JP3417068B2 - Control unit for the number of operating water pumps - Google Patents

Control unit for the number of operating water pumps

Info

Publication number
JP3417068B2
JP3417068B2 JP18383094A JP18383094A JP3417068B2 JP 3417068 B2 JP3417068 B2 JP 3417068B2 JP 18383094 A JP18383094 A JP 18383094A JP 18383094 A JP18383094 A JP 18383094A JP 3417068 B2 JP3417068 B2 JP 3417068B2
Authority
JP
Japan
Prior art keywords
water
water level
reservoir
pump
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18383094A
Other languages
Japanese (ja)
Other versions
JPH0849663A (en
Inventor
昭男 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP18383094A priority Critical patent/JP3417068B2/en
Publication of JPH0849663A publication Critical patent/JPH0849663A/en
Application granted granted Critical
Publication of JP3417068B2 publication Critical patent/JP3417068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は取水から配水にいたる上
水プロセスの送水ポンプの台数制御に関し、特に、ファ
ジィ推論を用いて最適な制御を実現するものに関する。 【0002】 【従来の技術】取水から配水にいたる各種の上水プロセ
スの一つである送水プロセスは、浄水場で浄化された上
水を需要家に配水するため配水池に送水するプロセスで
ある。一般的に、配水池は送水元である浄水場の停電や
消化など事故時を考慮して容量的に余裕を持たせてい
る。 【0003】このため、配水池水位の運用としては配水
池水位を高めに維持することで、ある程度の水位変動は
許容できることになり固定速の送水ポンプで計画される
場合が多い。 【0004】ただし、配水池流出量は需要家の社会的な
活動パターンに依存し、時間単位で大きく変動すること
になり、送水量としても配水池流出量にある程度の追従
できる必要がある。 【0005】このため、送水ポンプは複数台で計画され
ることになり台数制御が必要になる。 【0006】従来この送水ポンプの台数制御は、一般的
には図4に示すように、ある特定した配水池流出量パタ
ーンを前提として配水池水位に始動水位と停止水位を固
定的に設定し、それらの水位によるオン−オフ運転を行
っていた。 【0007】 【発明が解決しようとする課題】しかし、従来の方法で
は、配水池水位に始動水位と停止水位を固定的に設定
し、それらの水位によるオン−オフ(運転−停止)運転
を行っているため、次のような課題があった。 【0008】(1)配水池流出量パターンを特定するこ
とは、実プロセスにおいては困難であるにもかかわら
ず、前提とした特定パターンに対応して始動水位と停止
を固定的に設定している。 【0009】(2)配水池水位を高目に運用することに
なるため、送水する際の実揚程が大きくなり送水効率が
低下する。 【0010】(3)また、配水先である需要家の配水圧
力が高くなると共に、配水池の水位変動幅が大きくなる
ため配水管路に悪い影響を与えることになる。 【0011】(4)前提外の流出量パターンや過大な流
出量パターンなどに対して、配水池水位の過大な低下や
送水ポンプの始動停止頻度を上昇させることになる。 【0012】(5)結果的に最適な送水ができずポンプ
寿命の低下や電力消費量の上昇などを招くことになる。 【0013】(6)現在の配水池井水位のみに着目した
制御方式であり、予測的な要素がないため制御性として
配水池流出量の変動に依存する割合が多くなるため、ロ
バストな制御とすることが困難である。 【0014】本発明は以上の点に鑑みてなされたもの
で、最適な固定速の送水ポンプ台数制御を実現すること
を目的とするものである。 【0015】 【課題を解決するための手段】本発明において、上記の
課題を解決するための手段は、浄水場で浄化された浄水
ポンプ井の上水を、複数台の送水ポンプをオン、オフ制
御して配水池に送水する送水量を調整するようにした送
水ポンプの運転台数制御装置において、あらかじめ設定
したポンプ井の基準水位と浄水ポンプ井との水位偏差量
を検出して偏差信号HPを出力するポンプ井水位偏差量
検出手段と、あらかじめ設定した配水池の基準水位と配
水池水位との水位偏差量を検出して偏差信号HHを出力
する配水池水位偏差量検出手段と、配水池の水位を
1,T2,T3時刻前の過去水位と現在水位との変化量
△L1,△L2,△L3を予測的な要素として演算する水
位変化量演算手段と、前記浄水ポンプ井の水位偏差信号
HPと、配水池の水位偏差信号HHと、配水池の変化量
△L1,△L2,△L3を入力変数とし、ポンプ増減指令
値△Nを出力変数として送水量を推論し、送水ポンプの
運転台数増減の確信値として出力するファジィ推論手段
と、該ファジィ推論手段の出力信号を離散値に変換し、
送水ポンプ増減台数指令信号をポンプ制御手段に出力す
るしきい値変換手段と、このしきい値変換手段の指令信
号を受けて前記送水ポンプの始動−停止を制御し、配水
池への送水量を調整するポンプ台数制御手段とを備え、
最適な固定速の送水ポンプの運転台数制御を実現する。 【0016】 【作用】ポンプ台数制御部のファジィ推論手段には、あ
らかじめ設定した浄水ポンプ井の基準水位と浄水ポンプ
井との水位偏差信号HPと、配水池の設定基準水位と配
水池の水位との偏差信号HHおよびT1,T2,T3秒前
の過去水位と現在水位の3つの変化量信号△L1,△
2,△L3が入力され、当該ファジィ推論部では、入力
変数である偏差信号HP,HHおよび配水池の変化量信
号△L1,△L2,△L3および出力変数であるポンプ増
減台数指令信号△Nを5段階のメンバーシップ関数と推
論のためのルールマトリックスによるIF〜THENル
ールに基づいてポンプ増減値を推論し、その結果の出力
信号をしきい値変換手段により離散値に変換してポンプ
台数制御手段を介して複数台の送水ポンプの始動−停止
制御を行う。 【0017】 【実施例】以下、本発明を図面に示す一実施例に基づい
て説明する。図1は本発明の一実施例のシステム構成図
を示し、同図において、1は浄水場で、該浄水場1は処
理水を浄化する浄水プロセス部2と、処理された浄水を
一旦貯留する浄水ポンプ井3と、この浄水ポンプ井3の
上水を配水池6に送水する複数台の送水ポンプ4(P1
〜Pn)を備えている。 【0018】5は浄水ポンプ井3の水位を計測する水位
計,7は配水池6の水位を計測する水位計を示す。 【0019】10はポンプ台数制御部で、後述のファジ
ィ推論手段15を備えている。11は浄水ポンプ井3の
水位計5の出力信号と基準水位設定器12の設定信号と
を比較してその偏差を検出するポンプ井水位偏差量検出
手段で、検出された偏差信号HPはファジィ推論手段1
5に入力される。 【0020】13は配水池6の水位計7の出力信号と基
準水位設定器14の信号とを比較して、その偏差を検出
する配水池水位偏差量検出手段で、検出された偏差信号
HHはファジィ推論手段15に入力される。16は配水
池6の水位変化量演算手段で、水位計7の出力信号を入
力し、図2に示すように、T1,T2,T3秒前の過去水
位と現在水位との3つの変化量△L1,△L2,△L3
演算してファジィ推論手段15に入力する。なお、図2
は縦軸に配水池の水位を、横軸に時間をとっている。 【0021】17はしきい値変換手段で、ファジィ推論
手段15の出力信号△Nはポンプ増減の確信値(連続
値)となるため、そのままポンプ増減台数指令(離散
値)にできないため、このしきい値変換手段17により
離散値に変換し、ポンプ増減台数指令信号としてポンプ
台数制御手段18に出力し、該ポンプ台数制御手段18
で複数の送水ポンプ4のうち該当するポンプの運転又は
停止の制御を行う。 【0022】ファジィ推論手段15では、入力変数(現
象項目)であるT1秒前変化量△L1,T2秒前変化量△
2,T3秒前変化量△L3の各信号と、配水池の水位偏
差信号HH,浄水ポンプ井の水位偏差信号HPおよび出
力変数(原因項目)であるポンプ増減指令値△Nを図3
のNB,NS,ZO,PS,PBの5段階のメンバーシ
ップ関数として定め、推論のためのルールマトリックス
を表1のように規定する。 【0023】 【表1】 【0024】このルールマトリックスによるIF〜TH
ENルールに基づいてポンプ増減値を推論し、ポンプ台
数制御手段18へ送出する。ポンプ台数制御手段18で
は、この指令を受けて複数台の送水ポンプのオン−オフ
制御を行って運転台数を制御する。 【0025】 【発明の効果】以上説明したように、本発明では、配水
池水位については固定的な始動水位と停止水位を設定せ
ずに、基準となる水位を設定し、また浄水ポンプ井水位
についても基準水位を設定して、送水元の状況も考慮
し、更に、配水池水位については、時刻T1,T2,T3
秒前の過去水位と現在水位の3つの変化量を予測的要素
として、水位傾向を把握し、2つの水位偏差と3つの変
化量を現象項目とし、ポンプ増減台数指令を原因項目と
してファジィ推論を行うようにしたので、 (1)配水池の流出量パターンを特定する必要がなく、
実プロセスへの適用が容易な実用性があり、また広範囲
の流出量パターンに対応できる柔軟性がある。 【0026】(2)配水池の水位傾向により予測的な要
素も判断しているため、過大な流出量パターンに対して
は配水池水位の過大な低下を防止すると共に、ポンプの
始動停止頻度を低減できる。 【0027】(3)広範囲の流出量パターンに対してポ
ンプ寿命の低下や電力消費量の上昇などを防止できる。
さらに、水位変動幅が低減できることにより需要家への
配水圧力変動と配水管路への悪影響を減少できる。 【0028】(4)予測的な要素により、制御性として
配水池流出量の変動に依存する割合を少なくできること
になり、よりロバストな制御となる。 【0029】(5)ファジィ推論を使用しており柔軟な
アルゴリズムの構成が可能であり、そのルールの変更や
修正なども容易にできる。 【0030】等の優れた効果を奏するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the control of the number of water supply pumps in a water supply process from water intake to water distribution, and more particularly, to realizing optimum control using fuzzy inference. About. 2. Description of the Related Art A water supply process, which is one of various water supply processes from water intake to water distribution, is a process of transmitting purified water from a water purification plant to a distribution reservoir for distribution to customers. . Generally, the reservoir has sufficient capacity in consideration of an accident such as a power outage or digestion of the water treatment plant that is the source of the water supply. [0003] For this reason, as the operation of the reservoir water level, by maintaining the reservoir water level at a high level, a certain level of water level fluctuation can be tolerated, and a fixed-speed water pump is often used for planning. [0004] However, the outflow of the reservoir depends on the social activity pattern of the consumer, and fluctuates greatly in units of time. It is necessary that the amount of water transmitted can follow the outflow of the reservoir to some extent. [0005] For this reason, a plurality of water pumps are planned, and it is necessary to control the number of water pumps. Conventionally, the control of the number of water pumps is generally performed by fixedly setting a start water level and a stop water level to a reservoir water level on the premise of a specified reservoir discharge pattern, as shown in FIG. On-off operation was performed based on those water levels. [0007] However, in the conventional method, the start water level and the stop water level are fixedly set to the reservoir water level, and the on-off (operation-stop) operation is performed based on those water levels. Therefore, there were the following problems. (1) Although it is difficult to specify the distribution tank outflow pattern in the actual process, the starting water level and the stop are fixedly set in accordance with the assumed specific pattern. . (2) Since the reservoir water level is operated at a higher level, the actual head at the time of water supply becomes large, and the water supply efficiency is reduced. (3) In addition, the distribution pressure of the customer who is the distribution destination increases, and the fluctuation range of the water level in the distribution reservoir becomes large, which adversely affects the distribution pipeline. (4) For an outflow pattern that is not assumed or an excessive outflow pattern, the water level of the reservoir becomes excessively low, and the frequency of starting and stopping the water pump increases. (5) As a result, optimal water supply cannot be performed, resulting in a decrease in pump life, an increase in power consumption, and the like. (6) This control method focuses only on the current water level of the reservoir well, and since there is no predictive factor, the controllability is more dependent on the fluctuation of the reservoir outflow amount. It is difficult. The present invention has been made in view of the above points, and has as its object to realize optimal control of the number of water pumps at a fixed speed. [0015] In the present invention, a means for solving the above-mentioned problem is to turn on and off a plurality of water supply pumps from the clean water of a water purification pump well purified in a water purification plant. In the control unit for controlling the number of operating water pumps, which controls the amount of water to be sent to the distribution reservoir by controlling the amount of water difference between the reference water level of the pump well and the water purification pump well, a deviation signal HP is detected. A pump well water level deviation amount detecting means for outputting, a water level deviation amount detecting means for detecting a water level deviation amount between a reference water level and a reservoir water level of a preset reservoir and outputting a deviation signal HH; a water level change amount calculation means for calculating the T 1, T 2, T 3 times before the last level and the current change amount of the water level △ L 1, △ L 2, △ L 3 as predictive factors of water level, the water purification Pump well water level deviation signal HP A water level deviation signal HH of distribution reservoir, the amount of change △ L 1 of distribution reservoir, △ L 2, and △ L 3 input variables, to infer water weight as an output variable pump increase or decrease command value △ N, water pumps Fuzzy inference means outputting as a certainty value of increase or decrease in the number of operating units, and converting an output signal of the fuzzy inference means into a discrete value,
Threshold conversion means for outputting a water pump increase / decrease number command signal to the pump control means; receiving the command signal from the threshold conversion means, controlling the start-stop of the water pump, and controlling the amount of water supplied to the reservoir. Adjusting means for controlling the number of pumps,
Achieves optimal fixed-speed water pump operation unit control. The fuzzy inference means of the number-of-pumps control unit includes a preset reference water level of the water purification pump well and a water level deviation signal HP between the water purification pump well, a set reference water level of the reservoir and a water level of the reservoir. Deviation signal HH and three change amount signals {L 1 , △} of the past water level and the current water level before T 1 , T 2 , T 3 seconds ago
L 2 and ΔL 3 are input, and the fuzzy inference unit receives the deviation signals HP and HH as input variables and the change amount signals ΔL 1 , ΔL 2 and ΔL 3 of the reservoir and the pump increase / decrease as output variables. The unit command signal △ N is inferred based on a five-step membership function and an IF-THEN rule based on a rule matrix for inference, and a pump increase / decrease value is inferred, and the resulting output signal is converted into a discrete value by threshold value conversion means. Then, start-stop control of a plurality of water supply pumps is performed via the pump number control means. The present invention will be described below with reference to an embodiment shown in the drawings. FIG. 1 shows a system configuration diagram of an embodiment of the present invention. In the figure, reference numeral 1 denotes a water purification plant, wherein the water purification plant 1 temporarily stores a treated water purification unit 2 for purifying treated water and a treated water purification unit. A water purification pump well 3 and a plurality of water transmission pumps 4 (P 1) for supplying water from the water purification pump well 3 to the distribution reservoir 6.
~ P n ). Reference numeral 5 denotes a water level meter for measuring the water level of the water purification pump well 3, and reference numeral 7 denotes a water level meter for measuring the water level of the reservoir 6. Reference numeral 10 denotes a pump number control unit, which is provided with fuzzy inference means 15 described later. Reference numeral 11 denotes a pump well water level deviation amount detecting means for comparing the output signal of the water level gauge 5 of the water purification pump well 3 with the setting signal of the reference water level setting device 12 to detect the deviation. The detected deviation signal HP is fuzzy inference. Means 1
5 is input. Reference numeral 13 denotes a reservoir water level deviation amount detecting means for comparing the output signal of the water level gauge 7 of the reservoir 6 with the signal of the reference water level setting device 14 and detecting the deviation. It is input to the fuzzy inference means 15. Numeral 16 denotes a water level change amount calculating means of the reservoir 6, to which an output signal of the water level gauge 7 is inputted, and as shown in FIG. 2, there are three levels of a past water level and a current water level before T 1 , T 2 and T 3 seconds. The amounts of change △ L 1 , △ L 2 , △ L 3 are calculated and input to the fuzzy inference means 15. Note that FIG.
Indicates the water level of the reservoir on the vertical axis and the time on the horizontal axis. Reference numeral 17 denotes a threshold value converting means. Since the output signal △ N of the fuzzy inference means 15 becomes a certain value (continuous value) of the pump increase / decrease, it cannot be directly used as the pump increase / decrease number command (discrete value). It is converted into a discrete value by a threshold value converting means 17 and outputted as a pump increase / decrease number command signal to a pump number control means 18.
The control of operation or stop of the applicable water pump among the plurality of water pumps 4 is performed. In the fuzzy inference means 15, the input variable (phenomenon item), the change amount before T 1 second {L 1 , the change amount before T 2 second}
L 2 , T 3 seconds before the change amount ΔL 3 signal, the water level deviation signal HH of the reservoir, the water level deviation signal HP of the water purification pump well and the pump increase / decrease command value ΔN which is an output variable (cause item). 3
Is defined as a five-stage membership function of NB, NS, ZO, PS, and PB, and a rule matrix for inference is defined as shown in Table 1. [Table 1] IF to TH by this rule matrix
The pump increase / decrease value is inferred based on the EN rule and sent to the pump number control means 18. In response to this command, the pump number control means 18 performs on / off control of a plurality of water pumps to control the number of operating pumps. As described above, according to the present invention, the reference water level is set without setting the fixed start and stop water levels, and the water level of the water purification pump well is not set. for set the standards water level, water source situation into account, further, for distributing reservoir water level, time T 1, T 2, T 3
The water level tendency is grasped by using the three changes of the past water level and the current water level two seconds ago as predictive elements, fuzzy inference is made using two water level deviations and three changes as phenomenon items, and the pump increase / decrease number command as a cause item. (1) There is no need to specify the outflow pattern of the reservoir.
It has practicality that can be easily applied to actual processes, and has the flexibility to handle a wide range of discharge patterns. (2) Predictive factors are also determined based on the water level tendency of the reservoir, so that an excessive discharge pattern prevents the water level of the reservoir from dropping excessively, and the frequency of starting and stopping the pump is reduced. Can be reduced. (3) It is possible to prevent a decrease in pump life and an increase in power consumption for a wide range of outflow patterns.
Further, since the water level fluctuation width can be reduced, fluctuations in water distribution pressure to consumers and adverse effects on water distribution pipelines can be reduced. (4) Due to the predictive factor, the controllability can be reduced in the proportion depending on the fluctuation of the reservoir outflow, resulting in more robust control. (5) A fuzzy inference is used, and a flexible algorithm can be configured, and its rules can be easily changed or modified. And the like.

【図面の簡単な説明】 【図1】本発明の一実施例の構成図。 【図2】配水池の水位変化量演算手段の説明図。 【図3】メンバーシップ関数。 【図4】従来の送水ポンプ運転台数制御の説明図。 【符号の説明】 1…浄水場 2…浄水プロセス 3…浄水ポンプ井 4…送水ポンプ 5、7…水位計 6…配水池 10…ポンプ台数制御部 11…ポンプ井水位偏差量検出手段 12…ポンプ井の水位基準水位設定器 13…配水池水位偏差量検出手段 14…配水池の基準水位設定器 15…ファジィ推論手段 16…配水池の水位変化量演算手段 17…しきい値変換手段 18…ポンプ台数制御手段[Brief description of the drawings] FIG. 1 is a configuration diagram of an embodiment of the present invention. FIG. 2 is an explanatory diagram of a water level change amount calculating means of a reservoir. FIG. 3 shows a membership function. FIG. 4 is an explanatory view of a conventional water supply pump operation number control. [Explanation of symbols] 1… Water purification plant 2. Water purification process 3 ... Water purification pump well 4: Water pump 5, 7 ... water level gauge 6 ... Reservoir 10 Pump number control unit 11 ... Pump well water level deviation detecting means 12… Pump well water level reference water level setting device 13 ... Reservoir water level deviation amount detection means 14… Standard water level setting device for reservoir 15 ... Fuzzy inference means 16 ... means for calculating the water level change in the reservoir 17 Threshold conversion means 18. Pump number control means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−129360(JP,A) 特開 平6−200877(JP,A) 特開 平4−149701(JP,A) 特開 平3−184101(JP,A) 特開 平4−98502(JP,A) 特開 昭54−82702(JP,A) 特開 昭59−122798(JP,A) 特開 昭58−112108(JP,A) (58)調査した分野(Int.Cl.7,DB名) F04B 49/00 - 49/10 F04D 15/00 F04B 23/04 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-129360 (JP, A) JP-A-6-200877 (JP, A) JP-A-4-149701 (JP, A) 184101 (JP, A) JP-A-4-98502 (JP, A) JP-A-54-82702 (JP, A) JP-A-59-122798 (JP, A) JP-A-58-112108 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) F04B 49/00-49/10 F04D 15/00 F04B 23/04

Claims (1)

(57)【特許請求の範囲】 【請求項1】 浄水場で浄化された浄水ポンプ井の上水
を、複数台の送水ポンプをオン−オフ制御して配水池に
送水する送水量を調整するようにした送水ポンプの運転
台数制御装置において、 あらかじめ設定したポンプ井の基準水位と浄水ポンプ井
との水位偏差量を検出して偏差信号HPを出力するポン
プ井水位偏差量検出手段と、あらかじめ設定した配水池
の基準水位と配水池水位との水位偏差量を検出して偏差
信号HHを出力する配水池水位偏差量検出手段と、配水
池の水位をT1,T2,T3時刻前の過去水位と現在水位
との変化量△L1,△L2,△L3を予測的な要素として
演算する水位変化量演算手段と、前記浄水ポンプ井の水
位偏差信号HPと、配水池の水位偏差信号HHと、配水
池の変化量△L1,△L2,△L3を入力変数とし、ポン
プ増減指令値△Nを出力変数として送水量を推論し、送
水ポンプの運転台数増減の確信値として出力するファジ
ィ推論手段と、該ファジィ推論手段の出力信号を離散値
に変換し、送水ポンプ増減台数指令信号をポンプ制御手
段に出力するしきい値変換手段と、このしきい値変換手
段の指令信号を受けて前記送水ポンプの始動−停止を制
御し、配水池への送水量を調整するポンプ台数制御手段
とを備えたことを特徴とする送水ポンプの運転台数制御
装置。
(57) [Claims] [Claim 1] A plurality of water pumps are controlled to turn on and off a plurality of water pumps to control the amount of water to be supplied to a distribution reservoir. In the control apparatus for controlling the number of operating water pumps, a pump well water level deviation amount detecting means for detecting a water level deviation amount between a preset reference water level of the pump well and a purified water well and outputting a deviation signal HP; Means for detecting a water level deviation between the reference water level of the reservoir and the water level of the reservoir, and outputting a deviation signal HH, and detecting the water level of the reservoir at times T 1 , T 2 , and T 3 . A water level change amount calculating means for calculating a change amount △ L 1 , △ L 2 , △ L 3 between the past water level and the present water level as a predictive element, a water level deviation signal HP of the water purification pump well, and a water level of the reservoir. a deviation signal HH, the distributing reservoir variation △ L 1,2, △ L 3 as an input variable, the pump increases or decreases the command value △ N infer water weight as output variables, fuzzy inference means which outputs a belief value of the number of operating units increase or decrease of the water pump, the output signal of the fuzzy inference means Is converted to a discrete value, threshold conversion means for outputting the water pump increase / decrease number command signal to the pump control means, receiving the command signal of the threshold conversion means, to control the start-stop of the water pump, A control device for controlling the number of operating water pumps, comprising: means for controlling the number of pumps for adjusting the amount of water supplied to the reservoir.
JP18383094A 1994-08-05 1994-08-05 Control unit for the number of operating water pumps Expired - Fee Related JP3417068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18383094A JP3417068B2 (en) 1994-08-05 1994-08-05 Control unit for the number of operating water pumps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18383094A JP3417068B2 (en) 1994-08-05 1994-08-05 Control unit for the number of operating water pumps

Publications (2)

Publication Number Publication Date
JPH0849663A JPH0849663A (en) 1996-02-20
JP3417068B2 true JP3417068B2 (en) 2003-06-16

Family

ID=16142597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18383094A Expired - Fee Related JP3417068B2 (en) 1994-08-05 1994-08-05 Control unit for the number of operating water pumps

Country Status (1)

Country Link
JP (1) JP3417068B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975397A (en) * 1985-04-13 1990-12-04 Feldmuehle Aktiengesellschaft Sintered molding, a method for producing it and its use
JP5638502B2 (en) * 2011-11-01 2014-12-10 株式会社日立製作所 Pump control system
CN107503401A (en) * 2017-08-28 2017-12-22 广东工业大学 A kind of control device, the system and method for domestic water-storage system
CN112253323A (en) * 2020-09-09 2021-01-22 南京航空航天大学 Constant oil pressure fuzzy self-adaptive control system of aviation high-pressure fuel pump and control method thereof

Also Published As

Publication number Publication date
JPH0849663A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
US4305129A (en) System for providing load-frequency control through predictively and _dynamically dispatched gas turbine-generator units
US5707211A (en) Variable speed pump system with a hydropneumatic buffer/pressure tank
JP3417068B2 (en) Control unit for the number of operating water pumps
JPH0895645A (en) Water supply terminal pressure controller
JPH0771060A (en) Variable speed water supply device
JPH08277783A (en) Controller for number of water conveying pumps
JPH10103251A (en) Automatic water supply device
JP2001027104A (en) Condensate flow control method for condensate steam turbine
JPH0861248A (en) Method and device for controlling operation of compressor
JPH07190679A (en) Heat exchanger cooling system monitoring control device
JPH07259142A (en) Water distribution block monitor
JPH0612116B2 (en) Variable speed water supply device
JP3628884B2 (en) Steam header pressure controller
JPS5968581A (en) Operation control device of compressor
JPH0849287A (en) Control device for number of rainwater pumps in operation
JPH0471691A (en) Device for controlling dissolved oxygen concentration
JPH11324932A (en) Water-distribution pressure control device
JPH07180694A (en) Supply pressure control method of industrial air
JP3933616B2 (en) Variable speed water supply system
JPS5827893A (en) Method of controlling discharge pressure of pump
JP3695941B2 (en) Reservoir operation control device
JP3765131B2 (en) Control method of ozone water cleaning device
CA2379590A1 (en) Control system for an inflatable membrane cover
JP2734698B2 (en) Variable speed pump unit control device
JPH06195102A (en) Pump controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees