JP3695941B2 - Reservoir operation control device - Google Patents

Reservoir operation control device Download PDF

Info

Publication number
JP3695941B2
JP3695941B2 JP15279898A JP15279898A JP3695941B2 JP 3695941 B2 JP3695941 B2 JP 3695941B2 JP 15279898 A JP15279898 A JP 15279898A JP 15279898 A JP15279898 A JP 15279898A JP 3695941 B2 JP3695941 B2 JP 3695941B2
Authority
JP
Japan
Prior art keywords
distribution
flow rate
reservoir
correction amount
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15279898A
Other languages
Japanese (ja)
Other versions
JPH11345028A (en
Inventor
太 黒川
寿治 杉野
達雄 芦木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15279898A priority Critical patent/JP3695941B2/en
Publication of JPH11345028A publication Critical patent/JPH11345028A/en
Application granted granted Critical
Publication of JP3695941B2 publication Critical patent/JP3695941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Flow Control (AREA)
  • Control Of Non-Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は上下水道プラントで用いる配水池を運用制御する配水池運用制御装置に関する。
【0002】
【従来の技術】
一般に、上水道施設における配水池設備は、浄水場で生産される浄水をバッフアの役割をもつ配水池に一旦貯水した後、各需要家の需要に応じて順次供給する。このとき、配水池への引入流量計画値および配水池からの配水流量計画値は、予め事前に配水池の運用範囲となる上下限水位を逸脱しないように設定され、これらの計画値に基づき配水池の運用が行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、以上のような配水池の運用では、事前に定めた計画値に基づいて配水池を運用することから、引入流量・配水流量計画値と実際の引入流量および配水流量との間に誤差が生ずることが多く、計画値通りに配水池の運用を行うことが困難である。
【0004】
そこで、従来、運転操作員が配水池の水位を定期的に監視し、計画値通りの水位でないとき、手動により計画値を補正し、配水池の運用を行っている。
本発明は上記事情に鑑みてなされたもので、予め定めた配水流量計画値を配水池の水位変化に応じて自動的に補正する配水池運用制御装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明は、予め配水池への引入流量計画値と配水池からの配水流量計画値とを記憶する計画記憶手段と、この計画記憶手段に記憶される引入流量計画値に基づいて配水池への引入流量を制御する引入流量制御手段と、前記引入流量計画値と前記配水流量計画値とを用いて配水池目標水位を求める目標水位演算手段と、この目標水位演算手段によって求めた配水池目標水位と配水池の実績水位との偏差およびこの偏差の変化量を入力とし、ファジィ推論により補正量を求め、前記配水流量計画値を補正する配水流量計画値補正手段と、この補正手段により補正された配水流量計画補正量を用いて配水池の配水流量を制御する配水流量制御手段とを設けた配水池運用制御装置である。
【0006】
このような手段を講じたことにより、目標水位演算手段が予め計画される引入流量計画値と配水流量計画値とを用いて配水池目標水位を求めると、配水流量計画値補正手段では、その配水池目標水位と配水池の実績水位との偏差およびこの偏差の変化量を入力としてファジィ推論によって補正量を求めた後、配水流量計画値を補正するので、人手を介入せずに配水池水位に基づいて自動的に配水流量計画値を補正でき、配水池の安定運用を確保できる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明に係わる配水池運用制御装置の一実施の形態を示す全体構成図である。
【0008】
この配水池運用制御装置は上水道プラントの配水池設備系1と配水池運用制御系10とからなっている。
この配水池設備系1は、浄水場で生産される浄水を貯水する配水池2の入側配管に引入弁3、出側配管には配水ポンプ4が設置され、引入弁3を開いて配水池2に引き入れた浄水を配水ポンプ4を用いて各需要家に配水する構成となっている。
【0009】
一方、配水池運用制御系10は、予め需要家の需要動向により計画される配水池2への引入流量計画値および配水池2からの配水流量計画値を記憶する計画記憶手段11と、この計画記憶手段11に記憶される引入流量計画値および配水流量計画値を用いて、配水池2の目標水位を演算する配水池目標水位演算手段12と、配水流量計画値補正手段13と、配水流量制御手段14と、引入流量制御手段15とによって構成されている。
【0010】
前記配水流量計画値補正手段13は、配水池目標水位演算手段12によって求めた配水池2の目標水位と実際の配水池水位との偏差に基づいて配水流量計画値の補正量を算出し、計画記憶手段11から読み出す配水流量計画値を補正する機能をもっている。さらに、配水量制御手段14は配水流量計画値補正手段13で補正された配水流量計画値補正量に基づいて配水ポンプ4の吐出流量を制御し、また引入流量制御手段15は前記計画記憶手段11に記憶される引入流量計画値に基づいて引入弁3の開度を制御し浄水を配水池2に引き込む構成である。
【0011】
次に、以上のような配水池運用制御装置の動作について説明する。
予め運転操作員などは過去の経験,知識にもとに一日間で必要とする配水池への引入流量計画値および配水池からの配水流量計画値を計画記憶手段11に記憶し管理する。
【0012】
この状態において引入流量制御手段15は、計画記憶手段11に記憶される引込流量計画値に基づいて引入弁2の開度を制御するが、一方、配水流量系では次のような処理を行う。
【0013】
すなわち、配水池目標水位演算手段12は、計画記憶手段11に記憶される配水池引入流量計画値および配水流量計画値をもとに、次のような演算式を用いて配水池目標水位を求める。
【0014】
hsv(i) =hsv(i-dt)+(1/A)・{Qin(i) −Qout(i)} …(1)
ここで、hsv(i) :時刻iにおける配水池目標水位[m ]
Qin(i) :時刻iにおける配水池引入流量計画値[m 3 /h ]
Qout(i):時刻iにおける配水池配水流量計画値[m 3 /h ]
A:配水池断面積[m 2
dt:計画周期
なお、配水池目標水位を演算する際の開始時刻(i=n:開始時刻)の水位を指定する場合には、次のような初期水位を設定する。
【0015】
hsv(n) =h1 …(2)
但し、h1:開始時刻の初期水位設定値[m ]である。
このようにして配水池目標水位hsv(i) を求めた後、この配水池目標水位hsv(i) を配水流量計画値補正手段13に送出する。この配水流量計画値補正手段13は、図2に示すように配水池目標水位演算手段12で求めた配水池目標水位および実際の配水池水位の偏差である配水池水位偏差と、この配水池水位偏差の変化量とを入力とし、配水池水位用ファジィルールを用いてファジィ推論により配水流量計画値の補正量を算出する。
【0016】
因みに、図3は配水流量計画値の補正量を演算するためのファジィルールテーブルを示す図、図4(a)は入力側メンバーシップ関数例を示す図、同図(b)は出力側メンバーシップ関数例を示す図である。
【0017】
この図3の配水池水位偏差および配水池水位偏差の変化量を入力とするファジィ変数の意味は次の通りである。
L:小さい
ML:やや小さい
Z:ゼロ
MH:やや大きい
H:大きい
また、配水流量補正量のファジィ変数の意味は次の通りである。
【0018】
QL:配水流量補正量を減らす
QML:配水流量補正量を少し減らす
QZ:配水流量補正量を維持する
QMH:配水流量補正量を少し増やす
QH:配水流量補正量を増やす
ファジィ推論における入力,つまり実際の配水池水位と配水池の目標水位との偏差である配水池水位偏差およびこの配水池水位偏差の変化量は次の式を用いて正規化する。
【0019】
e(i) =hpv(i) −hsv(i)
de(i) =e(i) −e(i-dt)
x1 =e(i) /g1
x2 =de(i) /g2 …(3)
ここで、
hpv(i) :時刻iにおける配水池水位[m ]
x1:水位偏差の正規化値
x2:水位偏差変化量の正規化値
e(i) :時刻iにおける配水池目標水位と配水池実績水位との水位偏差[m ]
de(i) :時刻iにおける水位偏差の変化量[m ]
g1:水位偏差に対するゲイン[m ]
g2:水位偏差変化量に対するゲイン[m ]
以上のように正規化された入力値をもとに、ファジィルールを用いてファジィ推論によりファジィ出力y1を求めることができる。そして、ファジィ推論により求められたファジィ出力y1から次式を用いて補正量を求める。
【0020】
du (i) =y1・g11
u(i) =u(i-dt)+du (i) …(4)
上式において、
y1:補正量の正規化値
g11:補正量に対するゲイン[m 3 /h ]
du (i) :時刻iにおける補正量[m 3 /h ]
u(i) :時刻iにおける補正量を加味した配水流量計画値補正量[m 3 /h ]である。
【0021】
以上のようにして配水流量計画値補正手段13によって補正量を求めたならば、この補正量を用いて計画記憶手段11の配水流量計画値を補正し、配水流量計画値補正量u(i) を求める。
【0022】
さらに、配水流量制御手段14は、配水流量補正手段13で得られる配水流量計画値補正量に基づいて配水ポンプ4の吐出流量を制御する。
従って、以上のような実施の形態によれば、配水池目標水位と実際の配水池水位との偏差をもとに、ファジィ推論によって補正量を求めて配水流量計画値を補正し、この補正された配水流量計画値補正量を用いて配水ポンプ4の吐出流量を制御するので、運転操作員の介入を必要とせずに自動的に配水池の配水流量計画値を補正でき、配水池の安定運用を図ることができる。
(その他の実施の形態)
(1) 次に、図5および図6を参照して配水池運用制御装置の他の実施の形態について説明する。
【0023】
この実施の形態は、配水池水位および配水池引入流量を用いて補正量を求める例である。従って、配水流量計画値補正手段13の改良例であって、この補正手段13を除く他の構成部分は図1と同様であるので、ここではその説明は省略する。
【0024】
図1および図2に示す配水流量計画値補正手段13は、配水池目標水位と配水池実績水位との偏差を用いて補正量を求めた例であるが、本実施の形態においては、例えば図5に示すように目標水位演算手段12で求めた配水池目標水位と配水池の実績水位との偏差およびこの偏差の変化量を入力としてファジィ推論により補正量を求める水位系補正手段21と、前記引入流量計画値と引入流量実績値との偏差およびこの偏差の変化量を入力としてファジィ推論により補正量を求める引入流量系補正手段22と、これら両補正手段21,22で得られる補正量を用いて、配水流量計画値を補正する補正量演算手段23とが設けられている。
【0025】
すなわち、配水流量計画値補正手段13は、計画記憶手段11に記憶される配水流量計画値を補正するに際し、図5に示すように配水池水位用ファジィルールテーブルと配水池引入用ファジィルールテーブルとを用意し、これら配水池水位用ファジィルールテーブルおよび配水池引入用ファジィルールテーブルを用いて、それぞれ個別にファジイ推論により補正量を求める。
【0026】
この配水池引入用のファジイ推論の入力としては、引入流量計画値および実際の引入流量の偏差と、この偏差の変化量とが用いられる。
具体的には、配水池引入流量計画値と実際の配水池引入流量との偏差を演算し、次式のように正規化する。
【0027】
qe (i) =qpv(i) −qsv(i)
dqe (i) =qe (i) −qe (i-dt)
x3=qe (i) /g3
x4=dqe (i) /g4 …(5)
ここで、
qe (i) :時刻iにおける配水池引入流量偏差[m 3 /h ]
dqe (i) :時刻iにおける配水池引入流量偏差の変化量[m 3 /h ]
qpv(i) :配水池引入流量[m 3 /h ]
qsv(i) :配水池引入流量計画値[m 3 /h ]
x3 :配水池引入流量偏差の正規化値
g3 :配水池引入流量偏差に対するゲイン
x4 :配水池引入流量偏差の変化量の正規化値
g4 :配水池引入流量偏差の変化量に対するゲイン
このようにして正規化した値x3,x4を図6に示すファジィルールテーブルの入力とし、ファジィ推論により補正量を求める。なお、配水池引入流量のファジィ推論に用いるメンバーシップ関数は図4と同様のものが用いられる。
【0028】
そして、補正演算手段23は、以上のようにして配水池引入流量に関するファジィ推論とによって得られた補正量と前記(4)式の配水池水位に関するファジィ推論とによって得られた補正量とを用い、下記(6)式により配水流量計画値の補正を行い、配水流量計画値補正量u(i) を求める。
【0029】
du (i) =a(y1・g11)+b(y2・g22)
u(i) =u(i-dt)+du (i) …(6)
ここで、
a :配水池水位に関するファジィ推論に用いるファジィルールの出力に対する重み
b :配水池引入に関するファジィ推論に用いるファジィルールの出力に対する重み
y1:配水池水位のファジィルールの出力
y2:配水池引入流量のファジィルールの出力
g11:配水池水位のファジィルールのゲイン[m 3 /h ]
g22:配水池引入流量のファジィルールのゲイン[m 3 /h ]
従って、以上のような実施の形態によれば、配水池の水位に関するファジィ推論結果の出力と配水池の引入流量に関するファジィ推論結果の出力とを用いて補正量du (i) を加味した配水流量計画補正量u(i) を用いて、配水ポンプ4の吐出流量を制御するので、より適切な配水流量計画値補正量を得ることができ、配水池引入流量側の状況を踏まえて配水流量を制御でき、配水池の安定運用を確保できる。
(2) さらに、図7および図8を用いて、他の実施の形態について説明する。
【0030】
この実施の形態は、配水流量計画値補正手段13の改良例であり、さらに詳しくは現在の配水流量補正量に基づいてファジィ推論に用いるファジィルールテーブルを選択し、この選択されたファジィルールを用いて配水流量計画値の補正量を求める例である。なお、補正手段13を除く他の構成部分は図1と同様であるので、ここではその説明は省略する。
【0031】
配水流量計画値補正手段13は、図7に示すように予め複数のファジィルールテーブルをもつファジィルール群31と、現在の補正量に基づいてファジィルール群31の中から最適なファジィルールを選択するファジィルール選択手段32と、このファジィルール選択手段32で選択されたファジィルールを用いて図2ないし図4と同様にファジィ推論を実行し配水流量計画値の補正量を求めるファジィ演算手段33とによって構成されている。
【0032】
このファジィルール選択方法は、例えば現在の補正量が大きい場合、それ以上大きな補正量がかからないようなファジィルール,例えば図8(a)に示すようなファジィルールを選択し、一方、現在の補正量が小さい場合にはそれ以上小さな補正量がかからないようなファジィルール,例えば図8(b)に示すようなファジィルールを選択する。ファジィ演算手段33は、その選択されたファジィルールを用いて配水池水位に対するファジィ推論演算を実行し配水流量計画値の補正量を求める。そして、求めた補正量を用いて配水流量計画値を補正し配水流量制御手段14に送出し、配水ポンプ3の吐出流量を制御する。
【0033】
従って、以上のような実施の形態によれば、現在の補正量の傾向を見ながら最適なファジィルールを選択し、ファジィ推論によって補正量を求めて配水流量計画値を補正するので、より速やかに実際の配水流量に収束させることができる。
(3) さらに、配水池運用制御装置の他の実施の形態について説明する。
【0034】
この実施の形態は、配水流量計画値補正手段13の改良例であり、さらに詳しくは予めテーブル化した補正量の中からファジィ推論によって1つの補正量を選択する例である。なお、補正手段13を除く他の構成部分は図1と同様であるので、ここではその説明は省略する。
【0035】
この配水流量計画値補正手段13は、図9に示すように配水流量計画値に対する補正量を定める補正量テーブル41を設け、ファジィ推論によって補正量を選択する。このファジィ推論は、図3および図4に示すものと同様のファジィルールおよびメンバーシップ関数を用いるが、出力のファジィ変数の意味としては次のような内容とする。
【0036】
QL:補正量を2段階減らす
QML:補正量を1段階減らす
QZ:補正量を維持する
QMH:補正量を1段階増やす
QH:補正量を2段階増やす
ファジィ推論の出力としては、−1から+1の間で出力される。従って、以下に示す方法によりファジィ推論の出力結果yを流量補正の段階の増減に変換し、下式を用いて補正量を求める。
【0037】
(3/4)<yの時、…現在補正量u(i) を2段階増加{u(i) =2}する。
(1/4)<y≦(3/4)の時、…現在補正量u(i) を1段階増加{u(i) =1}する。
【0038】
(−1/4)≦y≦(1/4)の時、…現在補正量u(i) を維持{u(i) =0}する。
(−3/4)≦y≦(−1/4)の時、…現在補正量u(i) を1段階減少{du(i) =−1}する。
【0039】
y<(−3/4)の時、…現在補正量u(i) を2段階減少{du(i) =−2}する。
u(i) =u(i-dt)+du(i) …(7)
但し、u(i) :時刻iにおける補正量(−m〜+mの段階出力)
du(i) :時刻iにおける補正量変化量(−2〜+2の段階出力)
そこで、この(7)式により求めた段階に応じた補正量を補正量テーブル41から取り出し、配水流量計画値を補正する。配水流量制御手段14は補正された配水流量計画値補正量を用いて配水ポンプ3の吐出流量を制御する。
【0040】
以上のような実施の形態によれば、予め補正量テーブル41により補正量の幅ないし上下限補正量を定めることが可能となり、補正量の行き過ぎ等を容易に防止できる。
(4) さらに、配水流量計画値補正手段13の他の例について説明する。
【0041】
この実施の形態は、補正量テーブル41の中の補正量の決定の他の例である。なお、補正手段13を除く他の構成部分は図1と同様であるので、ここではその説明は省略する。
【0042】
前記(3)の実施の形態は、予め配水流量計画値の補正量を設定し、ファジィ推論の推論結果に基づいて補正量を選択するものであるが、本実施の形態は、前記(3)の実施の形態と同様に補正量テーブル41を設けるが、当該(3)の実施の形態と異なり、配水池水位と配水池引入流量とを用い、前記(1)の実施の形態と同様のファジィルールテーブルの下にファジィ推論を実行し、補正量テーブル41の配水流量計画値の補正量を選択する。なお、各ファジイ変数の意味は前記(3)の実施の形態の場合と同様の意味で使用する。
【0043】
さらに、配水流量計画値補正手段13の更に他の例について説明する。
この実施の形態は配水流量計画値補正手段13の改良例であり、さらに詳しくは補正量テーブル41の補正量の決定の他の例である。
【0044】
この実施の形態は、前記(3)の実施の形態と同様に補正量テーブル41を用い、かつ、配水池水位に基づいて図3および図4のようなファジィルールおよびメンバーシップ関数を用いてファジィ推論を実行し、補正量テーブル41における配水流量計画値の補正量を決めるものである。なお、各ファジィ変数の意味は前記(3)の実施の形態で用いたものと同じである。
【0045】
従って、以上述べた前記(3)〜(5)の実施の形態は、予め事前に運転操作員が配水流量計画値の補正量を把握でき、補正量の行き過ぎ等を容易に防止でき、さらにプラントの状況をみながら補正量を容易に修正できる。
【0046】
【発明の効果】
以上説明したように本発明によれば、運転操作員が介入せずに実際の配水池水位の状況に応じて予め定めた配水流量計画値を自動的に補正でき、配水池の安定運用を実現できる。
【図面の簡単な説明】
【図1】 本発明に係わる配水池運用制御装置の一実施の形態を示す全体構成図。
【図2】 図1に示す配水流量計画値補正手段を説明する図。
【図3】 図1に示す配水流量計画値補正手段で用いるファジイルールテーブル図。
【図4】 メンバシップ関数を示す図。
【図5】 配水流量計画値補正手段の他の例を説明する図。
【図6】 図5に示す配水流量計画値補正手段で用いるファジイルールテーブル図。
【図7】 配水流量計画値補正手段のさらに他の例を説明する図。
【図8】 図7に示す配水流量計画値補正手段で用いるファジイルールテーブル図。
【図9】 配水流量計画値補正手段のさらに他の例を説明する補正量テーブル図。
【符号の説明】
1…配水池設備系
2…配水池
10…配水池運用制御系
12…配水池目標水位演算手段
13…配水流量計画値補正手段
14…配水流量制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distribution reservoir operation control device for operating and controlling a distribution reservoir used in a water and sewage plant.
[0002]
[Prior art]
In general, the reservoir facilities in the water supply facility temporarily store the purified water produced in the water treatment plant in the reservoir having the role of the buffer, and then sequentially supply it according to the demand of each consumer. At this time, the planned flow rate to the reservoir and the planned flow rate from the reservoir are set in advance so as not to deviate from the upper and lower water levels, which are the operation range of the reservoir, and distributed based on these planned values. The water pond is being operated.
[0003]
[Problems to be solved by the invention]
However, in the operation of the reservoir as described above, the reservoir is operated based on the planned value set in advance, so there is an error between the incoming flow rate / distributed flow rate plan value and the actual incoming flow rate and distributed flow rate. It often occurs and it is difficult to operate the reservoir as planned.
[0004]
Therefore, conventionally, the operator regularly monitors the water level in the reservoir, and when the water level is not as planned, the planned value is manually corrected to operate the reservoir.
This invention is made | formed in view of the said situation, and it is providing the water reservoir operation control apparatus which correct | amends a predetermined water distribution flow rate plan value automatically according to the water level change of a water reservoir.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a plan storage means for storing in advance a flow-in plan value for a distribution reservoir and a distribution flow-rate plan value from the distribution reservoir, and a flow-in flow plan stored in the plan storage means. An inlet flow rate control means for controlling the incoming flow rate to the reservoir based on the value, a target water level calculating means for obtaining the target water level of the reservoir using the inlet flow rate plan value and the distribution flow rate plan value, and the target water level calculation A distribution flow rate plan value correction means for obtaining a correction amount by fuzzy inference by using a deviation between the target water level of the distribution reservoir obtained by the means and the actual water level of the distribution reservoir and a change amount of the deviation as input, and correcting the distribution flow rate plan value. The distribution reservoir operation control device is provided with a distribution flow rate control means for controlling the distribution flow rate of the distribution reservoir using the distribution flow rate plan correction amount corrected by the correction means.
[0006]
By taking such measures, when the target water level calculation means obtains the target water level of the reservoir using the planned inflow flow rate and the planned distribution flow rate, the distribution flow rate planned value correction means After calculating the correction amount by fuzzy reasoning using the deviation between the target water level of the reservoir and the actual water level of the reservoir and the amount of change of this deviation as input, the distribution flow rate plan value is corrected. Based on this, it is possible to automatically correct the distribution flow plan value, and to ensure stable operation of the distribution reservoir.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram showing an embodiment of a reservoir operation control apparatus according to the present invention.
[0008]
This reservoir operation control device is composed of a reservoir facility system 1 and a reservoir operation control system 10 of a water supply plant.
This reservoir system 1 has an inlet valve 3 in the inlet pipe of the reservoir 2 for storing the purified water produced in the water treatment plant, and a water distribution pump 4 in the outlet pipe, and opens the inlet valve 3 to open the reservoir. It is the structure which distributes the purified water withdrawn in 2 to each consumer using the water distribution pump 4.
[0009]
On the other hand, the distribution reservoir operation control system 10 includes a plan storage means 11 for storing a planned flow rate of flow into the distribution reservoir 2 and a planned distribution flow rate from the distribution reservoir 2 that are planned in advance according to the demand trend of the customer, and this plan. Reservoir target water level calculation means 12 for calculating the target water level of the distribution reservoir 2 using the intake flow plan value and distribution flow plan value stored in the storage means 11, distribution flow plan value correction means 13, and distribution flow control. It is comprised by the means 14 and the inflow flow control means 15.
[0010]
The distribution flow rate planned value correction means 13 calculates a correction amount of the distribution flow rate planned value based on the deviation between the target water level of the distribution reservoir 2 obtained by the distribution reservoir target water level calculation means 12 and the actual distribution reservoir water level. It has a function of correcting the distribution flow rate plan value read from the storage means 11. Further, the water distribution amount control means 14 controls the discharge flow rate of the water distribution pump 4 based on the water distribution flow rate plan value correction amount corrected by the water distribution flow rate plan value correction means 13, and the inlet flow rate control means 15 controls the plan storage means 11. This is a configuration in which the opening of the inlet valve 3 is controlled based on the planned inlet flow rate stored in, and purified water is drawn into the reservoir 2.
[0011]
Next, the operation of the above-described reservoir operation control apparatus will be described.
In advance, the operator or the like stores and manages in the plan storage means 11 the planned flow-in value to the distribution reservoir and the planned distribution flow rate from the distribution reservoir required in one day based on past experience and knowledge.
[0012]
In this state, the intake flow rate control means 15 controls the opening degree of the intake valve 2 based on the planned intake flow rate value stored in the plan storage means 11, while the distribution flow rate system performs the following processing.
[0013]
That is, the distribution reservoir target water level calculation means 12 calculates the distribution reservoir target water level using the following calculation formula based on the distribution reservoir inflow flow rate planned value and the distribution flow rate planned value stored in the plan storage means 11. .
[0014]
hsv (i) = hsv (i-dt) + (1 / A). {Qin (i) −Qout (i)} (1)
Where hsv (i): target reservoir water level at time i [m]
Qin (i): Reservoir inlet flow plan value at time i [m 3 / h]
Qout (i): Reservoir water distribution flow plan value at time i [m 3 / h]
A: Reservoir cross-sectional area [m 2 ]
dt: Planning cycle When specifying the water level at the start time (i = n: start time) when calculating the reservoir target water level, the following initial water level is set.
[0015]
hsv (n) = h1 (2)
However, h1: Initial water level set value [m] at the start time.
After the distribution reservoir target water level hsv (i) is obtained in this way, the distribution reservoir target water level hsv (i) is sent to the distribution flow rate planned value correction means 13. As shown in FIG. 2, the distribution flow rate planned value correction means 13 is a distribution tank water level deviation that is a deviation between the distribution reservoir target water level obtained by the distribution reservoir target water level calculation means 12 and the actual distribution water level, and the distribution water level. The amount of change in the deviation is input, and the correction amount of the distribution flow rate plan value is calculated by fuzzy inference using the fuzzy rule for the reservoir water level.
[0016]
3 is a diagram showing a fuzzy rule table for calculating the correction amount of the distribution flow rate planned value, FIG. 4 (a) is a diagram showing an example of an input side membership function, and FIG. 3 (b) is an output side membership. It is a figure which shows an example of a function.
[0017]
The meanings of the fuzzy variables having the reservoir level deviation and the change amount of the reservoir level deviation in FIG. 3 as inputs are as follows.
L: Small ML: Slightly small Z: Zero MH: Slightly large H: Large In addition, the meaning of the fuzzy variable of the distribution flow rate correction amount is as follows.
[0018]
QL: Decrease distribution flow correction amount QML: Reduce distribution flow correction amount a little QZ: Maintain distribution flow correction amount QMH: Increase distribution flow correction amount a little QH: Input in fuzzy reasoning to increase distribution flow correction amount, that is, actual The difference between the reservoir level and the target level of the reservoir is normalized by using the following equation.
[0019]
e (i) = hpv (i) -hsv (i)
de (i) = e (i) -e (i-dt)
x1 = e (i) / g1
x2 = de (i) / g2 (3)
here,
hpv (i): Reservoir level at time i [m]
x1: Normalized value of water level deviation x2: Normalized value of change in water level deviation e (i): Water level deviation [m] between the target reservoir level and actual reservoir level at time i
de (i): Change in water level deviation at time i [m]
g1: Gain for water level deviation [m]
g2: Gain for water level deviation change [m]
Based on the input values normalized as described above, the fuzzy output y1 can be obtained by fuzzy inference using fuzzy rules. Then, the correction amount is obtained from the fuzzy output y1 obtained by fuzzy inference using the following equation.
[0020]
du (i) = y1 · g11
u (i) = u (i-dt) + du (i) (4)
In the above formula,
y1: normalized value of correction amount g11: gain with respect to correction amount [m 3 / h]
du (i): Correction amount at time i [m 3 / h]
u (i): The distribution flow rate planned value correction amount [m 3 / h] taking into account the correction amount at time i.
[0021]
When the correction amount is obtained by the distribution flow rate planned value correction means 13 as described above, the distribution flow rate planned value in the plan storage means 11 is corrected using this correction amount, and the distribution flow rate planned value correction amount u (i). Ask for.
[0022]
Further, the water distribution flow rate control means 14 controls the discharge flow rate of the water distribution pump 4 based on the water distribution flow rate plan value correction amount obtained by the water distribution flow rate correction means 13.
Therefore, according to the embodiment as described above, based on the deviation between the distribution reservoir target water level and the actual distribution reservoir water level, the correction amount is obtained by fuzzy inference, and the distribution flow rate planned value is corrected. Since the discharge flow rate of the distribution pump 4 is controlled using the corrected distribution flow rate value, the distribution flow rate value of the distribution reservoir can be automatically corrected without the need for operator intervention, and the stable operation of the distribution reservoir Can be achieved.
(Other embodiments)
(1) Next, another embodiment of the reservoir operation control device will be described with reference to FIGS. 5 and 6.
[0023]
This embodiment is an example in which the correction amount is obtained using the distribution reservoir water level and the distribution reservoir intake flow rate. Therefore, it is an improvement example of the distribution flow rate planned value correcting means 13 and the other components except the correcting means 13 are the same as those in FIG.
[0024]
The distribution flow rate planned value correction means 13 shown in FIG. 1 and FIG. 2 is an example in which the correction amount is obtained using the deviation between the distribution reservoir target water level and the distribution reservoir actual water level. In the present embodiment, for example, FIG. As shown in FIG. 5, the water level system correcting means 21 for obtaining a correction amount by fuzzy inference by inputting the deviation between the target water level of the reservoir calculated by the target water level calculating means 12 and the actual water level of the reservoir and the amount of change of the deviation, Using an input flow rate correction means 22 for obtaining a correction amount by fuzzy inference using a deviation between the planned intake flow rate value and the actual flow rate value and a change amount of the deviation, and using correction amounts obtained by both of the correction means 21 and 22. Thus, correction amount calculation means 23 for correcting the distribution flow rate planned value is provided.
[0025]
That is, when the distribution flow rate planned value correction means 13 corrects the distribution flow rate planned value stored in the plan storage means 11, as shown in FIG. 5, the distribution water level fuzzy rule table and the distribution tank entry fuzzy rule table Using the fuzzy rule table for the reservoir level and the fuzzy rule table for entering the reservoir, the correction amount is obtained individually by fuzzy inference.
[0026]
As the input of the fuzzy inference for introducing the reservoir, the planned inflow rate and the deviation of the actual inflow rate and the change amount of the deviation are used.
Specifically, the deviation between the planned distribution reservoir flow rate and the actual reservoir flow is calculated and normalized as shown in the following equation.
[0027]
qe (i) = qpv (i)-qsv (i)
dqe (i) = qe (i)-qe (i-dt)
x3 = qe (i) / g3
x4 = dqe (i) / g4 (5)
here,
qe (i): Discharge reservoir flow rate deviation at time i [m 3 / h]
dqe (i): Change amount of drainage flow rate deviation at time i [m 3 / h]
qpv (i): Reservoir inlet flow [m 3 / h]
qsv (i): Reservoir inlet flow plan value [m 3 / h]
x3: Normalized value of the distribution tank inlet flow deviation g3: Gain relative to the distribution tank inlet flow deviation x4: Normalized value of the variation of the distribution tank inlet flow deviation g4: Gain relative to the variation of the distribution tank inlet flow deviation The normalized values x3 and x4 are input to the fuzzy rule table shown in FIG. 6, and a correction amount is obtained by fuzzy inference. In addition, the membership function used for the fuzzy inference of the distribution tank inflow is the same as that shown in FIG.
[0028]
And the correction | amendment calculating means 23 uses the correction amount obtained by the fuzzy reasoning regarding the reservoir inflow flow amount as described above and the fuzzy reasoning regarding the reservoir water level of the above equation (4). Then, the distribution flow rate planned value is corrected by the following equation (6) to obtain the distribution flow rate planned value correction amount u (i).
[0029]
du (i) = a (y1 · g11) + b (y2 · g22)
u (i) = u (i-dt) + du (i) (6)
here,
a: Weight for output of fuzzy rule used for fuzzy inference regarding reservoir level b: Weight for output of fuzzy rule used for fuzzy reasoning for reservoir entry y1: Output of fuzzy rule for reservoir level y2: Fuzzy of reservoir inlet flow rate Rule output g11: Fuzzy rule gain of distribution reservoir water level [m 3 / h]
g22: Fuzzy rule gain [m 3 / h] of the reservoir flow rate
Therefore, according to the embodiment as described above, the distribution flow rate considering the correction amount du (i) using the output of the fuzzy inference result regarding the water level of the distribution reservoir and the output of the fuzzy inference result regarding the inflow flow rate of the distribution reservoir. Since the discharge flow rate of the distribution pump 4 is controlled using the planned correction amount u (i), a more appropriate distribution flow rate plan value correction amount can be obtained, and the distribution flow rate can be determined based on the situation on the distribution reservoir inlet flow side. It can be controlled and stable operation of the reservoir can be secured.
(2) Further, another embodiment will be described with reference to FIGS.
[0030]
This embodiment is an improvement example of the distribution flow rate planned value correction means 13, and more specifically, a fuzzy rule table used for fuzzy inference is selected based on the current distribution flow rate correction amount, and this selected fuzzy rule is used. It is an example which calculates | requires the correction amount of a distribution water flow plan value. Since the other components except the correcting means 13 are the same as those in FIG. 1, the description thereof is omitted here.
[0031]
As shown in FIG. 7, the distribution flow rate planned value correction means 13 selects an optimum fuzzy rule from the fuzzy rule group 31 having a plurality of fuzzy rule tables in advance and the fuzzy rule group 31 based on the current correction amount. The fuzzy rule selection means 32 and the fuzzy calculation means 33 for executing the fuzzy inference in the same manner as in FIGS. 2 to 4 using the fuzzy rule selected by the fuzzy rule selection means 32 to obtain the correction amount of the distribution flow rate planned value. It is configured.
[0032]
In this fuzzy rule selection method, for example, when the current correction amount is large, a fuzzy rule that does not require a larger correction amount, such as a fuzzy rule as shown in FIG. 8A, is selected. When f is small, a fuzzy rule that does not require a smaller correction amount, for example, a fuzzy rule as shown in FIG. 8B is selected. The fuzzy computing means 33 executes a fuzzy inference computation for the water level of the reservoir using the selected fuzzy rule to obtain a correction amount for the distribution flow rate planned value. Then, the distribution flow rate plan value is corrected using the obtained correction amount and sent to the water distribution flow rate control means 14 to control the discharge flow rate of the water distribution pump 3.
[0033]
Therefore, according to the embodiment as described above, the optimum fuzzy rule is selected while observing the tendency of the current correction amount, the correction amount is obtained by fuzzy inference, and the distribution flow rate planned value is corrected. It is possible to converge to the actual water distribution flow rate.
(3) Furthermore, other embodiment of a reservoir operation control apparatus is described.
[0034]
This embodiment is an improved example of the distribution flow rate planned value correcting means 13, more specifically, an example in which one correction amount is selected by fuzzy reasoning from correction amounts tabulated in advance. Since the other components except the correcting means 13 are the same as those in FIG. 1, the description thereof is omitted here.
[0035]
As shown in FIG. 9, the distribution flow rate planned value correction means 13 is provided with a correction amount table 41 for determining a correction amount for the distribution flow rate planned value, and selects a correction amount by fuzzy inference. This fuzzy reasoning uses the same fuzzy rules and membership functions as those shown in FIGS. 3 and 4, but the output fuzzy variables have the following contents.
[0036]
QL: Decrease the correction amount by two steps QML: Decrease the correction amount by one step QZ: Maintain the correction amount QMH: Increase the correction amount by one step QH: Output fuzzy inference by increasing the correction amount by two steps -1 to +1 Is output between. Therefore, the output result y of fuzzy inference is converted into an increase / decrease in the flow rate correction stage by the following method, and the correction amount is obtained using the following equation.
[0037]
When (3/4) <y, the current correction amount u (i) is increased by two steps {u (i) = 2}.
When (1/4) <y ≦ (3/4), the current correction amount u (i) is increased by one step {u (i) = 1}.
[0038]
When (−1/4) ≦ y ≦ (1/4), the current correction amount u (i) is maintained {u (i) = 0}.
When (−3/4) ≦ y ≦ (−1/4), the current correction amount u (i) is decreased by one step {du (i) = − 1}.
[0039]
When y <(− 3/4), the current correction amount u (i) is reduced by two steps {du (i) = − 2}.
u (i) = u (i-dt) + du (i) (7)
Where u (i): correction amount at time i (step output from -m to + m)
du (i): correction amount change at time i (step output of -2 to +2)
Therefore, the correction amount corresponding to the stage obtained by the equation (7) is taken out from the correction amount table 41 and the water distribution flow rate planned value is corrected. The distribution flow rate control means 14 controls the discharge flow rate of the distribution pump 3 using the corrected distribution flow rate plan value correction amount.
[0040]
According to the embodiment as described above, the correction amount range or the upper and lower limit correction amounts can be determined in advance by the correction amount table 41, and it is possible to easily prevent the correction amount from being excessively exceeded.
(4) Furthermore, another example of the distribution flow rate planned value correction means 13 will be described.
[0041]
This embodiment is another example of determination of the correction amount in the correction amount table 41. Since the other components except the correcting means 13 are the same as those in FIG. 1, the description thereof is omitted here.
[0042]
In the embodiment of (3), the correction amount of the distribution flow rate plan value is set in advance, and the correction amount is selected based on the inference result of fuzzy inference. The correction amount table 41 is provided in the same manner as in the embodiment described above, but unlike the embodiment in (3), the fuzzy similar to that in the embodiment in (1) described above is used using the reservoir water level and the reservoir flow rate. Fuzzy inference is executed under the rule table, and the correction amount of the distribution flow rate plan value in the correction amount table 41 is selected. The meaning of each fuzzy variable is used in the same meaning as in the embodiment (3).
[0043]
Furthermore, still another example of the distribution flow rate planned value correction means 13 will be described.
This embodiment is an improved example of the distribution flow rate planned value correction means 13, and more specifically, is another example of determination of the correction amount in the correction amount table 41.
[0044]
This embodiment uses the correction amount table 41 as in the embodiment (3), and uses fuzzy rules and membership functions as shown in FIGS. 3 and 4 based on the reservoir water level. Inference is executed, and the correction amount of the distribution flow rate plan value in the correction amount table 41 is determined. The meaning of each fuzzy variable is the same as that used in the embodiment (3).
[0045]
Therefore, in the above-described embodiments (3) to (5), the operator can grasp in advance the correction amount of the distribution flow rate planned value in advance, and the overshoot of the correction amount can be easily prevented. The correction amount can be easily corrected while watching the situation.
[0046]
【The invention's effect】
As described above, according to the present invention, it is possible to automatically correct a predetermined distribution flow rate plan value according to the actual condition of the water level of an actual reservoir without intervention of an operator, thereby realizing stable operation of the reservoir. it can.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an embodiment of a reservoir operation control apparatus according to the present invention.
FIG. 2 is a diagram for explaining a distribution flow rate planned value correction unit shown in FIG. 1;
FIG. 3 is a fuzzy rule table used in the distribution flow rate planned value correcting means shown in FIG. 1;
FIG. 4 is a diagram showing a membership function.
FIG. 5 is a diagram for explaining another example of a distribution flow rate planned value correction unit.
6 is a fuzzy rule table used by the distribution flow rate planned value correcting means shown in FIG. 5. FIG.
FIG. 7 is a diagram for explaining still another example of the distribution flow rate planned value correcting means.
FIG. 8 is a fuzzy rule table used by the distribution flow rate planned value correcting means shown in FIG. 7;
FIG. 9 is a correction amount table for explaining still another example of the distribution flow rate planned value correction means.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reservoir equipment system 2 ... Reservoir 10 ... Reservoir operation control system 12 ... Reservoir target water level calculation means 13 ... Distribution flow rate plan value correction means 14 ... Distribution flow rate control means

Claims (4)

配水池への引入流量計画値と配水池からの配水流量計画値とを用いて、前記配水池を運用制御する配水池運用制御装置において、
前記引入流量計画値と前記配水流量計画値とを用いて配水池目標水位を求める目標水位演算手段と、
この目標水位演算手段で求めた配水池目標水位と配水池の実績水位との偏差に基づいてファジィ推論により補正量を求め、前記配水流量計画値を補正する配水流量計画値補正手段と、
この補正手段により補正された配水流量計画補正量に基づいて前記配水池の配水流量を制御する配水流量制御手段とを備えたことを特徴とする配水池運用制御装置。
In the reservoir operation control device that controls the operation of the reservoir using the planned flow rate of the incoming flow to the reservoir and the planned flow rate of the distribution water from the reservoir,
A target water level calculation means for determining a reservoir target water level using the incoming flow plan value and the distribution flow plan value;
A distribution flow rate plan value correction means for obtaining a correction amount by fuzzy inference based on a deviation between the distribution reservoir target water level obtained by the target water level calculation means and the actual water level of the distribution reservoir, and correcting the distribution flow rate plan value;
A distribution reservoir operation control device comprising: a distribution flow rate control means for controlling the distribution flow rate of the distribution reservoir based on the distribution flow rate plan correction amount corrected by the correction means.
前記配水流量計画値補正手段は、前記目標水位演算手段で求めた配水池目標水位と配水池の実績水位との偏差およびこの偏差の変化量を入力としてファジィ推論により補正量を求める水位系補正手段と、前記引入流量計画値と引入流量実績値との偏差およびこの偏差の変化量を入力としてファジィ推論により補正量を求める引入流量系補正手段とを設け、これら両補正手段の補正量を用いて前記配水流量計画値を補正することを特徴とする請求項1に記載の配水池運用制御装置。The distribution flow rate plan value correction means is a water level system correction means for obtaining a correction amount by fuzzy inference by inputting a deviation between the target water level of the distribution reservoir obtained by the target water level calculation means and the actual water level of the distribution reservoir and a change amount of the deviation. And an intake flow rate system correction means for obtaining a correction amount by fuzzy inference using the deviation between the planned intake flow rate value and the actual flow rate value and the amount of change of the deviation as inputs, and using the correction amounts of both correction means. The distribution reservoir operation control device according to claim 1, wherein the distribution flow rate plan value is corrected. 前記配水流量計画値補正手段は、補正量を調整するための複数のファジィルールを設け、現在の配水流量計画値補正量に基づいてファジィルールを選択し、この選択したファジィルールを用いてファジィ推論により新しい配水流量計画値補正量を求めることを特徴とする請求項1に記載の配水池運用制御装置。The distribution water flow rate planned value correction means has a plurality of fuzzy rules for adjusting the correction amount, selects a fuzzy rule based on the current distribution flow rate planned value correction amount, and uses the selected fuzzy rule to fuzzy inference. The distribution reservoir operation control device according to claim 1, wherein a new distribution flow rate plan value correction amount is obtained by the method. 前記配水流量計画値補正手段は、予め複数の補正量を有する補正量テーブルを設け、前記配水池水位および引入流量の何れか一方または両方を用いてファジィ推論を実行し、得られた推論出力を用いて前記補正量テーブルから補正量を選択することを特徴とする請求項1または請求項2に記載の配水池運用制御装置。The distribution flow rate plan value correction means is provided with a correction amount table having a plurality of correction amounts in advance, executes fuzzy inference using either one or both of the reservoir water level and the inflow rate, and outputs the obtained inference output. The reservoir operation control device according to claim 1, wherein a correction amount is selected from the correction amount table.
JP15279898A 1998-06-02 1998-06-02 Reservoir operation control device Expired - Fee Related JP3695941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15279898A JP3695941B2 (en) 1998-06-02 1998-06-02 Reservoir operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15279898A JP3695941B2 (en) 1998-06-02 1998-06-02 Reservoir operation control device

Publications (2)

Publication Number Publication Date
JPH11345028A JPH11345028A (en) 1999-12-14
JP3695941B2 true JP3695941B2 (en) 2005-09-14

Family

ID=15548392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15279898A Expired - Fee Related JP3695941B2 (en) 1998-06-02 1998-06-02 Reservoir operation control device

Country Status (1)

Country Link
JP (1) JP3695941B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111461419B (en) * 2020-03-25 2023-05-30 长江水利委员会长江科学院 Method for generating water-sand joint scheduling scheme of navigable river reservoir

Also Published As

Publication number Publication date
JPH11345028A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
KR920004079B1 (en) Process controller and method
JP3695941B2 (en) Reservoir operation control device
CN1124529C (en) Controlling system for regulating system with several coupled controlled variables
US6017193A (en) Distribution pressure control apparatus
JP3628884B2 (en) Steam header pressure controller
CN114249424A (en) Multi-stage AO pool aeration rate control method and system
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JP3417068B2 (en) Control unit for the number of operating water pumps
JP2677616B2 (en) Condenser vacuum degree control device
JPH0934555A (en) Supplied water flow rate controller
JPH09228958A (en) Feed water control device
CN116146516B (en) Intelligent grid-connected control method and system for multiple compressors
JPH08277783A (en) Controller for number of water conveying pumps
JPH10286585A (en) Aeration air volume controlling apparatus
Ali et al. Automatic tuning of model predictive controllers based on fuzzy logic
JPH09222085A (en) Pump controller
JPH0460709A (en) Equal flow rate controller for mutual interference system by fuzzy inference
JPS6317515B2 (en)
JP2766501B2 (en) Water level adjustment device for dam type hydroelectric power plant
JPS6275002A (en) Control device for feed water pump driving turbine
JPH07259175A (en) Number of working pumps control device for rainwater pump
CN115046189A (en) Feedforward compensation based power plant condensed water system cooperative control system and method
JPS6337407B2 (en)
JPH0979508A (en) Feed water controller for steam generating plant
JP2000028103A (en) Thermal electric power plant control device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees