EA030754B1 - Датчик измерения механических напряжений - Google Patents

Датчик измерения механических напряжений Download PDF

Info

Publication number
EA030754B1
EA030754B1 EA201600459A EA201600459A EA030754B1 EA 030754 B1 EA030754 B1 EA 030754B1 EA 201600459 A EA201600459 A EA 201600459A EA 201600459 A EA201600459 A EA 201600459A EA 030754 B1 EA030754 B1 EA 030754B1
Authority
EA
Eurasian Patent Office
Prior art keywords
contact pads
source
sensor according
pair
measuring coil
Prior art date
Application number
EA201600459A
Other languages
English (en)
Other versions
EA201600459A1 (ru
Inventor
Сергей Александрович Гудошников
Борис Яковлевич Любимов
Николай Александрович Усов
Андрей Сергеевич Игнатов
Вадим Петрович Тарасов
Ольга Николаевна Криволапова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Publication of EA201600459A1 publication Critical patent/EA201600459A1/ru
Publication of EA030754B1 publication Critical patent/EA030754B1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Изобретение относится к области технической диагностики и неразрушающему контролю материалов и может быть использовано при создании и работе измерительных устройств, в частности датчиков измерения механических напряжений. В изобретении достигается технический результат, заключающийся в расширении функциональных возможностей датчика за счет обеспечения возможности измерения сигналов, связанных с локальными механическими нагрузками, и регистрации различного типа механических нагрузок, таких как растяжение, сжатие, кручение, а также в снижении влияния помех и повышении чувствительности. Указанный технический результат достигается следующим образом. Предлагаемый датчик измерения механических напряжений состоит из прямоугольной пластины, выполненной из полимерного материала. На верхней поверхности прямоугольной пластины образовано посадочное место в виде центрально симметричного углубления, в котором размещен регистратор. Внутри массива прямоугольной пластины вдоль центральной продольной оси параллельно верхней и нижней поверхностям расположен магниточувствительный элемент, который выполнен в виде предварительно напряженного аморфного ферромагнитного микропровода. Магниточувствительный элемент размещен внутри дифференциальной измерительной катушки и подключен через печатные проводники к первой паре контактных площадок. Дифференциальная измерительная катушка подключена через печатные проводники ко второй паре контактных площадок. При этом обе пары контактных площадок размещены внутри посадочного места и соединены с регистратором. Регистратор содержит источник переменного тока, источник постоянного тока, усилитель сигналов измерительной катушки. Источник переменного тока соединен с источником магнитного поля. Источник постоянного тока соединен с первой парой контактных площадок. Вход усилителя сигналов измерительной катушки соединен со второй парой контактных площадок, а выход подключен к аналого-цифровому преобразователю, который соединен с персональным компьютером.

Description

Изобретение относится к области технической диагностики и неразрушающему контролю материалов и может быть использовано при создании и работе измерительных устройств, в частности датчиков измерения механических напряжений. В изобретении достигается технический результат, заключающийся в расширении функциональных возможностей датчика за счет обеспечения возможности измерения сигналов, связанных с локальными механическими нагрузками, и регистрации различного типа механических нагрузок, таких как растяжение, сжатие, кручение, а также в снижении влияния помех и повышении чувствительности. Указанный технический результат достигается следующим образом. Предлагаемый датчик измерения механических напряжений состоит из прямоугольной пластины, выполненной из полимерного материала. На верхней поверхности прямоугольной пластины образовано посадочное место в виде центрально симметричного углубления, в котором размещен регистратор. Внутри массива прямоугольной пластины вдоль центральной продольной оси параллельно верхней и нижней поверхностям расположен магниточувствительный элемент, который выполнен в виде предварительно напряженного аморфного ферромагнитного микропровода. Магниточувствительный элемент размещен внутри дифференциальной измерительной катушки и подключен через печатные проводники к первой паре контактных площадок. Дифференциальная измерительная катушка подключена через печатные проводники ко второй паре контактных площадок. При этом обе пары контактных площадок размещены внутри посадочного места и соединены с регистратором. Регистратор содержит источник переменного тока, источник постоянного тока, усилитель сигналов измерительной катушки. Источник переменного тока соединен с источником магнитного поля. Источник постоянного тока соединен с первой парой контактных площадок. Вход усилителя сигналов измерительной катушки соединен со второй парой контактных площадок, а выход подключен к аналого-цифровому преобразователю, который соединен с персональным компьютером.
030754
Область техники, к которой относится изобретение
Изобретение относится к области технической диагностики и неразрушающему контролю материалов и может быть использовано при создании и работе измерительных устройств, в частности датчиков измерения механических напряжений.
Сведения о предшествующем уровне техники
Известен магнитоупругий датчик для определения механических напряжений в ферромагнитных материалах (RU 2492459, опубл. 10.09.2013), который содержит корпус, выполненный из проводящего немагнитного материала. На корпусе установлены два сердечника. Оба сердечника представляют собой основной и дополнительный сердечники и выполнены в виде двух магнитопроводов П-образной формы. Дополнительный сердечник установлен симметрично между полюсами основного сердечника так, что плоскость его перпендикулярна плоскости основного сердечника. На основном сердечнике размещены две последовательно соединенные обмотки. Одна обмотка является возбуждающей, а вторая - контролирующей уровень возбуждения обмотки. На дополнительном сердечнике размещена измерительная обмотка. Она предназначена для измерения магнитного шума, создаваемого скачками Баркгаузена при перемагничивании контролируемого участка, по величине которого судят о величине механического напряжения.
Недостатками этого устройства являются большие размеры датчика и возможность его использования для определения механических напряжений только в ферромагнитных материалах.
Известен способ и устройство измерения физических величин (WO 2007/116218, опубл. 18.10.2007). Устройство измерения физических величин содержит датчик на основе аморфных ферромагнитных материалов с положительной константой магнитострикции, источник переменного магнитного поля, детектор обнаружения электродвижущей силы в виде импульсных сигналов от гигантских скачков Баркгаузена, возникающих при перемагничивании датчика, и средство измерения для определения значения выходной физической величины. Для регистрации приложенной механической нагрузки датчик выполнен в виде предварительно напряженного аморфного ферромагнитного микропровода.
Недостатками этого устройства являются большой разброс в характеристиках датчиков и значительное влияние внешних магнитных полей на его работу.
Прототипом предложенного изобретения является композитный датчик (WO 2010/055282, опубл. 20.05.2010). Композитный датчик измерения напряжения выполнен из полимерной матрицы и армирующих элементов. Внутри массива полимерной матрицы размещен по меньшей мере один слой электропроводной ткани. В слое расположен по меньшей мере один магнитомягкий аморфный ферромагнитный микропровод. Через микропровод пропускают переменный ток и регистрируют напряжение на микропроводе. При приложении механической нагрузки к материалу импеданс микропровода может изменяться вследствие эффекта гигантского магнитного импеданса и гигантского стресс-импедансного эффекта. Изменение импеданса аморфного ферромагнитного микропровода приведет к изменению регистрируемого напряжения.
Недостатком этого устройства является сложность измерения локальных механических нагрузок, поскольку датчик имеет протяженный размер и измеряет сигнал, пропорциональный механическим нагрузкам, приложенным по всей длине аморфного ферромагнитного микропровода. Кроме этого, вследствие эффекта гигантского магнитного импеданса указанный композитный датчик может реагировать на приложенные внешние магнитные поля, которые будут искажать эффект, связанный с воздействующей механической нагрузкой.
Сущность изобретения
В изобретении достигается технический результат, заключающийся в расширении функциональных возможностей датчика за счет обеспечения возможности измерения сигналов, связанных с локальными механическими нагрузками, и регистрации различного типа механических нагрузок, таких как растяжение, сжатие, кручение, а также в снижении влияния помех и повышении чувствительности.
Указанный технический результат достигается следующим образом.
Предлагаемый датчик измерения механических напряжений состоит из прямоугольной пластины, выполненной из полимерного материала. На верхней поверхности прямоугольной пластины образовано посадочное место в виде центрально симметричного углубления, в котором размещен регистратор.
Внутри массива прямоугольной пластины вдоль центральной продольной оси параллельно верхней и нижней поверхностям расположен магниточувствительный элемент, который выполнен в виде аморфного ферромагнитного микропровода.
Магниточувствительный элемент размещен внутри дифференциальной измерительной катушки и подключен через печатные проводники к первой паре контактных площадок.
Дифференциальная измерительная катушка подключена через печатные проводники ко второй паре контактных площадок. При этом обе пары контактных площадок размещены внутри посадочного места и соединены с регистратором.
Регистратор содержит источник переменного тока, источник постоянного тока, усилитель сигналов измерительной катушки. Источник переменного тока соединен с источником магнитного поля. Источник постоянного тока соединен с первой парой контактных площадок. Вход усилителя сигналов измеритель- 1 030754
ной катушки соединен со второй парой контактных площадок, а выход подключен к аналого-цифровому преобразователю, который соединен с персональным компьютером.
В частном случае прямоугольная пластина выполнена из материала на основе метакриловых полимеров.
Кроме того, посадочное место выполнено в виде центрально симметричного прямоугольного углубления.
При этом источник переменного тока имеет частоту в диапазоне 10 Гц - 10 кГц.
В частном случае аморфный ферромагнитный микропровод может быть выполнен из сплавов на основе кобальта составов Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 или Co7i.8Fe4.9Nb0.8Si7.5Bi5.
Кроме того, аморфный ферромагнитный микропровод может иметь циркулярную магнитную анизотропию или циркулярную и слабую геликоидальную магнитную анизотропию.
Также аморфный ферромагнитный микропровод может иметь длину не более 20 мм.
При этом аморфный ферромагнитный микропровод может быть заключен в стеклянную оболочку.
Кроме того, измерительная катушка выполнена в виде двух соединенных дифференциально соленоидов диаметром не более 0,5 мм, длиной не более 7 мм каждый, изготовленных виток к витку из медного провода диаметром не более 50 мкм.
Также измерительная катушка может быть выполнена в виде двухслойных тонкопленочных планарных соленоидов.
В частном случае контактный слой на нижней поверхности матрицы выполнен в виде клеепереносящей ленты.
Расширение функциональных возможностей заявляемого датчика связано со следующими особенностями его конструкции:
возможность регистрации различного типа механических нагрузок, таких как растяжение, сжатие, кручение, достигается за счет использования в качестве чувствительного элемента аморфного ферромагнитного микропровода с циркулярной магнитной анизотропией и магнитного способа регистрации полезного сигнала с использованием источника магнитного поля и измерительной катушки в отличие от измерения импеданса микропровода, проводимого в прототипе;
измерение локальных механических нагрузок достигается за счет малых размеров используемого аморфного ферромагнитного микропровода - до 20 мм и менее.
Снижение влияния помех достигается за счет дифференциального включения измерительной катушки и малых размеров используемого аморфного ферромагнитного микропровода - до 20 мм и менее.
Повышение чувствительности датчика связано с выбором и использованием аморфного ферромагнитного микропровода с циркулярной и слабой геликоидальной магнитной анизотропией, характеризующегося малыми полями анизотропии и высокой крутизной преобразования кривой перемагничивания, а также с использованием дополнительного источника постоянного тока, обеспечивающего стабилизацию циркулярной магнитной структуры микропровода.
Перечень чертежей
Изобретение поясняется чертежами, где:
на фиг. 1 изображено поперечное сечение датчика;
на фиг. 2 изображена структура датчика в плане;
на фиг. 3 изображена электрическая схема подключения датчика к регистратору;
на фиг. 4 представлены графики кривых перемагничивания при воздействии растягивающих напряжений;
на фиг. 5 представлены графики кривых перемагничивания при воздействии скручивающих напряжений.
Сведения, подтверждающие возможность осуществления изобретения
На фиг. 1-3 показаны прямоугольная пластина 1, посадочное место 2, аморфный ферромагнитный микропровод 3, дифференциальная измерительная катушка 4, первая пара контактных площадок 5, вторая пара контактных площадок 6, контактный слой 7, регистратор 8, источник переменного тока 9, источник магнитного поля 10, источник постоянного тока 11 и усилитель 12.
На фиг. 4, 5 в представленных графиках по оси X отложены значения магнитных полей в эрстедах, по оси Y отложены приведенные значения намагниченности аморфного ферромагнитного микропровода.
На фиг. 4 кривая 13 соответствует кривой перемагничивания аморфного ферромагнитного микропровода без нагрузки, кривая 14 - кривой перемагничивания того же микропровода при воздействии растягивающего напряжения. На фиг. 5 кривая 15 соответствует кривой перемагничивания без нагрузки, кривая 16 - при воздействии скручивающего напряжения.
Датчик измерения механических напряжений состоит из прямоугольной пластины 1 на основе метакриловых полимеров. Выбор данного класса полимеров определяется широким интервалом механических характеристик, охватывающим каучуки и пластики, высокой пластичностью и ударопрочностью, температурой эксплуатации до 300°C, светопропусканием до 90%, стойкостью к химическим реагентам, возможностью переработки методами экструзии, литья, пневмоформования, а также механической обработки для придания конечному изделию требуемой формы.
- 2 030754
Прямоугольная пластина 1 может иметь размеры 10x20x2.5 мм. На верхней поверхности прямоугольной пластины 1 выполнено посадочное место 2 в виде центрально симметричного прямоугольного углубления.
Посадочное место 2 может иметь размеры 6x16x0.5 мм. При этом посадочное место 2 выполнено таким образом, чтобы оно симметрично располагалось относительно положения магниточувствительного элемента.
В посадочном месте 2 размещен регистратор 8. Регистратор 8 содержит источник переменного тока 9, питающий источник магнитного поля 10, источник постоянного тока 11, питающий микропровод 3, и усилитель 12 сигналов дифференциальной измерительной катушки 4. Источник переменного тока 9 с частотой в диапазоне 10 Гц - 10 кГц соединен источником магнитного поля 10, создающим однородное магнитное поле, ориентированное вдоль магниточувствительного элемента. Вход усилителя 12 соединен со второй парой контактных площадок 6 измерительной катушки 4, а его выход подключен к аналогоцифровому преобразователю. Аналого-цифровой преобразователь соединен с персональным компьютером. Внутри массива прямоугольной пластины 1 вдоль центральной продольной оси параллельно верхней и нижней поверхностям расположен магниточувствительный элемент. Он выполнен в виде микропровода 3, который размещен внутри дифференциальной измерительной катушки 4. Микропровод 3 подключен через печатные проводники к первой паре контактных площадок 5. Первая пара контактных площадок 5 размещена внутри посадочного места 2 и соединена с источником постоянного тока 11 регистратора 8.
Микропровод 3, заключенный в стеклянную оболочку, выполнен из сплава Co67Fe3.85Ni1.45B11.5Sii4.5Moi.7. Выбор данного класса микропроводов связан с определенным типом магнитной анизотропии и наблюдаемом в них стресс-чувствительном эффекте. К микропроводу предварительно прикладывается растягивающее напряжение, что способствует регистрации сжимающих напряжений.
Известно, что в тонких аморфных ферромагнитных микропроводах в стеклянной оболочке на основе кобальта с малой отрицательной константой магнитострикции возникающие в процессе закалки внутренние напряжения создают циркулярную анизотропию и циркулярную намагниченность микропровода. Микропроводы с циркулярной анизотропией характеризуются практически линейной кривой перемагничивания в продольном поле, отсутствием гистерезиса и малым полем анизотропии. При этом приложение к микропроводу механических нагрузок на растяжение и сжатие приводит к пропорциональному растягиванию кривой перемагничивания, увеличению поля анизотропии и, соответственно, уменьшению/увеличению крутизны кривой перемагничивания. Этот эффект иллюстрируется поведением кривых 13, 14 на фиг. 4.
Приложение к микропроводу скручивающих напряжений приводит к появлению гистерезиса кривой перемагничивания и изменению коэрцитивной силы. Этот эффект иллюстрируется поведением кривых 15, 16 на фиг. 5.
В реальных аморфных ферромагнитных микропроводах в стеклянной оболочке на основе кобальта поведение ненагруженных кривых 13, 15 перемагничивания на фиг. 4, 5 может отличаться для разных микропроводов значениями полей анизотропии, присутствием небольшого гистерезиса из-за наличия слабого геликоидального типа анизотропии. Снижение влияния этих эффектов достигается за счет дополнительного циркулярного магнитного поля, создаваемого током источника постоянного тока 12, питающего микропровод 3. При этом подбор величины постоянного тока для каждого микропровода может осуществляться индивидуально таким образом, чтобы величина поля анизотропии микропроводов разных датчиков находилась в некоторых заданных пределах, например в диапазоне 2-4 Э.
Дифференциальная измерительная катушка 4 может быть выполнена в виде двух встречных соединенных дифференциально соленоидов диаметром не более 0,5 мм, длиной не более 7 мм каждый, изготовленных виток к витку из медного провода диаметром не более 50 мкм. Дифференциальная измерительная катушка 4 подключена через печатные проводники ко второй паре контактных площадок 6. Контактные площадки 6 размещены внутри посадочного места 2 и соединены с усилителем 13 регистратора
9.
На нижнюю поверхность пластины 1 нанесен контактный слой 7. Контактный слой 7 выполнен, например, в виде клеепереносящей ленты марки Scotch 9485/9482.
Датчик может не содержать клеевого слоя 7. В этом случае датчик инсталлируется на поверхность объекта измерения с помощью клея СС-33А.
Датчик работает следующим образом.
На поверхность измеряемого объекта закрепляют датчик измерения механических напряжений с помощью нанесенного снизу слоя 7. При приложении к измеряемому объекту механических напряжений, таких как растяжение, сжатие, кручение, предварительно напряженный аморфный ферромагнитный микропровод 3 также подвергается деформации, и его кривая перемагничивания изменяется так, как показано на фиг. 4, 5. Для регистрации изменения кривой перемагничивания к микропроводу 3 прикладывается переменное магнитное поле, которое формируется источником переменного тока 10 и источником
- 3 030754
магнитного поля 11. Создаваемое переменное магнитное поле с частотой в диапазоне 10 Гц - 10 кГц и амплитудой порядка поля анизотропии аморфного ферромагнитного микропровода 3 однородно в области расположения микропровода 3 и направлено вдоль его оси. Воздействующее магнитное поле обеспечивает перемагничивание микропровода 3 и вызывает появление сигнала электродвижущей силы на дифференциальной измерительной катушке 4.
В отсутствие воздействующего механического напряжения амплитуда сигнала электродвижущей силы на катушке 4 фиксирована. Приложение механического сжимающего напряжения приводит к увеличению амплитуды сигнала электродвижущей силы на катушке 4. Приложение механического растягивающего напряжения приводит к уменьшению амплитуды сигнала электродвижущей силы на катушке 4, за счет уменьшения наклона кривой перемагничивания. Приложение скручивающего напряжения приводит к изменению формы сигнала электродвижущей силы на катушке 4 за счет изменения формы кривой перемагничивания.
В предлагаемой конфигурации магнитное поле источника магнитного поля 11, с одной стороны, перемагничивает микропровод 3, ас другой стороны, напрямую воздействует на дифференциальную измерительную катушку 4. В двух встречных соленоидах дифференциальной измерительной катушки 4 сигнал от источника 11 представляет собой однородное магнитное поле, которое будет наводить электродвижущую силу. Эти сигналы будут одинаковы по знаку в каждом из соленоидов. Поэтому за счет встречного включения двух соленоидов эти сигналы будут вычитаться. Другая ситуация возникает с сигналами от перемагничивания микропровода 3. В каждой катушке действует свой кусочек микропровода 3, и поэтому каждый кусочек будет наводить свой сигнал. Эти сигналы будут противоположны по знаку в каждой из катушек. Поэтому за счет встречного включения двух соленоидов эти сигналы сложатся. Сигнал дифференциальной измерительной катушки 4 через вторую пару контактных площадок поступает на вход усилителя 13, выход которого подключен к аналого-цифровому преобразователю. После цифровой обработки сигнал поступает на персональный компьютер, в котором по полученным данным определяется воздействующее механическое напряжение.
Для проведения измерений на большой площади поверхности измеряемого объекта датчики измерения механических напряжений располагают в нужных точках исследуемой поверхности.
В предложенном датчике улучшаются магнитные характеристики магниточувствительного элемента на основе аморфного ферромагнитного микропровода за счет пропускания через него постоянного тока, а также оптимизируются процессы возбуждения магниточувствительного элемента за счет приложения продольного переменного магнитного поля вдоль аморфного ферромагнитного микропровода и регистрации отклика аморфного ферромагнитного микропровода с помощью дифференциальной измерительной катушки.
Кроме того, в датчике обеспечиваются локальность и помехозащищенность за счет использования магниточувствительного элемента малых размеров, а также за счет дифференциального включения измерительной катушки.

Claims (11)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Датчик измерения механических напряжений, состоящий из прямоугольной пластины, выполненной из полимерного материала, на верхней поверхности которой выполнено посадочное место в виде центрально-симметричного углубления, в котором размещен регистратор, при этом внутри массива прямоугольной пластины вдоль центральной продольной оси параллельно верхней и нижней поверхностям расположен магниточувствительный элемент, выполненный в виде предварительно напряженного аморфного ферромагнитного микропровода, размещенного внутри дифференциальной измерительной катушки, подключенного через печатные проводники к первой паре контактных площадок, а дифференциальная измерительная катушка подключена через печатные проводники ко второй паре контактных площадок, при этом обе пары контактных площадок размещены внутри посадочного места и соединены с регистратором, содержащим источник переменного тока, соединенный с источником магнитного поля, источник постоянного тока, соединенный с первой парой контактных площадок, и усилитель сигналов измерительной катушки, вход которого соединен со второй парой контактных площадок, а выход подключен к аналого-цифровому преобразователю, соединенному с персональным компьютером.
  2. 2. Датчик по п.1, в котором прямоугольная пластина выполнена на основе метакриловых полимеров.
  3. 3. Датчик по п.1, в котором посадочное место выполнено в виде центрально-симметричного прямоугольного углубления.
  4. 4. Датчик по п.1, в котором источник переменного тока имеет частоту в диапазоне 10 Гц - 10 кГц.
  5. 5. Датчик по п.1, в котором аморфный ферромагнитный микропровод выполнен из сплавов на основе кобальта составов Co67Fe3.85Ni1.45B11.5Si14.5Mo1.7 или Co71.8Fe4.9Nb0.8Si7.5B15.
  6. 6. Датчик по п.1, в котором аморфный ферромагнитный микропровод имеет циркулярную магнитную анизотропию или циркулярную и слабую геликоидальную магнитную анизотропию.
  7. 7. Датчик по п.1, в котором аморфный ферромагнитный микропровод имеет длину не более 20 мм.
    - 4 030754
  8. 8. Датчик по п.1, в котором аморфный ферромагнитный микропровод заключен в стеклянную оболочку.
  9. 9. Датчик по п.1, в котором измерительная катушка выполнена в виде двух соединенных дифференциально соленоидов диаметром не более 0,5 мм, длиной не более 7 мм каждый, изготовленных виток к витку из медного провода диаметром не более 50 мкм.
  10. 10. Датчик по п.1, в котором измерительная катушка выполнена в виде двухслойных тонкопленочных планарных соленоидов.
  11. 11. Датчик по п.1, в котором контактный слой на нижней поверхности матрицы выполнен в виде клеепереносящей ленты.
EA201600459A 2013-12-13 2013-12-13 Датчик измерения механических напряжений EA030754B1 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2013/001119 WO2015088372A1 (en) 2013-12-13 2013-12-13 Mechanical stress sensor

Publications (2)

Publication Number Publication Date
EA201600459A1 EA201600459A1 (ru) 2017-01-30
EA030754B1 true EA030754B1 (ru) 2018-09-28

Family

ID=53294798

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201600459A EA030754B1 (ru) 2013-12-13 2013-12-13 Датчик измерения механических напряжений

Country Status (5)

Country Link
US (1) US9841328B2 (ru)
JP (1) JP6151863B2 (ru)
EA (1) EA030754B1 (ru)
RU (1) RU2552124C1 (ru)
WO (1) WO2015088372A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2654827C1 (ru) * 2016-11-23 2018-05-22 Российская Федерация, от имени которой выступает Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий (МЧС России) Датчик измерения механических деформаций
CL2019002836A1 (es) * 2019-10-04 2020-02-28 Univ Tecnica Federico Santa Maria Utfsm Método para medir la tensión interna en un neumático

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116218A1 (en) * 2006-04-11 2007-10-18 Sensor Technology Limited Measuring physical quantities
WO2010055282A1 (en) * 2008-11-12 2010-05-20 Qinetiq Limited Composite sensor
US8286497B2 (en) * 2009-06-25 2012-10-16 Tsi Technologies Llc Strain sensor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4184093A (en) * 1978-07-07 1980-01-15 The United States Of America As Represented By The Secretary Of The Navy Piezoelectric polymer rectangular flexural plate hydrophone
JPS6438615A (en) * 1987-08-04 1989-02-08 Akai Electric Converter for mechanocardiogram
US5159347A (en) * 1989-11-14 1992-10-27 E-Systems, Inc. Micromagnetic circuit
US5195377A (en) * 1990-04-17 1993-03-23 Garshelis Ivan J Magnetoelastic force transducer for sensing force applied to a ferromagnetic member using leakage flux measurement
US5850045A (en) * 1992-12-25 1998-12-15 Omron Corporation Magnetostrictive stress sensor and apparatus applying same
JP3266727B2 (ja) * 1994-01-26 2002-03-18 本田技研工業株式会社 磁性体の応力測定方法
JP3696270B2 (ja) * 1994-08-09 2005-09-14 本田技研工業株式会社 応力測定センサ
US6747559B2 (en) * 1999-09-10 2004-06-08 Advanced Coding Systems Ltd. Glass-coated amorphous magnetic mircowire marker for article surveillance
SE518499C2 (sv) * 2001-02-02 2002-10-15 Tetra Laval Holdings & Finance Anordning vid framställning av en förpackning eller ett förpackningsmaterial
ES2268964B1 (es) * 2005-04-21 2008-04-16 Micromag 2000, S.L. "etiqueta magnetica activable/desactivable basada en microhilo magnetico y metodo de obtencion de la misma".
GB2429782B (en) * 2005-09-01 2010-03-03 Daniel Peter Bulte A method and apparatus for measuring the stress or strain of a portion of a ferromagnetic member
JP4959717B2 (ja) * 2005-12-31 2012-06-27 中国科学院物理研究所 磁性メモリセル、磁気ランダムアクセスメモリ、および、そのアクセス記憶方法
JP2007248134A (ja) * 2006-03-14 2007-09-27 Shinshu Univ 歪センサおよび圧力測定装置
EP2018561A2 (en) * 2006-05-10 2009-01-28 Koninklijke Philips Electronics N.V. A magnetic system
US8168120B1 (en) * 2007-03-06 2012-05-01 The Research Foundation Of State University Of New York Reliable switch that is triggered by the detection of a specific gas or substance
EP2128581A4 (en) * 2007-03-28 2011-10-19 Nissan Motor MAGNETOSTRICTIVE STRAIN SENSOR
US7913569B2 (en) * 2007-12-11 2011-03-29 Israel Aerospace Industries Ltd. Magnetostrictive type strain sensing means and methods
RU2492459C1 (ru) 2012-02-27 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Магнитоупругий датчик для определения механических напряжений в ферромагнитных материалах

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116218A1 (en) * 2006-04-11 2007-10-18 Sensor Technology Limited Measuring physical quantities
WO2010055282A1 (en) * 2008-11-12 2010-05-20 Qinetiq Limited Composite sensor
US8286497B2 (en) * 2009-06-25 2012-10-16 Tsi Technologies Llc Strain sensor

Also Published As

Publication number Publication date
JP6151863B2 (ja) 2017-06-21
RU2552124C1 (ru) 2015-06-10
US9841328B2 (en) 2017-12-12
WO2015088372A1 (en) 2015-06-18
EA201600459A1 (ru) 2017-01-30
US20160320253A1 (en) 2016-11-03
JP2016540983A (ja) 2016-12-28

Similar Documents

Publication Publication Date Title
Geliang et al. Design of a GMI magnetic sensor based on longitudinal excitation
Yu et al. Differential-type GMI magnetic sensor based on longitudinal excitation
EP2353162B1 (en) Gmr biosensor with aligned magnetic field
Stupakov et al. Correlation between hysteresis and Barkhausen noise parameters of electrical steels
Chen et al. A power sensor tag with interference reduction for electricity monitoring of two-wire household appliances
Hristoforou et al. Magnetic sensors: taxonomy, applications, and new trends
Piotrowski et al. The influence of elastic deformation on the properties of the magnetoacoustic emission (MAE) signal for GO electrical steel
Hristoforou et al. Sensors based on eddy currents in a moving disk
RU2552124C1 (ru) Датчик измерения механических напряжений
Hlenschi et al. Flexible force sensors based on permeability change in ultra-soft amorphous wires
Stupakov et al. Measurement of Barkhausen noise and its correlation with magnetic permeability
Mirzamohamadi et al. Novel contactless hybrid static magnetostrictive force-torque (chsmft) sensor using galfenol
Ricken et al. Improved multi-sensor for force measurement of pre-stressed steel cables by means of the eddy current technique
Stupakov et al. Measurement of electrical steels with direct field determination
Bydžovský et al. Strain sensors based on stress-annealed Co69Fe2Cr7Si8B14 amorphous ribbons
Alves et al. New 1D–2D magnetic sensors for applied electromagnetic engineering
Belyakov et al. Current sensor based on anisotropic magnetoresistive effect
Charubin et al. Mobile ferrograph system for ultrahigh permeability alloys
US20110140691A1 (en) Non-destructive determination of magnetic permeability tensor in materials of arbitrary shape
CN102890252A (zh) 一种柔性磁性薄膜饱和磁致伸缩系数的测量方法
US3534254A (en) Method for measuring the magnetoelastic coefficient and difference in anisotropy field in ferromagnetic material
JP2552683B2 (ja) 電流センサー
Doan et al. Magnetization measurement system with giant magnetoresistance zero-field detector
Hristoforou et al. On a new principle of a smart multisensor based on magnetic effects
RU2654827C1 (ru) Датчик измерения механических деформаций

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AZ KG TJ TM RU