榊裕之編、”超格子ヘテロ構造デバイス”、工業調査会)。
【0006】
【発明が解決しようとする課題】
しかしながら、GaAs層は金属に対して0.9eV程度の高いショットキーバリアを有するため(M. J. Howes and D. V. Morgan, Gallium Arsenide, John Willey & Sons, New York (1985).)、超伝導電極層とオーミック接触させることができず、多くの利点があるにもかかわらず、半導体結合超伝導素子に用いることができなかった。
【0007】
本発明の目的は、二次元電子ガスを形成するGaA層と超伝導電流のソース及びドレイン電極層となる二つのNbN超伝導電極層を有する半導体結合超伝導素子において、NbN超伝導電極層とGaAs層との層間にIn−Sn層を挿入し熱処理することにより、NbN超伝導電極層と二次元電子ガスとのオーミック接触を実現させるものである。
【0008】
【課題を解決するための手段】
斯かる目的を達成する本発明の請求項1に係る半導体結合超伝導素子は、二次元電子ガスを形成するGaAs層と超伝導電流のソース電極となる第1のNbN超伝導電極層及びドレイン電極となる第2のNbN超伝導電極層を有する半導体結合超伝導素子において、前記NbN超伝導電極層と前記GaAs層との層間にSnドープInGaAs層が挿入されたことを特徴とする。
【0009】
上記目的を達成する本発明の請求項2に係る半導体結合超伝導素子の製造方法は、請求項1記載の半導体結合超伝導素子を製造する方法であって、前記SnドープInGaAs層は、前記GaAs層上にIn−Sn層、NbN層をこの順で積層した後に、熱処理により該In−Sn層を該GaAs層に合金化して形成することを特徴とする。
【0010】
【発明の実施の形態】
本発明の一実施例における素子構造を図1に示す。
図1(a)は熱処理前の素子構造を示し、図1(b)は熱処理後の素子構造を示している。
【0011】
ここで、1はNbN超伝導電極層(ソース)、2はNbN超伝導電極層(ドレイン)、3はゲート電極層、4はIn−Sn挿入層、5はノンドープのAlGaAs層、6はノンドープのGaAs層、7は6と8の界面の8側に形成された2次元電子ガス、8はノンドープのAlGaAs層、9はn型AlGaAs層、10はノンドープのAlGaAs層、11は半絶縁性GaAs基板、12は熱処理により合金化させた領域である。
2次元電子ガス7は、GaAs層6とAlGaAs層8の界面のAlGaAs層8側に形成されている。
【0012】
この構造は、図1(a)に示すように、ソース及びドレイン電極層部分を光露光又は電子ビーム露光によりパターニング後、ウエットエッチングかドライエッチングで一部残して除去することによりAlGaAs層5を形成し、In−Sn挿入層4及びNbN超伝導電極層1,2をGaAs層6上に形成したものである。
【0013】
その後、図1(b)に示すように熱処理し、In−Sn挿入層4とGaAs層6とを反応させ、NbN超伝導電極層1,2と二次元電子ガス6の間にIn−Sn挿入層4とGaAs層6との合金化層であるSnドープInGaAs層12を形成した。
この時、NbNは安定な物質であるため、熱処理を行っても超伝導特性を維持できる。
【0014】
本構造の熱処理前後でのエネルギーバンドの変化を図3に模式的に示す。
図3(b)に示されるように、In−Sn挿入層4が、熱処理によりGaAs層6と反応することにより、n型ドーパントとなるSnによる高キャリア濃度層の形成とGaAs層6がInXGa1-XAs層12に変化することによるショットキーパリアの低減が期待できる(L. J. Brillson, Contacts to semiconductos, Nayes Publications, New Jersey (1993). )。
これにより、NbN超伝導電極層1,2と二次元電子ガス7の間にオーミック接触が実現できる。
【0015】
4.2Kでの接触比抵抗ρcの熱処理時間依存性(熱処理温度:600℃)を図4に示す。
In−Sn挿入層の厚さは、20nm,NbN超伝導電極層の厚さは、100nmで、N2雰囲気中で熱処理を行っている。
予想通り、熱処理により接触比抵抗は減少し、600℃−30minの熱処理で、接触比抵抗c〜5×10-5Ωcm2が得られた。
この値は、4.2Kでの接触比抵抗cとしては十分小さく、NbNとGaAs層の間に良好なオーミックコンタクトが得られていることを示している。
【0016】
なお、上記実施例では、AlGaAs/GaAs変調ドープ構造(逆構造)を用いているが、図2に示すように、AlGaAs/GaAs変調ドープ構造(順構造)を用いても同様の効果が期待できる。
このように説明したように、本実施例では、従来二次元電子ガスと超伝導電極層とのオーミック接触が実現されていなかった、二次元電子ガスを形成するGaAs層とNbN超伝導電極層を有する半導体結合超伝導素子において、NbN超伝導電極層とGaAs層との層間にIn−Sn層を挿入し熱処理することにより、NbN超伝導電極層と二次元電子ガスとのオーミック接触を実現できることが最大の特徴である。
【0017】
【発明の効果】
以上、実施例に基づいて具体的に説明したように、本発明では、従来二次元電子ガスと超伝導電極層とのオーミック接触が実現されていなかった、二次元電子ガスを形成するGaAs層とNbN超伝導電極層を有する半導体結合超伝導素子において、NbN超伝導電極層とGaAs層との層間にIn−Sn層を挿入し熱処理することにより、NbN超伝導電極層と二次元電子ガスとのオーミック接触を実現できる。
【図面の簡単な説明】
【図1】AlGaAs/GaAs変調ドープ構造(逆構造)を用いた半導体結合超伝導素子の断面図であり、図1(a)は熱処理前を示し、図1(b)は熱処理後を示す。
【図2】AlGaAs/GaAs変調ドープ構造(順構造)を用いた半導体結合超伝導素子の断面図であり、図2(a)は熱処理前を示し、図2(b)は熱処理後を示す。
【図3】本実施例の熱処理前後でのエネルギーバンドの変化を示すグラフであり、図3(a)は熱処理前を示し、図3(b)は熱処理後を示す。
【図4】本実施例の接触比抵抗ρcの熱処理時間依存性(4.2K)を示すグラフである。
【図5】従来のInAlAs/InGaAs変調ドープ構造(逆構造)を用いた半導体結合超伝導素子の断面図である。
【符号の説明】
1 NbN超伝導電極層(ソース)
2 NbN超伝導電極層(ドレイン)
3 ゲート電極層
4 In−Sn挿入層
5 ノンドープのAlGaAs層
6 ノンドープのGaAs層
7 2次元電子ガス
8 ノンドープのAlGaAs層
9 n型AlGaAs層
10 ノンドープのAlGaAs層
11 半絶縁性GaAs基板
12 熱処理により合金化させた領域
13 ノンドープのInAlAs層
14 ノンドープのInGaAs層
15 2次元電子ガス
16 ノンドープのInAlAs層
17 n型InAlAs層
18 ノンドープのInAlAs層
19 InP基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor coupled superconducting device and a method for manufacturing the same. For example, the present invention relates to a superconducting element having a semiconductor as a coupling portion, that is, a superconductor-semiconductor-superconductor Josephson element. In particular, claim 2 forms an Sn-doped InGaAs layer, and realizes an ohmic connection between the NbN layer and the GaAs semiconductor layer by the Sn-doped InGaAs layer.
[0002]
[Prior art]
The element structure of a conventional semiconductor coupled superconducting element is shown in FIG.
1 is an NbN superconducting electrode layer that is a source electrode, 2 is an NbN superconducting electrode layer that is a drain electrode, 3 is a gate electrode layer, 13 is an undoped InAlAs layer, 14 is an undoped InGaAs layer, and 15 is a two-dimensional electron gas. , 16 is a non-doped InAlAs layer, 17 is an n-type InAlAs layer, 18 is a non-doped InAlAs layer, and 19 is an InP substrate.
[0003]
The two-dimensional electron gas 15 is formed on the InAlAs layer 16 side at the interface between the InGaAs layer 14 and the InAlAs layer 16.
Here, an InAlAs / InGaAs modulation doped structure is used as a semiconductor, but an AlGaSb / InAs modulation doped structure is also possible.
In these structures, the two-dimensional electron gas 15 is formed in the InGaAs layer or InAs channel layer.
[0004]
InAs and InGaAs layers having an In composition of 80% or more are semiconductors that do not form a Schottky barrier with metals (K. Kajiyama, Y. Mizushima, and S. Sakata, Appl. Phys. Lett., Vol. 23). , p.458, 1973.).
Since the Schottky barrier suppresses superconducting electrons from entering the two-dimensional electron gas from the superconducting electrode layer, in the conventional semiconductor-coupled superconducting device, the channel layer is an InGaAs layer or InAs without a Schottky barrier. Use layers.
[0005]
On the other hand, the AlGaAs / GaAs modulation doped structure has higher mobility and controllability with an excellent gate voltage than these InAs modulation doped structures (for example, Hiroyuki Tsuji, “Superlattice heterostructure”). Device ", Industrial Research Committee).
[0006]
[Problems to be solved by the invention]
However, the GaAs layer has a Schottky barrier as high as about 0.9 eV with respect to the metal (MJ Howes and DV Morgan, Gallium Arsenide, John Willey & Sons, New York (1985).) In spite of its many advantages, it could not be used in semiconductor coupled superconducting devices.
[0007]
An object of the present invention is to provide a semiconductor-coupled superconducting device having a GaA layer that forms a two-dimensional electron gas and two NbN superconducting electrode layers that serve as a source and drain electrode layer of a superconducting current, and the NbN superconducting electrode layer and the GaAs An In—Sn layer is inserted between the layers and heat-treated to achieve ohmic contact between the NbN superconducting electrode layer and the two-dimensional electron gas.
[0008]
[Means for Solving the Problems]
A semiconductor-coupled superconducting device according to claim 1 of the present invention that achieves such an object includes a GaAs layer that forms a two-dimensional electron gas, a first NbN superconducting electrode layer that serves as a source electrode of a superconducting current, and a drain electrode. In the semiconductor coupled superconducting device having the second NbN superconducting electrode layer, a Sn-doped InGaAs layer is inserted between the NbN superconducting electrode layer and the GaAs layer.
[0009]
A method for manufacturing a semiconductor coupled superconducting device according to claim 2 of the present invention that achieves the above object is a method for manufacturing a semiconductor coupled superconducting device according to claim 1, wherein the Sn-doped InGaAs layer comprises the GaAs An In—Sn layer and an NbN layer are laminated in this order on the layer, and then the In—Sn layer is alloyed with the GaAs layer by heat treatment.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an element structure in one embodiment of the present invention.
FIG. 1A shows an element structure before heat treatment, and FIG. 1B shows an element structure after heat treatment.
[0011]
Here, 1 is an NbN superconducting electrode layer (source), 2 is an NbN superconducting electrode layer (drain), 3 is a gate electrode layer, 4 is an In-Sn insertion layer, 5 is an undoped AlGaAs layer, and 6 is an undoped layer. A GaAs layer, 7 is a two-dimensional electron gas formed on the 8 side of the interface between 6 and 8, 8 is a non-doped AlGaAs layer, 9 is an n-type AlGaAs layer, 10 is a non-doped AlGaAs layer, and 11 is a semi-insulating GaAs substrate. , 12 are regions alloyed by heat treatment.
The two-dimensional electron gas 7 is formed on the AlGaAs layer 8 side at the interface between the GaAs layer 6 and the AlGaAs layer 8.
[0012]
In this structure, as shown in FIG. 1A, the source and drain electrode layer portions are patterned by light exposure or electron beam exposure, and then partially removed by wet etching or dry etching to form an AlGaAs layer 5. The In—Sn insertion layer 4 and the NbN superconducting electrode layers 1 and 2 are formed on the GaAs layer 6.
[0013]
Thereafter, heat treatment is performed as shown in FIG. 1B to cause the In—Sn insertion layer 4 and the GaAs layer 6 to react with each other to insert In—Sn between the NbN superconducting electrode layers 1 and 2 and the two-dimensional electron gas 6. An Sn-doped InGaAs layer 12 which is an alloyed layer of the layer 4 and the GaAs layer 6 was formed.
At this time, since NbN is a stable substance, the superconducting characteristics can be maintained even after heat treatment.
[0014]
FIG. 3 schematically shows the energy band change before and after the heat treatment of this structure.
As shown in FIG. 3B, the In—Sn insertion layer 4 reacts with the GaAs layer 6 by heat treatment, thereby forming a high carrier concentration layer with Sn serving as an n-type dopant and forming the GaAs layer 6 with In X. Reduction of Schottky paria by changing to the Ga 1-X As layer 12 can be expected (LJ Brillson, Contacts to semiconductos, Nayes Publications, New Jersey (1993)).
Thereby, ohmic contact can be realized between the NbN superconducting electrode layers 1 and 2 and the two-dimensional electron gas 7.
[0015]
FIG. 4 shows the heat treatment time dependence (heat treatment temperature: 600 ° C.) of the contact specific resistance ρ c at 4.2 K.
The In—Sn insertion layer has a thickness of 20 nm, the NbN superconducting electrode layer has a thickness of 100 nm, and heat treatment is performed in an N 2 atmosphere.
As expected, the specific contact resistance is reduced by the heat treatment, the heat treatment at 600 ℃ -30min, contact resistivity c ~5 × 10 -5 Ωcm 2 were obtained.
This value is sufficiently small as the contact specific resistance c at 4.2 K, and indicates that a good ohmic contact is obtained between the NbN and GaAs layers.
[0016]
In the above embodiment, the AlGaAs / GaAs modulation doped structure (reverse structure) is used. However, as shown in FIG. 2, the same effect can be expected by using the AlGaAs / GaAs modulation doped structure (forward structure). .
As described above, in this embodiment, the GaAs layer and the NbN superconducting electrode layer that form the two-dimensional electron gas, in which the ohmic contact between the two-dimensional electron gas and the superconducting electrode layer has not been realized in the past. In the semiconductor coupled superconducting device, an ohmic contact between the NbN superconducting electrode layer and the two-dimensional electron gas can be realized by inserting an In—Sn layer between the NbN superconducting electrode layer and the GaAs layer and performing heat treatment. It is the biggest feature.
[0017]
【The invention's effect】
As described above in detail based on the embodiments, in the present invention, the GaAs layer that forms the two-dimensional electron gas, in which the ohmic contact between the conventional two-dimensional electron gas and the superconducting electrode layer has not been realized, In a semiconductor coupled superconducting device having an NbN superconducting electrode layer, an In—Sn layer is inserted between the NbN superconducting electrode layer and the GaAs layer and subjected to heat treatment, whereby the NbN superconducting electrode layer and the two-dimensional electron gas are heated. Can achieve ohmic contact.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor coupled superconducting device using an AlGaAs / GaAs modulation doped structure (reverse structure), FIG. 1 (a) shows before heat treatment, and FIG. 1 (b) shows after heat treatment.
FIG. 2 is a cross-sectional view of a semiconductor coupled superconducting device using an AlGaAs / GaAs modulation doped structure (forward structure), FIG. 2 (a) shows before heat treatment, and FIG. 2 (b) shows after heat treatment.
FIGS. 3A and 3B are graphs showing changes in energy bands before and after heat treatment in this example, FIG. 3A shows before heat treatment, and FIG. 3B shows after heat treatment.
FIG. 4 is a graph showing the heat treatment time dependency (4.2 K) of the contact specific resistance ρ c of this example.
FIG. 5 is a cross-sectional view of a semiconductor coupled superconducting device using a conventional InAlAs / InGaAs modulation doped structure (inverse structure).
[Explanation of symbols]
1 NbN superconducting electrode layer (source)
2 NbN superconducting electrode layer (drain)
3 Gate electrode layer 4 In—Sn insertion layer 5 Non-doped AlGaAs layer 6 Non-doped GaAs layer 7 Two-dimensional electron gas 8 Non-doped AlGaAs layer 9 n-type AlGaAs layer 10 Non-doped AlGaAs layer 11 Semi-insulating GaAs substrate 12 Alloy by heat treatment Region 13 Non-doped InAlAs layer 14 Non-doped InGaAs layer 15 Two-dimensional electron gas 16 Non-doped InAlAs layer 17 n-type InAlAs layer 18 Non-doped InAlAs layer 19 InP substrate

Claims (2)

二次元電子ガスを形成するGaAs層と超伝導電流のソース電極となる第1のNbN超伝導電極層及びドレイン電極となる第2のNbN超伝導電極層を有する半導体結合超伝導素子において、前記NbN超伝導電極層と前記GaAs層との層間にSnドープInGaAs層が挿入されたことを特徴とする半導体結合超伝導素子。In a semiconductor coupled superconducting device having a GaAs layer forming a two-dimensional electron gas, a first NbN superconducting electrode layer serving as a source electrode of a superconducting current, and a second NbN superconducting electrode layer serving as a drain electrode, the NbN A semiconductor-coupled superconducting device, characterized in that a Sn-doped InGaAs layer is inserted between the superconducting electrode layer and the GaAs layer. 請求項1記載の半導体結合超伝導素子を製造する方法であって、前記SnドープInGaAs層は、前記GaAs層上にIn−Sn層、NbN層をこの順で積層した後に、熱処理により該In−Sn層を該GaAs層に合金化して形成することを特徴とする半導体結合超伝導素子の製造方法。2. The method of manufacturing a semiconductor-coupled superconducting device according to claim 1, wherein the Sn-doped InGaAs layer is formed by laminating an In—Sn layer and an NbN layer in this order on the GaAs layer, and then heat treating the In— A method of manufacturing a semiconductor-coupled superconducting device, comprising forming an Sn layer by alloying with the GaAs layer.
JP2000238562A 2000-08-07 2000-08-07 Semiconductor-coupled superconducting device and manufacturing method thereof Expired - Fee Related JP3698304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000238562A JP3698304B2 (en) 2000-08-07 2000-08-07 Semiconductor-coupled superconducting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238562A JP3698304B2 (en) 2000-08-07 2000-08-07 Semiconductor-coupled superconducting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002050802A JP2002050802A (en) 2002-02-15
JP3698304B2 true JP3698304B2 (en) 2005-09-21

Family

ID=18730249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238562A Expired - Fee Related JP3698304B2 (en) 2000-08-07 2000-08-07 Semiconductor-coupled superconducting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3698304B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4819338B2 (en) * 2004-10-20 2011-11-24 日本電信電話株式会社 Semiconductor-coupled superconducting three-terminal element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002050802A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
JP3716906B2 (en) Field effect transistor
JP4134575B2 (en) Semiconductor device and manufacturing method thereof
JPH05110086A (en) Tunnel transistor
JP3951743B2 (en) Semiconductor device and manufacturing method thereof
KR920003799B1 (en) Semiconductor device
JP3174293B2 (en) Semiconductor device
JP3698304B2 (en) Semiconductor-coupled superconducting device and manufacturing method thereof
JP2004241711A (en) Semiconductor device
JP4050128B2 (en) Heterojunction field effect transistor and manufacturing method thereof
JP2004119820A (en) Field effect transistor and its manufacturing method
JP3169066B2 (en) Field effect transistor and method of manufacturing the same
JPH08186249A (en) Semiconductor device and its manufacture
JP2630252B2 (en) Tunnel transistor and manufacturing method thereof
JPS59181069A (en) Semiconductor device
JPH0337735B2 (en)
JPS63244779A (en) Field effect transistor
JPH04277680A (en) Tunnel transistor and manufacture of the same
CN111785782B (en) InAs-GaSb TFET suitable for planar process
JP3256941B2 (en) Compound semiconductor surface treatment method
CN116314306A (en) Surrounding gate tunneling field effect transistor and manufacturing method
JPS6115375A (en) Hetero junction fet
JP3493205B2 (en) Field effect transistor and method of manufacturing the same
JP2695832B2 (en) Heterojunction field effect transistor
JPH05235047A (en) Manufacture of field-effect transistor
JPH0818036A (en) Semiconductor device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees