JP3696270B2 - 応力測定センサ - Google Patents
応力測定センサ Download PDFInfo
- Publication number
- JP3696270B2 JP3696270B2 JP20797294A JP20797294A JP3696270B2 JP 3696270 B2 JP3696270 B2 JP 3696270B2 JP 20797294 A JP20797294 A JP 20797294A JP 20797294 A JP20797294 A JP 20797294A JP 3696270 B2 JP3696270 B2 JP 3696270B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- coil
- stress
- stress measurement
- wound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、アモルファス磁性体が有する磁気歪特性を利用した応力測定センサに関する。
【0002】
【従来の技術】
アモルファス磁性体に応力が作用すると、このアモルファス磁性体の透磁率が変化する。このような磁気歪特性を利用した応力測定手段としては、例えば、本出願人が特開平5−142130号公報において提案するものがある。この測定手段は、車体等の構造材として用いられるFRP(繊維強化プラスチック)部材の応力状態や内部損傷の有無を検出するために用いられることが多い。
【0003】
この応力測定手段は、FRP部材を製作する過程で樹脂中に配合されたアモルファス磁性体と、FRP部材の外部にこれに近接して配置された励磁用コイルおよび検出用コイルとから構成されている。励磁用コイルに交流電流を流してこれを励磁すると、相互誘導作用により検出用コイルには交流起電力が誘起される。そして、この交流起電力の大きさから間接的にアモルファスワイヤに作用する応力の大きさが測定できる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記応力測定手段では、構造材の外側に励磁用コイルおよび検出用コイルを配設するためのスペースが必要となり、応力測定が可能な場所がこのようなスペースを確保できる場所に制限されるという問題がある。
【0005】
ところで、上記応力測定手段により、構造材における広い範囲での応力測定を行おうとする場合は、両コイルを構造材に沿って適宜移動させることが行われる。そして、このようなコイルの移動をロボット等によって自動的に行わせる場合がある。しかしながら、構造材の形状が複雑である場合には、ロボット等によりコイルを構造材にうまく沿わせながら移動させるのは困難であり、応力測定の自動化を図る上でのネックとなっている。
【0006】
本発明は、このような問題に鑑みてなされたものであり、測定場所を選ばず、応力測定の自動化に最適な応力測定センサを提供することを目的としている。
【0007】
【課題を解決するための手段】
このような目的達成のため、請求項1に係る本発明においては、アモルファス磁性体により作られ、外部から受ける応力に応じて磁気歪特性が変化するワイヤ状部材と、このワイヤ状部材の周囲に巻かれ、ワイヤ状部材を通る磁界を発生させる励磁用コイルと、ワイヤ状部材の周囲に巻かれ、上記磁界により磁気歪特性に応じた相互誘導起電力を発生させる検出用コイルとを有し、ワイヤ状部材が励磁用コイルと検出用コイルとが巻かれた状態で端部同士を繋いでループ状とされるとともに、このようにループ状とされたワイヤ状部材が平面上に格子状に並んで応力測定の対象となる構造材に複数埋設されて、応力測定センサが構成される。
また請求項2に係る本発明においては、アモルファス磁性体により作られ、外部から受ける応力に応じて磁気歪特性が変化する二本のワイヤ状部材と、このうち一方のワイヤ状部材の周囲に巻かれ、ワイヤ状部材を通る磁界を発生させる励磁用コイルと、他方のワイヤ状部材の周囲に巻かれ、磁界により磁気歪特性に応じた相互誘導起電力を発生させる検出用コイルとを有し、励磁用コイルが巻かれた一方のワイヤ状部材および検出用コイルが巻かれた他方のワイヤ状部材は、それぞれ正逆U字状に交互に折り曲げて形成されるとともに、励磁用コイルが巻かれた一方のワイヤ状部材におけるU字状の側辺部と検出用コイルが巻かれた他方のワイヤ状部材におけるU字状の側辺部とが交互に且つ並列に並んで、応力測定の対象となる構造材に埋設されて応力測定センサが構成される。
【0008】
このように請求項1に係る本発明の応力測定センサは、励磁用コイルおよび検出用コイルが巻かれたワイヤ状部材がループ状に形成された状態で、構造材(FRP部材等)内に埋設される。これにより、従来のように構造材の外側にコイルを配置するためのスペースを設ける必要がなくなり、このスペースの有無によって測定場所が制限されることがない。しかも、ワイヤとコイルとが一体になっているため、構造材の内部におけるこのセンサの配置を適宜工夫すれば、検出用コイルを構造材に対して移動させることなく簡単に構造材の広い範囲で応力を測定することができ、応力測定の自動化も行い易くなる。特に、ワイヤ状部材の端部同士を繋いでループ状に形成しているため、ワイヤ状部材の端部からの漏れ磁束をなくすことができ、センサ感度が向上する。さらに、このようにループ状とされたワイヤ状部材が平面上に格子状に並んで応力測定の対象となる構造材に複数埋設されているため、縦方向の検出値と横方向の検出値とから、内部損傷の発生位置を詳しく特定することができる。
【0009】
また請求項2に係る本発明の応力測定センサは、励磁用コイルが巻かれたワイヤ状部材と検出用コイルが巻かれたワイヤ状部材とが、それぞれ正逆U字状に交互に折り曲げて形成されるとともに、励磁用コイルが巻かれた一方のワイヤ状部材におけるU字状の側辺部と検出用コイルが巻かれた他方のワイヤ状部材におけるU字状の側辺部とが交互に且つ並列に並んで、応力測定の対象となる構造材に埋設される。このような構成とした場合にも、上述の応力測定センサと同様に、従来のように構造材の外側にコイルを配置するためのスペースを設ける必要がなくなり、このスペースの有無によって測定場所が制限されることがなく、ワイヤとコイルとが一体になっているため、構造材の内部におけるこのセンサの配置を適宜工夫すれば、検出用コイルを構造材に対して移動させることなく簡単に構造材の広い範囲で応力を測定することができ、応力測定の自動化も行い易くなる。
【0010】
【実施例】
以下、本発明の好ましい実施例について図面を参照しながら説明する。
【0011】
図1には、応力測定センサの第1の基本構成(概念図)を示している。この応力測定センサ1は、Fe(鉄)系又はCo(コバルト)系のアモルファス磁性体から作られたワイヤ11と、このワイヤ11に巻かれた励磁用コイル12と、この励磁用コイル12からワイヤ11の長手方向に離れた位置にてワイヤ11に巻かれた検出用コイル13とから構成される。ワイヤ11は、応力が作用すると、このワイヤ21の透磁率が上記応力の大きさに対応して変化するという性質(磁気歪特性)を有する。励磁用コイル12の両端には交流電源14が接続される。また、検出用コイル13の両端には電圧計15が接続される。
【0012】
交流電源14によって励磁用コイル12に交流電流を供給しこれを励磁すると、ワイヤ11を通って、交流電圧の極性が反転する毎に向きが変わる磁界Hが発生する。そして、この磁界Hによる相互誘導作用により検出用コイル13には交流起電力(誘導起電力)が誘起される。交流起電力の大きさは、検出用コイル13のインダクタンスの大きさに対応し、さらにこのインダクタンスはワイヤ11の透磁率に対応する。このため、ワイヤ11に作用する応力に変化が生じて透磁率が変化すれば、交流起電力の大きさも変化する。したがって、検出用コイル13に生じた交流起電力の電圧値を電圧計15により測定すれば、ワイヤ11に作用する応力(ひいてはこのセンサ1を埋設するFRP板に作用する応力)を求めることができる。
【0013】
応力測定センサ1におけるワイヤ11に作用する応力(引張応力)と検出用コイル13に発生する誘導起電力との関係を示したのが図2である。
この図から分かるように、ワイヤ11に作用する引張応力が大きいほど発生する誘導起電力Vの大きさは大きくなる。そして、引張応力が範囲Eの間にあるときは、引張応力に対して誘導起電力Vはほぼリニアに変化する。このため、応力測定センサ1は、範囲E内にある応力を検出するのに適している。
【0014】
図3には、この応力測定センサ1の具体的な使用方法を示している。図3(A)に示す応力測定センサ1では、ワイヤ11は、両端が接続されて楕円ループ状に形成されており、この楕円の両側に励磁用コイル12と検出用コイル13とが離れて配置されている。このようにワイヤ11をループ状にすることにより、ワイヤ11の端部からの漏れ磁束をなくすことができ、センサとしての感度向上に有効である。そして、このように作られた複数個の応力測定センサ1が、FRP板30の内部に、それぞれFRP板30の上下面に平行になるように且つ主応力方向(引張力Tの作用方向)に延びるように埋設されている。
【0015】
さらに詳しく説明すれば、図3(B)に示すように、FRP板30は上下の樹脂層31とこれら樹脂層31間に形成された接着層32とから構成されている。そして、FRP板30の製作過程において、下側の樹脂層31の上面に接着材を塗布して接着層32を形成するときに、応力測定センサ1(即ち、両コイル12,13が巻かれた状態のワイヤ11)は一体のものとしてこの接着層32中に埋設される。接着層(接着材)32が硬化するまでは、ワイヤ11に図2中の点E0 に対応する引張応力を作用させておく。これにより、ワイヤ11は、硬化した接着層32によって初期引張応力が作用した状態に拘束され、これ以後点E0 に対応する応力がFRP板30に作用する応力の測定基準点となる。
【0016】
このように複数の応力測定センサ1が埋設されたFRP板30に、図3に示すように引張力Tが作用すると、各応力測定センサ1のワイヤ11にもこれが伝わる。このため、ワイヤ11の透磁率が変化し、検出用コイル13に発生する誘導起電力Vの大きさは、図2のグラフ上において点E0 に対応する電圧(初期電圧)よりも高くなる。また、FRP板30に引張力Tとは逆方向に圧縮力が作用すると、誘導起電力Vの大きさは初期電圧よりも低くなる。ただし、図3に示すようにFRP板30の各部によって引張力T1 〜T3 の大きさが異なる場合や圧縮力の大きさが異なる場合は、応力測定センサ1毎に誘導起電力の大きさも異なる。このため、応力測定センサ1の埋設位置毎にFRP板30に作用している応力の方向および大きさを求めることができ、簡単にFRP板30全体の応力分布を知ることができる。
【0017】
一方、FRP板30の接着層32に疲労破壊現象による内部損傷が生じると、ワイヤ11を初期応力が作用した状態に保持していた接着層32の拘束が緩み、ワイヤ11に作用する引張応力が小さくなる。このため、検出用コイル13に発生する誘導起電力Vの大きさは、初期電圧よりも低くなる。このため、この誘導起電力Vの低下を通じて、FRP板30における内部損傷の発生を知ることができ、さらにこのような誘導起電力Vの低下が生じた応力測定センサ1の埋設位置を調べることにより、内部損傷のFRP板30における横方向(主応力方向に直交する方向)位置をほぼ特定することができる。
【0018】
なお、図4には複数の応力測定センサ1を、FRP部材30′の内部に格子状に埋設した場合(本発明の第1の実施形態)を示している。この場合に、例えば、縦方向に並んだ応力測定センサ1のうち図中にAで示すセンサの誘導起電力Vと、横方向に並んだ応力測定センサ1のうちBで示すセンサの誘導起電力Vとが低下したとすると、両センサが交差する部分に近い、図中にCで示す範囲内で内部損傷が生じた可能性が高いといえる。このように、応力測定センサ1を格子状に埋設することによって、内部損傷の位置をさらに詳しく特定することができる。
【0019】
応力測定センサ1では、励磁用コイルと検出用コイルとがワイヤの長手方向に離れて巻かれた応力測定センサについて説明したが、図5に示すように、励磁用コイル12′と検出用コイル13′とが一緒になってワイヤ11′に巻かれた応力測定センサ(応力測定センサの第2の基本構成)1′も、応力測定センサ1と同様の特性を有し、応力測定センサ1と同様の用い方をすることができる。なお、励磁用コイル12′および検出用コイル13′はそれぞれ絶縁被覆電線を用いて作られているため、両者が短絡することはない。この応力測定センサ1′は、両コイル12′,13′が一緒に巻かれた分、ワイヤ11′の長さを短くすることができるため、特に小さなFRP部材の応力・内部損傷検出に適する。
【0020】
図6には、応力測定センサの第3の基本構成を示している。この応力測定センサ5は、アモルファス磁性体から作られた2本のワイヤ(第1ワイヤ51aおよび第2ワイヤ51b)と、第1ワイヤ51aに巻かれた励磁用コイル52と、第2ワイヤ51bに巻かれた検出用コイル53とから構成される。各ワイヤ51a,51bは、応力が作用すると、各ワイヤ51a,51bの透磁率が上記応力の大きさに対応して変化するという性質(磁気歪特性)を有する。励磁用コイル52の両端には交流電源54が接続される。また、検出用コイル53の両端には電圧計55が接続される。
【0021】
交流電源54によって励磁用コイル52に交流電流を供給しこれを励磁すると、第1ワイヤ51aおよび第2ワイヤ51bを通って、交流電圧の極性が反転する毎に向きが変わる磁界Hが発生する。そして、この磁界Hによる相互誘導作用により検出用コイル53には交流起電力(誘導起電力)が誘起される。交流起電力の大きさは、励磁用コイル52および検出用コイル53のインダクタンスの大きさに対応し、さらにこのインダクタンスは第1ワイヤ51a,第2ワイヤ51bの透磁率に対応する。このため、第1ワイヤ51aおよび第2ワイヤ51bに作用する応力に変化が生じて透磁率が変化すれば、交流起電力の大きさも変化する。したがって、検出用コイル53に生じた交流起電力の電圧値を電圧計55により測定すれば、第1ワイヤ51aおよび第2ワイヤ51bに作用する応力(ひいては、このセンサ5が埋設されるFRP板に作用する応力)を求められる。
【0022】
応力測定センサ5の両ワイヤ51a,51bに作用する引張応力と検出用コイル53に発生する起電力との関係は、図2と同様であるのでここでの説明は省略する。
【0023】
図7には、この応力測定センサ5の具体的な使用方法(本発明の第2の実施形態)を示している。ここに示す応力測定センサ5では、ワイヤ51a,51bは、それぞれ正逆U字を交互に3つ並べた形状(又は千鳥形状)に折曲げられており、互いに相手方の各U字形の間に割り込むように配置されている。また、各ワイヤ51a,51bのほぼ全長にわたってコイル52,53が巻かれている。なお、図では、励磁用コイル52と検出用コイル53とが交差する箇所があるが、両コイル52,53はそれぞれ絶縁被覆電線を用いて作られているため、両者が短絡することはない。
【0024】
そして、このように作られた応力測定センサ5は、FRP板70の内部(上下の樹脂層の間の接着層)に、このFRP板70の上下面に平行になるように且つ各ワイヤ51a,51bの長い部分が主応力方向(引張力Tの作用方向)に延びるように埋設されている。なお、第2ワイヤ51bには、適当な初期引張応力が加えられる。
【0025】
このように応力測定センサ5が埋設されたFRP板70に、図7に示すように引張力Tが作用すると、応力測定センサ5のワイヤ51a,51bにもこれが伝わる。このため、両ワイヤ51a,51bの透磁率が変化し、検出用コイル13に発生する誘導起電力Vの大きさは初期電圧よりも高くなる(図2参照)。また、FRP板70に引張力Tと逆方向の圧縮力が作用すると、誘導起電力Vの大きさは初期電圧よりも低くなる。これにより、FRP板70に作用している応力の方向および大きさを求めることができる。
【0026】
一方、FRP板70の接着層に疲労破壊現象による内部損傷が生じると、両ワイヤ51a,51bを初期引張応力が作用した状態に保持していた接着層の拘束が緩むため、両ワイヤ51a,51bに作用する引張応力が小さくなる。このため、検出用コイル53に発生する誘導起電力Vの大きさは初期電圧よりも低くなる。したがって、この誘導起電力Vの低下を通じて、FRP板70における内部損傷の発生を知ることができる。
【0027】
さらに図8には、この応力測定センサ5をFRP板70の縦横方向に複数個ずつ埋設した場合を示している。この場合、誘導起電力Vの低下が生じた応力測定センサ5の埋設位置を調べることにより、大きなFRP板70の中でどの範囲に内部損傷が生じたかを容易に特定することができる。
【0028】
【発明の効果】
以上説明したように本発明の応力測定センサは、アモルファス磁性体のワイヤ状部材にコイル(励磁用コイルおよび検出用コイル)を巻いて作られており、これらの全体を構造材に埋設して用いるようになっている。このため、本応力測定センサを用いれば、構造材の外部にコイルを配置することが不要となるため、このようなコイルの配置スペースがない場所においても応力測定を行うことができる。また、構造材内部におけるセンサの配置を適宜工夫することにより、従来のようにコイルを構造材に沿って移動させることなく、構造材の広い範囲での応力測定を簡単に行うことができる。このため、応力測定の自動化も容易に行うことができる。特に、ワイヤ状部材の端部同士を繋いでループ状に形成すれば、ワイヤ状部材の端部からの漏れ磁束をなくすことができ、センサ感度が向上する。さらに、ループ状とされたワイヤ状部材が平面上に格子状に並んで応力測定の対象となる構造材に複数埋設するように構成すれば、縦方向の検出値と横方向の検出値とから、内部損傷の発生位置を詳しく特定することができる。
【図面の簡単な説明】
【図1】 本発明に係る応力測定センサの第1の基本構成を示す概念図である。
【図2】 上記応力測定センサの特性を示す概念図である。
【図3】 上記応力測定センサの使用状態を示す概念図である。
【図4】 上記応力測定センサの使用状態(第1の実施形態)を示す概念図である。
【図5】 本発明に係る応力測定センサの第2の基本構成を示す概念図である。
【図6】 本発明に係る応力測定センサの第3の基本構成を示す概念図である。
【図7】 上記応力測定センサの使用状態(第2の実施形態)を示す概念図である。
【図8】 上記応力測定センサの使用状態を示す概念図である。
【産業上の利用分野】
本発明は、アモルファス磁性体が有する磁気歪特性を利用した応力測定センサに関する。
【0002】
【従来の技術】
アモルファス磁性体に応力が作用すると、このアモルファス磁性体の透磁率が変化する。このような磁気歪特性を利用した応力測定手段としては、例えば、本出願人が特開平5−142130号公報において提案するものがある。この測定手段は、車体等の構造材として用いられるFRP(繊維強化プラスチック)部材の応力状態や内部損傷の有無を検出するために用いられることが多い。
【0003】
この応力測定手段は、FRP部材を製作する過程で樹脂中に配合されたアモルファス磁性体と、FRP部材の外部にこれに近接して配置された励磁用コイルおよび検出用コイルとから構成されている。励磁用コイルに交流電流を流してこれを励磁すると、相互誘導作用により検出用コイルには交流起電力が誘起される。そして、この交流起電力の大きさから間接的にアモルファスワイヤに作用する応力の大きさが測定できる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記応力測定手段では、構造材の外側に励磁用コイルおよび検出用コイルを配設するためのスペースが必要となり、応力測定が可能な場所がこのようなスペースを確保できる場所に制限されるという問題がある。
【0005】
ところで、上記応力測定手段により、構造材における広い範囲での応力測定を行おうとする場合は、両コイルを構造材に沿って適宜移動させることが行われる。そして、このようなコイルの移動をロボット等によって自動的に行わせる場合がある。しかしながら、構造材の形状が複雑である場合には、ロボット等によりコイルを構造材にうまく沿わせながら移動させるのは困難であり、応力測定の自動化を図る上でのネックとなっている。
【0006】
本発明は、このような問題に鑑みてなされたものであり、測定場所を選ばず、応力測定の自動化に最適な応力測定センサを提供することを目的としている。
【0007】
【課題を解決するための手段】
このような目的達成のため、請求項1に係る本発明においては、アモルファス磁性体により作られ、外部から受ける応力に応じて磁気歪特性が変化するワイヤ状部材と、このワイヤ状部材の周囲に巻かれ、ワイヤ状部材を通る磁界を発生させる励磁用コイルと、ワイヤ状部材の周囲に巻かれ、上記磁界により磁気歪特性に応じた相互誘導起電力を発生させる検出用コイルとを有し、ワイヤ状部材が励磁用コイルと検出用コイルとが巻かれた状態で端部同士を繋いでループ状とされるとともに、このようにループ状とされたワイヤ状部材が平面上に格子状に並んで応力測定の対象となる構造材に複数埋設されて、応力測定センサが構成される。
また請求項2に係る本発明においては、アモルファス磁性体により作られ、外部から受ける応力に応じて磁気歪特性が変化する二本のワイヤ状部材と、このうち一方のワイヤ状部材の周囲に巻かれ、ワイヤ状部材を通る磁界を発生させる励磁用コイルと、他方のワイヤ状部材の周囲に巻かれ、磁界により磁気歪特性に応じた相互誘導起電力を発生させる検出用コイルとを有し、励磁用コイルが巻かれた一方のワイヤ状部材および検出用コイルが巻かれた他方のワイヤ状部材は、それぞれ正逆U字状に交互に折り曲げて形成されるとともに、励磁用コイルが巻かれた一方のワイヤ状部材におけるU字状の側辺部と検出用コイルが巻かれた他方のワイヤ状部材におけるU字状の側辺部とが交互に且つ並列に並んで、応力測定の対象となる構造材に埋設されて応力測定センサが構成される。
【0008】
このように請求項1に係る本発明の応力測定センサは、励磁用コイルおよび検出用コイルが巻かれたワイヤ状部材がループ状に形成された状態で、構造材(FRP部材等)内に埋設される。これにより、従来のように構造材の外側にコイルを配置するためのスペースを設ける必要がなくなり、このスペースの有無によって測定場所が制限されることがない。しかも、ワイヤとコイルとが一体になっているため、構造材の内部におけるこのセンサの配置を適宜工夫すれば、検出用コイルを構造材に対して移動させることなく簡単に構造材の広い範囲で応力を測定することができ、応力測定の自動化も行い易くなる。特に、ワイヤ状部材の端部同士を繋いでループ状に形成しているため、ワイヤ状部材の端部からの漏れ磁束をなくすことができ、センサ感度が向上する。さらに、このようにループ状とされたワイヤ状部材が平面上に格子状に並んで応力測定の対象となる構造材に複数埋設されているため、縦方向の検出値と横方向の検出値とから、内部損傷の発生位置を詳しく特定することができる。
【0009】
また請求項2に係る本発明の応力測定センサは、励磁用コイルが巻かれたワイヤ状部材と検出用コイルが巻かれたワイヤ状部材とが、それぞれ正逆U字状に交互に折り曲げて形成されるとともに、励磁用コイルが巻かれた一方のワイヤ状部材におけるU字状の側辺部と検出用コイルが巻かれた他方のワイヤ状部材におけるU字状の側辺部とが交互に且つ並列に並んで、応力測定の対象となる構造材に埋設される。このような構成とした場合にも、上述の応力測定センサと同様に、従来のように構造材の外側にコイルを配置するためのスペースを設ける必要がなくなり、このスペースの有無によって測定場所が制限されることがなく、ワイヤとコイルとが一体になっているため、構造材の内部におけるこのセンサの配置を適宜工夫すれば、検出用コイルを構造材に対して移動させることなく簡単に構造材の広い範囲で応力を測定することができ、応力測定の自動化も行い易くなる。
【0010】
【実施例】
以下、本発明の好ましい実施例について図面を参照しながら説明する。
【0011】
図1には、応力測定センサの第1の基本構成(概念図)を示している。この応力測定センサ1は、Fe(鉄)系又はCo(コバルト)系のアモルファス磁性体から作られたワイヤ11と、このワイヤ11に巻かれた励磁用コイル12と、この励磁用コイル12からワイヤ11の長手方向に離れた位置にてワイヤ11に巻かれた検出用コイル13とから構成される。ワイヤ11は、応力が作用すると、このワイヤ21の透磁率が上記応力の大きさに対応して変化するという性質(磁気歪特性)を有する。励磁用コイル12の両端には交流電源14が接続される。また、検出用コイル13の両端には電圧計15が接続される。
【0012】
交流電源14によって励磁用コイル12に交流電流を供給しこれを励磁すると、ワイヤ11を通って、交流電圧の極性が反転する毎に向きが変わる磁界Hが発生する。そして、この磁界Hによる相互誘導作用により検出用コイル13には交流起電力(誘導起電力)が誘起される。交流起電力の大きさは、検出用コイル13のインダクタンスの大きさに対応し、さらにこのインダクタンスはワイヤ11の透磁率に対応する。このため、ワイヤ11に作用する応力に変化が生じて透磁率が変化すれば、交流起電力の大きさも変化する。したがって、検出用コイル13に生じた交流起電力の電圧値を電圧計15により測定すれば、ワイヤ11に作用する応力(ひいてはこのセンサ1を埋設するFRP板に作用する応力)を求めることができる。
【0013】
応力測定センサ1におけるワイヤ11に作用する応力(引張応力)と検出用コイル13に発生する誘導起電力との関係を示したのが図2である。
この図から分かるように、ワイヤ11に作用する引張応力が大きいほど発生する誘導起電力Vの大きさは大きくなる。そして、引張応力が範囲Eの間にあるときは、引張応力に対して誘導起電力Vはほぼリニアに変化する。このため、応力測定センサ1は、範囲E内にある応力を検出するのに適している。
【0014】
図3には、この応力測定センサ1の具体的な使用方法を示している。図3(A)に示す応力測定センサ1では、ワイヤ11は、両端が接続されて楕円ループ状に形成されており、この楕円の両側に励磁用コイル12と検出用コイル13とが離れて配置されている。このようにワイヤ11をループ状にすることにより、ワイヤ11の端部からの漏れ磁束をなくすことができ、センサとしての感度向上に有効である。そして、このように作られた複数個の応力測定センサ1が、FRP板30の内部に、それぞれFRP板30の上下面に平行になるように且つ主応力方向(引張力Tの作用方向)に延びるように埋設されている。
【0015】
さらに詳しく説明すれば、図3(B)に示すように、FRP板30は上下の樹脂層31とこれら樹脂層31間に形成された接着層32とから構成されている。そして、FRP板30の製作過程において、下側の樹脂層31の上面に接着材を塗布して接着層32を形成するときに、応力測定センサ1(即ち、両コイル12,13が巻かれた状態のワイヤ11)は一体のものとしてこの接着層32中に埋設される。接着層(接着材)32が硬化するまでは、ワイヤ11に図2中の点E0 に対応する引張応力を作用させておく。これにより、ワイヤ11は、硬化した接着層32によって初期引張応力が作用した状態に拘束され、これ以後点E0 に対応する応力がFRP板30に作用する応力の測定基準点となる。
【0016】
このように複数の応力測定センサ1が埋設されたFRP板30に、図3に示すように引張力Tが作用すると、各応力測定センサ1のワイヤ11にもこれが伝わる。このため、ワイヤ11の透磁率が変化し、検出用コイル13に発生する誘導起電力Vの大きさは、図2のグラフ上において点E0 に対応する電圧(初期電圧)よりも高くなる。また、FRP板30に引張力Tとは逆方向に圧縮力が作用すると、誘導起電力Vの大きさは初期電圧よりも低くなる。ただし、図3に示すようにFRP板30の各部によって引張力T1 〜T3 の大きさが異なる場合や圧縮力の大きさが異なる場合は、応力測定センサ1毎に誘導起電力の大きさも異なる。このため、応力測定センサ1の埋設位置毎にFRP板30に作用している応力の方向および大きさを求めることができ、簡単にFRP板30全体の応力分布を知ることができる。
【0017】
一方、FRP板30の接着層32に疲労破壊現象による内部損傷が生じると、ワイヤ11を初期応力が作用した状態に保持していた接着層32の拘束が緩み、ワイヤ11に作用する引張応力が小さくなる。このため、検出用コイル13に発生する誘導起電力Vの大きさは、初期電圧よりも低くなる。このため、この誘導起電力Vの低下を通じて、FRP板30における内部損傷の発生を知ることができ、さらにこのような誘導起電力Vの低下が生じた応力測定センサ1の埋設位置を調べることにより、内部損傷のFRP板30における横方向(主応力方向に直交する方向)位置をほぼ特定することができる。
【0018】
なお、図4には複数の応力測定センサ1を、FRP部材30′の内部に格子状に埋設した場合(本発明の第1の実施形態)を示している。この場合に、例えば、縦方向に並んだ応力測定センサ1のうち図中にAで示すセンサの誘導起電力Vと、横方向に並んだ応力測定センサ1のうちBで示すセンサの誘導起電力Vとが低下したとすると、両センサが交差する部分に近い、図中にCで示す範囲内で内部損傷が生じた可能性が高いといえる。このように、応力測定センサ1を格子状に埋設することによって、内部損傷の位置をさらに詳しく特定することができる。
【0019】
応力測定センサ1では、励磁用コイルと検出用コイルとがワイヤの長手方向に離れて巻かれた応力測定センサについて説明したが、図5に示すように、励磁用コイル12′と検出用コイル13′とが一緒になってワイヤ11′に巻かれた応力測定センサ(応力測定センサの第2の基本構成)1′も、応力測定センサ1と同様の特性を有し、応力測定センサ1と同様の用い方をすることができる。なお、励磁用コイル12′および検出用コイル13′はそれぞれ絶縁被覆電線を用いて作られているため、両者が短絡することはない。この応力測定センサ1′は、両コイル12′,13′が一緒に巻かれた分、ワイヤ11′の長さを短くすることができるため、特に小さなFRP部材の応力・内部損傷検出に適する。
【0020】
図6には、応力測定センサの第3の基本構成を示している。この応力測定センサ5は、アモルファス磁性体から作られた2本のワイヤ(第1ワイヤ51aおよび第2ワイヤ51b)と、第1ワイヤ51aに巻かれた励磁用コイル52と、第2ワイヤ51bに巻かれた検出用コイル53とから構成される。各ワイヤ51a,51bは、応力が作用すると、各ワイヤ51a,51bの透磁率が上記応力の大きさに対応して変化するという性質(磁気歪特性)を有する。励磁用コイル52の両端には交流電源54が接続される。また、検出用コイル53の両端には電圧計55が接続される。
【0021】
交流電源54によって励磁用コイル52に交流電流を供給しこれを励磁すると、第1ワイヤ51aおよび第2ワイヤ51bを通って、交流電圧の極性が反転する毎に向きが変わる磁界Hが発生する。そして、この磁界Hによる相互誘導作用により検出用コイル53には交流起電力(誘導起電力)が誘起される。交流起電力の大きさは、励磁用コイル52および検出用コイル53のインダクタンスの大きさに対応し、さらにこのインダクタンスは第1ワイヤ51a,第2ワイヤ51bの透磁率に対応する。このため、第1ワイヤ51aおよび第2ワイヤ51bに作用する応力に変化が生じて透磁率が変化すれば、交流起電力の大きさも変化する。したがって、検出用コイル53に生じた交流起電力の電圧値を電圧計55により測定すれば、第1ワイヤ51aおよび第2ワイヤ51bに作用する応力(ひいては、このセンサ5が埋設されるFRP板に作用する応力)を求められる。
【0022】
応力測定センサ5の両ワイヤ51a,51bに作用する引張応力と検出用コイル53に発生する起電力との関係は、図2と同様であるのでここでの説明は省略する。
【0023】
図7には、この応力測定センサ5の具体的な使用方法(本発明の第2の実施形態)を示している。ここに示す応力測定センサ5では、ワイヤ51a,51bは、それぞれ正逆U字を交互に3つ並べた形状(又は千鳥形状)に折曲げられており、互いに相手方の各U字形の間に割り込むように配置されている。また、各ワイヤ51a,51bのほぼ全長にわたってコイル52,53が巻かれている。なお、図では、励磁用コイル52と検出用コイル53とが交差する箇所があるが、両コイル52,53はそれぞれ絶縁被覆電線を用いて作られているため、両者が短絡することはない。
【0024】
そして、このように作られた応力測定センサ5は、FRP板70の内部(上下の樹脂層の間の接着層)に、このFRP板70の上下面に平行になるように且つ各ワイヤ51a,51bの長い部分が主応力方向(引張力Tの作用方向)に延びるように埋設されている。なお、第2ワイヤ51bには、適当な初期引張応力が加えられる。
【0025】
このように応力測定センサ5が埋設されたFRP板70に、図7に示すように引張力Tが作用すると、応力測定センサ5のワイヤ51a,51bにもこれが伝わる。このため、両ワイヤ51a,51bの透磁率が変化し、検出用コイル13に発生する誘導起電力Vの大きさは初期電圧よりも高くなる(図2参照)。また、FRP板70に引張力Tと逆方向の圧縮力が作用すると、誘導起電力Vの大きさは初期電圧よりも低くなる。これにより、FRP板70に作用している応力の方向および大きさを求めることができる。
【0026】
一方、FRP板70の接着層に疲労破壊現象による内部損傷が生じると、両ワイヤ51a,51bを初期引張応力が作用した状態に保持していた接着層の拘束が緩むため、両ワイヤ51a,51bに作用する引張応力が小さくなる。このため、検出用コイル53に発生する誘導起電力Vの大きさは初期電圧よりも低くなる。したがって、この誘導起電力Vの低下を通じて、FRP板70における内部損傷の発生を知ることができる。
【0027】
さらに図8には、この応力測定センサ5をFRP板70の縦横方向に複数個ずつ埋設した場合を示している。この場合、誘導起電力Vの低下が生じた応力測定センサ5の埋設位置を調べることにより、大きなFRP板70の中でどの範囲に内部損傷が生じたかを容易に特定することができる。
【0028】
【発明の効果】
以上説明したように本発明の応力測定センサは、アモルファス磁性体のワイヤ状部材にコイル(励磁用コイルおよび検出用コイル)を巻いて作られており、これらの全体を構造材に埋設して用いるようになっている。このため、本応力測定センサを用いれば、構造材の外部にコイルを配置することが不要となるため、このようなコイルの配置スペースがない場所においても応力測定を行うことができる。また、構造材内部におけるセンサの配置を適宜工夫することにより、従来のようにコイルを構造材に沿って移動させることなく、構造材の広い範囲での応力測定を簡単に行うことができる。このため、応力測定の自動化も容易に行うことができる。特に、ワイヤ状部材の端部同士を繋いでループ状に形成すれば、ワイヤ状部材の端部からの漏れ磁束をなくすことができ、センサ感度が向上する。さらに、ループ状とされたワイヤ状部材が平面上に格子状に並んで応力測定の対象となる構造材に複数埋設するように構成すれば、縦方向の検出値と横方向の検出値とから、内部損傷の発生位置を詳しく特定することができる。
【図面の簡単な説明】
【図1】 本発明に係る応力測定センサの第1の基本構成を示す概念図である。
【図2】 上記応力測定センサの特性を示す概念図である。
【図3】 上記応力測定センサの使用状態を示す概念図である。
【図4】 上記応力測定センサの使用状態(第1の実施形態)を示す概念図である。
【図5】 本発明に係る応力測定センサの第2の基本構成を示す概念図である。
【図6】 本発明に係る応力測定センサの第3の基本構成を示す概念図である。
【図7】 上記応力測定センサの使用状態(第2の実施形態)を示す概念図である。
【図8】 上記応力測定センサの使用状態を示す概念図である。
Claims (2)
- アモルファス磁性体により作られ、外部から受ける応力に応じて磁気歪特性が変化するワイヤ状部材と、
このワイヤ状部材の周囲に巻かれ、前記ワイヤ状部材を通る磁界を発生させる励磁用コイルと、
前記ワイヤ状部材の周囲に巻かれ、前記磁界により前記磁気歪特性に応じた相互誘導起電力を発生させる検出用コイルとから構成され、
前記ワイヤ状部材が前記励磁用コイルと前記検出用コイルとが巻かれた状態で端部同士を繋いでループ状とされるとともに、このようにループ状とされた前記ワイヤ状部材が平面上に格子状に並んで応力測定の対象となる構造材に複数埋設されていることを特徴とする応力測定センサ。 - アモルファス磁性体により作られ、外部から受ける応力に応じて磁気歪特性が変化する二本のワイヤ状部材と、
一方の前記ワイヤ状部材の周囲に巻かれ、前記ワイヤ状部材を通る磁界を発生させる励磁用コイルと、
他方の前記ワイヤ状部材の周囲に巻かれ、前記磁界により前記磁気歪特性に応じた相互誘導起電力を発生させる検出用コイルとから構成され、
前記励磁用コイルが巻かれた前記一方のワイヤ状部材および前記検出用コイルが巻かれた前記他方のワイヤ状部材は、それぞれ正逆U字状に交互に折り曲げて形成されるとともに、前記励磁用コイルが巻かれた前記一方のワイヤ状部材におけるU字状の側辺部と前記検出用コイルが巻かれた前記他方のワイヤ状部材におけるU字状の側辺部とが交互に且つ並列に並んで、応力測定の対象となる構造材に埋設されていることを特徴とする応力測定センサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20797294A JP3696270B2 (ja) | 1994-08-09 | 1994-08-09 | 応力測定センサ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20797294A JP3696270B2 (ja) | 1994-08-09 | 1994-08-09 | 応力測定センサ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0854296A JPH0854296A (ja) | 1996-02-27 |
JP3696270B2 true JP3696270B2 (ja) | 2005-09-14 |
Family
ID=16548562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20797294A Expired - Fee Related JP3696270B2 (ja) | 1994-08-09 | 1994-08-09 | 応力測定センサ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3696270B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8286497B2 (en) * | 2009-06-25 | 2012-10-16 | Tsi Technologies Llc | Strain sensor |
EA030754B1 (ru) * | 2013-12-13 | 2018-09-28 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Датчик измерения механических напряжений |
JP7006216B2 (ja) * | 2017-12-13 | 2022-02-10 | 株式会社ジェイテクト | 触知センサ及びアンドロイド |
JP6438618B1 (ja) * | 2018-05-22 | 2018-12-19 | マグネデザイン株式会社 | 磁性ワイヤ整列装置および磁性ワイヤ整列方法 |
-
1994
- 1994-08-09 JP JP20797294A patent/JP3696270B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0854296A (ja) | 1996-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1752751B1 (en) | A magnetometer and torque sensor assembly | |
EP1884763A2 (en) | GMR biosensor with enhanced sensivity | |
JPH0565094B2 (ja) | ||
Takemura et al. | Batteryless Hall sensor operated by energy harvesting from a single Wiegand pulse | |
US11016061B2 (en) | Method and apparatus for evaluating damage to magnetic linear body | |
CN108489641B (zh) | 一种预应力钢绞线应力测量装置及方法 | |
WO2017061156A1 (ja) | 導電性複合材料の繊維の配列の乱れの検出方法、及び導電性複合材料の繊維の配列の乱れの検出装置 | |
JP3696270B2 (ja) | 応力測定センサ | |
JP4402921B2 (ja) | 磁気測定装置 | |
WO2015138505A1 (en) | Non-contact magnetostrictive current sensor | |
JP2657316B2 (ja) | 被応力検出能を備えた繊維強化部材 | |
KR100517795B1 (ko) | 마그네토스트릭션 센서를 이용한 굽힘파 및 굽힘진동 측정장치및 방법 | |
Yamasaki et al. | Magnetostriction measurement of amorphous wires by means of small‐angle magnetization rotation | |
CA1040885A (en) | Magnetoelastic transducer arrangement | |
JP3618425B2 (ja) | 磁気センサ | |
JP3148423B2 (ja) | 繊維強化プラスチック部材の欠陥検出方法 | |
JPH01155282A (ja) | 磁気センサ | |
JP7536291B2 (ja) | 平行型フラックスゲートセンサおよびこれを用いた磁気検出回路、装置 | |
JPH04221768A (ja) | 多要素形加速度センサ | |
JPH0886697A (ja) | 平面構造材の面応力検出方法 | |
JP3231957B2 (ja) | 面応力センサ | |
Sablik et al. | Finite element simulation of magnetic detection of creep damage at seam welds | |
JPH08184656A (ja) | 磁気センサ | |
JPH06130039A (ja) | 繊維強化プラスチック部材の欠陥検出方法 | |
JP3270632B2 (ja) | 応力測定センサおよびこれを用いた応力測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050411 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050629 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |