JP3693895B2 - Flexible film electrostatic adsorption apparatus, flexible film electrostatic adsorption method, and flexible film surface treatment method - Google Patents

Flexible film electrostatic adsorption apparatus, flexible film electrostatic adsorption method, and flexible film surface treatment method Download PDF

Info

Publication number
JP3693895B2
JP3693895B2 JP2000223029A JP2000223029A JP3693895B2 JP 3693895 B2 JP3693895 B2 JP 3693895B2 JP 2000223029 A JP2000223029 A JP 2000223029A JP 2000223029 A JP2000223029 A JP 2000223029A JP 3693895 B2 JP3693895 B2 JP 3693895B2
Authority
JP
Japan
Prior art keywords
flexible film
electrostatic
electrostatic adsorption
electrode
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000223029A
Other languages
Japanese (ja)
Other versions
JP2002044971A (en
Inventor
守 小坂井
和典 石村
晃靖 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2000223029A priority Critical patent/JP3693895B2/en
Priority to US09/909,075 priority patent/US6730276B2/en
Priority to KR10-2001-0044112A priority patent/KR100537410B1/en
Publication of JP2002044971A publication Critical patent/JP2002044971A/en
Application granted granted Critical
Publication of JP3693895B2 publication Critical patent/JP3693895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/106Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment the electrodes being placed on the same side of the material to be treated
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films

Landscapes

  • Drying Of Semiconductors (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可撓性フィルムを静電吸着するための静電吸着装置およびこの装置を用いた可撓性フィルムを静電吸着する方法、並びに、この装置を用いた可撓性フィルムの表面処理方法に関する。
【0002】
【従来の技術】
金属、有機系化合物、または無機系化合物などからなる可撓性フィルムを、熱処理またはプラズマ処理して表面加工処理したり、他の材料と接着、接合するに際して、これらの可撓性フィルムを試料台に固定する必要がある。
そのため、従来にあっては、可撓性フィルムを試料台に固定する方法として、
▲1▼ 粘着剤等を用いて貼付ける方法、
▲2▼ 可撓性フィルムの外周部を螺子、クリップ、粘着テープなどを用いて機械的に固定する方法、
▲3▼ 真空吸着して固定する方法、
▲4▼ 静電力を用いて静電吸着して固定する方法、
などが知られている。
【0003】
しかしながら、上記のような従来の可撓性フィルムを試料台に固定する方法にあっては、それぞれ次のような問題がある。
すなわち、上記▲1▼の方法にあっては、可撓性フィルムへの粘着剤の均一な塗布、表面加工処理後の粘着剤の除去を必要とするため、作業が煩雑である。また可撓性フィルムの貼付時に雰囲気ガスを抱き込みやすいため、可撓性フィルムに皺が入るなどの問題がある。
また、表面加工処理時の熱処理、プラズマ処理により可撓性フィルムが膨張変形し、試料台と可撓性フィルムとの熱膨張の差によって、可撓性フィルムが変形、剥離するという問題がある。
さらに、真空中で表面加工処理が行われると粘着剤が揮発して好ましくないので、真空中ではこの方法は使用できないという問題がある。
【0004】
上記▲2▼の方法にあっては、可撓性フィルムの固定部分を加工することができないという問題がある。また、固定時の部分的な張力の差により可撓性フィルムに皺が入りやすいという問題がある。さらに、表面加工処理時の熱処理、プラズマ処理により可撓性フィルムが膨張変形し、試料台と可撓性フィルムとの熱膨張の差により、可撓性フィルムの試料台に固定されていない部分が、試料台から浮き上がってしまうという問題がある。
【0005】
上記▲3▼、▲4▼の方法にあっても、表面加工処理時の熱処理、プラズマ処理により可撓性フィルムが膨張変形し、試料台と可撓性フィルムとの熱膨張の差により、可撓性フィルムに皺、変形、剥離が生じるという問題がある。
【0006】
【発明が解決しようとする課題】
よって、本発明における課題は、粘着剤の塗布、除去などの煩雑な作業を必要とせず、真空中でも表面処理加工が可能であり、しかも、表面加工処理時の熱処理、プラズマ処理により可撓性フィルムが膨張変形しても、試料台と可撓性フィルムとの熱膨張差によって、可撓性フィルムに皺、変形、剥離が生じることがない、可撓性フィルムを静電吸着するための静電吸着装置および静電吸着方法、並びに、静電吸着装置を用いた可撓性フィルムの表面処理方法を提供することにある。
【0007】
【課題を解決するための手段】
かかる課題を解決するため、本発明の請求項1記載の可撓性フィルムの静電吸着装置は、静電吸着用電極と、前記静電吸着用電極を被覆する絶縁性誘電体層と、前記静電吸着用電極に電圧を印加する給電用電極とを少なくとも備えた可撓性フィルムを静電吸着するための静電吸着装置であって、
前記可撓性フィルムを載置する絶縁性誘電体層の吸着面の中心線平均粗さが0.5μm以下であり、前記静電吸着用電極は、正電極と負電極とを有する双極構造であり、その最外端が同極性となっており、前記静電吸着用電極をなす正電極と負電極との間隔は、前記絶縁性誘電体層の厚みの1〜10倍であるものである。
【0008】
また、本発明の請求項2記載の可撓性フィルムの静電吸着装置は、前記絶縁性誘電体層の体積固有抵抗値が10 〜10 12 Ωcmであるものである。
【0009】
また、本発明の請求項3記載の可撓性フィルムの静電吸着方法は、請求項1記載の可撓性フィルムの静電吸着装置を用いて可撓性フィルムを静電吸着する方法において、静電吸着用電極の吸着面側の面積を、可撓性フィルムが吸着面と接触している面積の10〜80%とするものである。
【0010】
また、本発明の請求項4記載の可撓性フィルムの静電吸着方法は、請求項1記載の可撓性フィルムの静電吸着装置を用いて可撓性フィルムを静電吸着する方法において、静電吸着用電極の最外端を可撓性フィルムの最外周端よりも突出した状態で絶縁性誘電体層の吸着面に可撓性フィルムを静電吸着し、その突出長を4mm以下とするものである。
【0011】
また、本発明の請求項5記載の可撓性フィルムの表面処理方法は、可撓性フィルムを静電吸着し、前記可撓性フィルムの表面を処理する方法において、可撓性フィルムを請求項1記載の可撓性フィルムの静電吸着装置を用いて静電吸着した後、静電吸着電圧を低下させるか、または静電吸着電圧の印加を停止した後、前記可撓性フィルムの表面を処理するものである。
【0012】
【発明の実施の形態】
以下、本発明を詳しく説明する。
【0013】
図1、図2を用いて、本発明の可撓性フィルムの静電吸着装置の一例について説明する。
【0014】
本例の静電吸着装置10は、絶縁性誘電体層5の表面上に形成された正電極1と負電極2とからなる静電吸着用電極3が、絶縁性誘電体層4で被覆され、絶縁性誘電体層4の表面には、可撓性フィルム20を載置して静電吸着する静電吸着面6を有し、静電吸着用電極3に電圧を印加する給電用電極7を備えた構造となっている。
【0015】
静電吸着装置10の形状は、図2に示すような円形に限定されるものではなく、正方形、長方形、三角形などであってもよい。また、静電吸着装置10の大きさは、可撓性フィルム20の大きさに合わせて、任意に設定される。
【0016】
静電吸着装置10を構成する静電吸着用電極3は、モリブデン、タングステンなどの高融点金属や、タンタルカーバイド、炭化ケイ素などの導電性セラミックスで形成されたものである。
また、図1(a)に示すように、静電吸着用電極3は次のような構造となっている。
同一円心を有する大きさの異なる円形をなす正電極が、一定の間隔をおいて絶縁性誘電体層5の表面上に幾重にも形成され、これらの円形の正電極の全てが一部で結合して正電極1を形成している。正電極1と同様に形成された負電極2は、正電極1を構成する各電極の間に配置され、静電吸着用電極3は、正電極1と負電極2が交互に配置された構造となっている。
【0017】
上記のように、静電吸着用電極3は、正電極1と負電極2を有する双極構造となっている。静電吸着面6に載置された可撓性フィルム20の最外周端よりも突出した静電吸着用電極3の最外端は、同極性となっている。
静電吸着用電極3がこのように配置されることにより、プラズマなどが生じていない状態でも可撓性フィルム20を静電吸着することができ、作業性の向上した静電吸着装置10を提供することができる。また、静電吸着用電極3の最外端を同極性とすることにより、最外端の静電吸着用電極3上の可撓性フィルム20の静電吸着面に最も電荷の偏在が生じやすいエッチング処理時などにおいても、均一なエッチングを行うことができる。
【0018】
また、静電吸着用電極3の正電極1と負電極2との間隔は、可撓性フィルム20を載置する絶縁性誘電体層4の厚みの1〜10倍となっている。
静電吸着用電極3の正電極1と負電極2との間隔が、絶縁性誘電体層4の厚みの1倍未満となると、静電吸着力が静電吸着面全域にわたって均一となり、静電吸着力が弱い部分が生じなくり、抱き込まれた雰囲気ガスが排出されにくくなるので好ましくない。一方、正電極1と負電極2との間隔が絶縁性誘電体層4の厚みの10倍を超えると、静電吸着力が低下して可撓性フィルム20を静電吸着することが困難となるので好ましくない。
【0019】
静電吸着用電極3の形成は、絶縁性誘電体層5の表面上に、スクリーン印刷法、溶射法、フォトリソグラフィーあるいは、めっき、箔状のものを接着して形成する方法などにより行われる。
なお、本例では、静電吸着用電極3の構成は、絶縁性誘電体層4、5内に正電極と負電極とを有する双極構造としたが、静電吸着用電極3の一方の電極を可撓性フィルム20にとった単極構造であってもよい。
【0020】
絶縁性誘電体層4、5は、アルミナ、窒化アルミニウムなどからなるセラミックス焼結体で形成されている。
絶縁性誘電体層4の可撓性フィルム20を載置して静電吸着する静電吸着面6は、表面粗さRa(中心線平均粗さ)が0.5μm、より好ましくは0.1μm以下となるよう鏡面研磨されている。これにより、静電吸着面6と可撓性フィルム20との間の摩擦が小さくなっているため、表面加工処理時の熱処理、プラズマ処理により、可撓性フィルム20が膨張変形しても、可撓性フィルム20が静電吸着面6上を水平方向に滑べりやすくなっており、皺、変形、剥離が生じることがない。
【0021】
また、静電吸着装置10を構成する絶縁性誘電体層4は、体積固有抵抗値が、この静電吸着装置10の使用温度下で108〜1012Ωcmとなるように形成されている。
絶縁性誘電体層4の体積固有抵抗値を上記範囲内とすることにより、静電吸着力が、20〜1000kgf/cm2程度の適度な範囲となる。その結果、静電吸着時に漏れ電流の発生がなく、しかも表面加工処理時の熱処理、プラズマ処理により、可撓性フィルム20が膨張変形しても、静電吸着面6上を水平方向に滑べりやすく、皺、変形、剥離が生じることがない。
【0022】
絶縁性誘電体層4の体積固有抵抗値が、上記範囲内になるように、絶縁性誘電体層4を形成する方法としては、例えば、以下のような方法がある。
▲1▼平均粒径が0.5μm以下の炭化ケイ素粉末を1〜10重量%、残部がアルミナ粉末からなる混合粉末を非酸化性雰囲気下で焼結して焼結体とし、この焼結体を絶縁性誘電体層4とする方法。
▲2▼ 平均粒径が0.5μm以下であり、表層に厚さ0.1μm以下の酸化膜を有する炭化ケイ素粉末と、アルミナ粉末からなる混合粉末を非酸化性雰囲気下で焼結して焼結体とし、この焼結体を絶縁性誘電体層4とする方法。
【0023】
また、絶縁性誘電体層4の厚みは、加工しやすさ、可撓性フィルム20との間で放電が生じない範囲とすることから、通常、100〜4,000μmの範囲となっている。
【0024】
本発明の可撓性フィルムの静電吸着方法においては、静電吸着用電極3の静電吸着面6側の面積を、可撓性フィルム20が静電吸着面6と接触している面積の10〜80%、より好ましくは20〜60%、更に好ましくは30〜50%とする。
その結果、可撓性フィルム20の静電吸着時に、静電吸着面6と可撓性フィルム20との間に雰囲気ガスを抱き込んだとしても、静電吸着面6と可撓性フィルム20との間で、静電吸着用電極3が存在しないために静電吸着力が弱い部分から、抱き込まれた雰囲気ガスが容易に排出されるので、可撓性フィルム20に皺、変形、剥離が生じることがない。
【0025】
また、本発明の可撓性フィルムの静電吸着方法においては、静電吸着用電極3の最外端を可撓性フィルム20の最外周端よりも突出した状態で、静電吸着面6に可撓性フィルム20を静電吸着し、図1(b)に示す突出長aを4mm以下とする。
このように、静電吸着用電極3の最外端を、可撓性フィルム20の最外周端よりも突出させなければ、静電吸着時に可撓性フィルム20の外周部が浮いてしまうことがあるため、好ましくない。また、突出長aが4mmを越えると、突出した静電吸着用電極3上の可撓性フィルム20の静電吸着面に電荷が集中し、エッチング処理時などに帯電した活性種の衝突が増加して静電吸着面に粗れが生じるので好ましくない。
【0026】
そして、本発明の可撓性フィルムの静電吸着方法は、静電吸着用電極3に直流電圧V1を印加して可撓性フィルム20を絶縁性誘電体層4上に静電吸着し、該可撓性フィルム20に熱処理、またはプラズマ処理により表面加工処理を開始した後、静電吸着用電極3に、直流電圧V1よりも低い直流電圧V2を印加するか、または電圧の印加を停止して、静電吸着力を、電圧印加時の静電吸着力の0〜80%程度まで低下させるものである。
【0027】
このように、本発明の可撓性フィルムの静電吸着方法にあっては、静電吸着電圧の印加方法を上記のようにして静電吸着後の静電吸着力を弱めることにより、可撓性フィルム20が膨張変形しても、静電吸着面6上を水平方向に滑べりやすくなっている。また、静電吸着時に、静電吸着面6と可撓性フィルム20との間に雰囲気ガスが抱き込まれたとしても、電圧の印加を停止すれば抱き込まれた雰囲気ガスが排出されやすくなるので、可撓性フィルム20に皺、変形、剥離が生じることがない。
【0028】
【発明の効果】
以上説明したように、本発明の可撓性フィルムの静電吸着装置静電吸着方法および表面処理方法によれば、粘着剤の塗布、除去などの煩雑な作業を必要とせず、真空中でも表面処理加工が可能となる。また、表面加工処理時の熱処理、プラズマ処理により可撓性フィルムが膨張変形しても、静電吸着面と可撓性フィルムとの熱膨張差によって、可撓性フィルムに皺、変形、剥離が生じることがない。
【図面の簡単な説明】
【図1】 本発明の静電吸着装置の一例を示す断面図で、図1(a)は全体を示し、図1(b)は図1(a)の円内を拡大した図である。
【図2】 本発明の静電吸着装置の一例を示す平面図である。
【符号の説明】
1…正電極、2…負電極、3…静電吸着用電極、4,5…絶縁性誘電体層、6…静電吸着面、10…静電吸着装置、20…可撓性フィルム、a…突出長
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic adsorption apparatus for electrostatically adsorbing a flexible film, a method for electrostatically adsorbing a flexible film using the apparatus, and a surface treatment of the flexible film using the apparatus. Regarding the method .
[0002]
[Prior art]
When a flexible film made of a metal, an organic compound, an inorganic compound, or the like is subjected to surface treatment by heat treatment or plasma treatment, or when bonded or bonded to other materials, the flexible film is used as a sample table. It is necessary to fix to.
Therefore, conventionally, as a method of fixing the flexible film to the sample stage,
(1) A method of sticking with an adhesive, etc.
(2) A method of mechanically fixing the outer peripheral portion of the flexible film using screws, clips, adhesive tape, etc.
(3) A method of fixing by vacuum suction,
(4) A method of electrostatically attracting and fixing using electrostatic force,
Etc. are known.
[0003]
However, the conventional methods for fixing the flexible film to the sample stage have the following problems.
That is, in the method (1), the work is complicated because it requires uniform application of the adhesive to the flexible film and removal of the adhesive after the surface treatment. In addition, there is a problem that wrinkles enter the flexible film because it is easy to enclose the atmospheric gas when the flexible film is attached.
In addition, there is a problem in that the flexible film expands and deforms due to heat treatment and plasma treatment during the surface processing, and the flexible film deforms and peels due to a difference in thermal expansion between the sample stage and the flexible film.
Furthermore, if the surface processing is performed in a vacuum, the pressure-sensitive adhesive volatilizes, which is not preferable. Therefore, there is a problem that this method cannot be used in a vacuum.
[0004]
The method (2) has a problem that the fixed portion of the flexible film cannot be processed. Further, there is a problem that wrinkles easily enter the flexible film due to a difference in partial tension at the time of fixation. Furthermore, the flexible film expands and deforms due to heat treatment and plasma treatment during the surface processing treatment, and due to the difference in thermal expansion between the sample stage and the flexible film, there is a portion that is not fixed to the sample stage of the flexible film. There is a problem that it floats up from the sample stage.
[0005]
Even in the above methods (3) and (4), the flexible film expands and deforms due to the heat treatment and plasma treatment during the surface processing, and it is possible due to the difference in thermal expansion between the sample stage and the flexible film. There is a problem that wrinkles, deformation, and peeling occur in the flexible film.
[0006]
[Problems to be solved by the invention]
Therefore, the problem in the present invention is that it does not require complicated operations such as application and removal of an adhesive, and surface treatment can be performed even in a vacuum, and a flexible film is formed by heat treatment and plasma treatment during the surface treatment. Even if the sample expands and deforms, the flexible film does not wrinkle, deform or peel due to the difference in thermal expansion between the sample stage and the flexible film. An object of the present invention is to provide an adsorption device, an electrostatic adsorption method , and a surface treatment method of a flexible film using the electrostatic adsorption device .
[0007]
[Means for Solving the Problems]
In order to solve such a problem, an electrostatic adsorption device for a flexible film according to claim 1 of the present invention includes an electrostatic adsorption electrode, an insulating dielectric layer covering the electrostatic adsorption electrode, and An electrostatic adsorption device for electrostatically adsorbing a flexible film having at least a power supply electrode for applying a voltage to an electrostatic adsorption electrode,
The center line average roughness of the suction surface of the flexible film for mounting the insulating dielectric layer is Ri der less 0.5 [mu] m, the electrostatic attraction electrodes are bipolar structure having a positive electrode and a negative electrode And the outermost end has the same polarity, and the interval between the positive electrode and the negative electrode forming the electrode for electrostatic attraction is 1 to 10 times the thickness of the insulating dielectric layer. is there.
[0008]
Also, electrostatic chuck of the flexible film according to claim 2 of the present invention, volume resistivity of the insulating dielectric layer is 10 8 to 10 12 [Omega] cm der shall.
[0009]
According to a third aspect of the present invention, there is provided a method for electrostatically adsorbing a flexible film by using the apparatus for electrostatically adsorbing a flexible film according to the first aspect. the area of the suction surface of the electrostatic attraction electrodes, flexible film is shall be 10 to 80% of the area in contact with the suction surface.
[0010]
According to a fourth aspect of the present invention, there is provided a method for electrostatically adsorbing a flexible film using the apparatus for electrostatically adsorbing a flexible film according to the first aspect. The flexible film is electrostatically adsorbed on the adsorption surface of the insulating dielectric layer with the outermost end of the electrode for electrostatic adsorption protruding from the outermost peripheral end of the flexible film, and the protruding length is 4 mm or less. it is to shall.
[0011]
The surface treatment method of the flexible film according to claim 5 of the present invention, the flexible film is electrostatically adsorbed, in a method for treating a surface of the flexible film, it claims a flexible film After electrostatic adsorption using the electrostatic adsorption apparatus for flexible film according to 1 , the electrostatic adsorption voltage is lowered or the application of the electrostatic adsorption voltage is stopped, and then the surface of the flexible film is it is shall be processed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0013]
An example of an electrostatic adsorption device for a flexible film according to the present invention will be described with reference to FIGS.
[0014]
In the electrostatic adsorption device 10 of this example, an electrostatic adsorption electrode 3 composed of a positive electrode 1 and a negative electrode 2 formed on the surface of an insulating dielectric layer 5 is covered with an insulating dielectric layer 4. The surface of the insulating dielectric layer 4 has an electrostatic adsorption surface 6 on which a flexible film 20 is placed and electrostatically adsorbed, and a power supply electrode 7 that applies a voltage to the electrostatic adsorption electrode 3. It has a structure with.
[0015]
The shape of the electrostatic adsorption device 10 is not limited to a circle as shown in FIG. 2, and may be a square, a rectangle, a triangle, or the like. Further, the size of the electrostatic adsorption device 10 is arbitrarily set according to the size of the flexible film 20.
[0016]
The electrostatic attraction electrode 3 constituting the electrostatic attraction apparatus 10 is made of a high melting point metal such as molybdenum or tungsten, or a conductive ceramic such as tantalum carbide or silicon carbide.
Further, as shown in FIG. 1A, the electrostatic chucking electrode 3 has the following structure.
A plurality of positive electrodes having the same circular center and having different sizes are formed on the surface of the insulating dielectric layer 5 at regular intervals, and all of these circular positive electrodes are partially formed. Combined to form the positive electrode 1. The negative electrode 2 formed in the same manner as the positive electrode 1 is disposed between the electrodes constituting the positive electrode 1, and the electrostatic adsorption electrode 3 has a structure in which the positive electrode 1 and the negative electrode 2 are alternately disposed. It has become.
[0017]
As described above, the electrostatic chucking electrode 3 has a bipolar structure including the positive electrode 1 and the negative electrode 2. The outermost end of the electrostatic chucking electrode 3 protruding from the outermost peripheral edge of the flexible film 20 placed on the electrostatic chucking surface 6 has the same polarity.
By arranging the electrostatic chucking electrode 3 in this way, it is possible to electrostatically chuck the flexible film 20 even in a state where plasma or the like is not generated, thereby providing an electrostatic chucking device 10 with improved workability. can do. Further, by making the outermost end of the electrostatic chucking electrode 3 the same polarity, the electric charge is most likely to be unevenly distributed on the electrostatic chucking surface of the flexible film 20 on the outermost electrostatic chucking electrode 3. Even during the etching process, uniform etching can be performed.
[0018]
The distance between the positive electrode 1 and the negative electrode 2 of the electrostatic attraction electrode 3 is 1 to 10 times the thickness of the insulating dielectric layer 4 on which the flexible film 20 is placed.
When the distance between the positive electrode 1 and the negative electrode 2 of the electrostatic attraction electrode 3 is less than 1 times the thickness of the insulating dielectric layer 4, the electrostatic attraction force becomes uniform over the entire area of the electrostatic attraction surface. A portion having a weak adsorption force does not occur, and the entrapped atmospheric gas is difficult to be discharged, which is not preferable. On the other hand, if the distance between the positive electrode 1 and the negative electrode 2 exceeds 10 times the thickness of the insulating dielectric layer 4, it is difficult to electrostatically attract the flexible film 20 because the electrostatic attractive force is reduced. This is not preferable.
[0019]
The electrostatic attraction electrode 3 is formed on the surface of the insulating dielectric layer 5 by a screen printing method, thermal spraying method, photolithography, plating, a method of adhering a foil, or the like.
In this example, the configuration of the electrode 3 for electrostatic attraction is a bipolar structure having a positive electrode and a negative electrode in the insulating dielectric layers 4 and 5, but one electrode of the electrode 3 for electrostatic attraction is used. A monopolar structure in which a flexible film 20 is taken.
[0020]
The insulating dielectric layers 4 and 5 are formed of a ceramic sintered body made of alumina, aluminum nitride, or the like.
The electrostatic adsorption surface 6 on which the flexible film 20 of the insulating dielectric layer 4 is placed and electrostatically adsorbed has a surface roughness Ra (centerline average roughness) of 0.5 μm, more preferably 0.1 μm. It is mirror-polished to be as follows. Thereby, since the friction between the electrostatic attraction surface 6 and the flexible film 20 is small, even if the flexible film 20 expands and deforms due to heat treatment and plasma treatment during the surface processing, it is possible. The flexible film 20 is easy to slide on the electrostatic adsorption surface 6 in the horizontal direction, and wrinkles, deformation, and peeling do not occur.
[0021]
Further, the insulating dielectric layer 4 constituting the electrostatic adsorption device 10 is formed so that the volume specific resistance value is 10 8 to 10 12 Ωcm at the operating temperature of the electrostatic adsorption device 10.
By setting the volume resistivity value of the insulating dielectric layer 4 within the above range, the electrostatic attraction force becomes an appropriate range of about 20 to 1000 kgf / cm 2 . As a result, no leakage current is generated during electrostatic adsorption, and even if the flexible film 20 expands and deforms due to heat treatment and plasma treatment during surface processing, it slides horizontally on the electrostatic adsorption surface 6. It is easy to avoid wrinkles, deformation and peeling.
[0022]
As a method of forming the insulating dielectric layer 4 so that the volume specific resistance value of the insulating dielectric layer 4 is within the above range, for example, the following methods are available.
(1) A sintered powder obtained by sintering a mixed powder of 1 to 10% by weight of silicon carbide powder having an average particle size of 0.5 μm or less and the balance of alumina powder in a non-oxidizing atmosphere. Is used as the insulating dielectric layer 4.
(2) A silicon carbide powder having an average particle size of 0.5 μm or less and an oxide film having a thickness of 0.1 μm or less on the surface layer and a mixed powder made of alumina powder are sintered and sintered in a non-oxidizing atmosphere. A method of forming a sintered body and using the sintered body as an insulating dielectric layer 4.
[0023]
The thickness of the insulating dielectric layer 4 is usually in the range of 100 to 4,000 μm because it is easy to process and does not cause discharge between the flexible dielectric film 20.
[0024]
In the method for electrostatic attraction of a flexible film of the present invention, the area on the side of the electrostatic attraction surface 6 of the electrode 3 for electrostatic attraction is the area where the flexible film 20 is in contact with the electrostatic attraction surface 6. 10 to 80%, more preferably 20 to 60%, still more preferably 30 to 50%.
As a result, even when the atmospheric gas is held between the electrostatic adsorption surface 6 and the flexible film 20 during the electrostatic adsorption of the flexible film 20, the electrostatic adsorption surface 6 and the flexible film 20 In between, since the electrostatic adsorption electrode 3 does not exist, the atmosphere gas embraced is easily discharged from the portion where the electrostatic adsorption force is weak, so that the flexible film 20 is wrinkled, deformed, and peeled off. It does not occur.
[0025]
In the method for electrostatic attraction of a flexible film of the present invention, the outermost end of the electrostatic attraction electrode 3 is projected from the outermost end of the flexible film 20 to the electrostatic attraction surface 6. The flexible film 20 is electrostatically adsorbed, and the protrusion length a shown in FIG.
As described above, if the outermost end of the electrode 3 for electrostatic attraction is not protruded from the outermost end of the flexible film 20, the outer periphery of the flexible film 20 may float during electrostatic attraction. This is not preferable. In addition, when the protruding length a exceeds 4 mm, the charge concentrates on the electrostatic adsorption surface of the flexible film 20 on the protruding electrode 3 for electrostatic adsorption, and the collision of charged active species increases during the etching process. As a result, the electrostatic adsorption surface becomes rough, which is not preferable.
[0026]
Then, the electrostatic attraction method of the flexible film of the present invention, by applying a DC voltages V 1 to the electrostatic attraction electrodes 3 electrostatically adsorbing flexible film 20 on the insulating dielectric layer 4, after starting the surface treatment by the flexible film 20 to the heat treatment, or plasma treatment, the electrostatic attraction electrodes 3, or applying a DC voltage V 2 is lower than the DC voltage V 1, or the application of the voltage It stops, and the electrostatic attraction force is reduced to about 0 to 80% of the electrostatic attraction force at the time of voltage application.
[0027]
As described above, in the method for electrostatic attraction of a flexible film of the present invention, the method for applying an electrostatic attraction voltage is reduced by reducing the electrostatic attraction force after electrostatic attraction as described above. Even if the conductive film 20 expands and deforms, it is easy to slide on the electrostatic adsorption surface 6 in the horizontal direction. Further, even when the atmospheric gas is entrapped between the electrostatic adsorption surface 6 and the flexible film 20 at the time of electrostatic adsorption, the entrapped atmospheric gas is easily discharged if the voltage application is stopped. Therefore, wrinkles, deformation, and peeling do not occur in the flexible film 20.
[0028]
【The invention's effect】
As explained above, according to the electrostatic adsorption device , the electrostatic adsorption method and the surface treatment method of the flexible film of the present invention, it is not necessary to perform complicated operations such as application and removal of the adhesive, and the surface even in a vacuum. Processing becomes possible. In addition, even if the flexible film expands and deforms due to heat treatment or plasma treatment during the surface processing treatment, the flexible film may be wrinkled, deformed, or peeled due to the difference in thermal expansion between the electrostatic adsorption surface and the flexible film. It does not occur.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an electrostatic attraction apparatus of the present invention, FIG. 1 (a) shows the whole, and FIG. 1 (b) is an enlarged view of a circle in FIG. 1 (a).
FIG. 2 is a plan view showing an example of the electrostatic adsorption device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Negative electrode, 3 ... Electrode for electrostatic attraction, 4, 5 ... Insulating dielectric layer, 6 ... Electrostatic attraction surface, 10 ... Electrostatic attraction apparatus, 20 ... Flexible film, a ... protruding length

Claims (5)

静電吸着用電極と、前記静電吸着用電極を被覆する絶縁性誘電体層と、前記静電吸着用電極に電圧を印加する給電用電極とを少なくとも備えた可撓性フィルムを静電吸着するための静電吸着装置であって、
前記可撓性フィルムを載置する絶縁性誘電体層の吸着面の中心線平均粗さが0.5μm以下であり、前記静電吸着用電極は、正電極と負電極とを有する双極構造であり、その最外端が同極性となっており、前記静電吸着用電極をなす正電極と負電極との間隔は、前記絶縁性誘電体層の厚みの1〜10倍であることを特徴とする可撓性フィルムの静電吸着装置。
Electrostatic adsorption of a flexible film comprising at least an electrode for electrostatic adsorption, an insulating dielectric layer covering the electrode for electrostatic adsorption, and a power supply electrode for applying a voltage to the electrode for electrostatic adsorption An electrostatic adsorption device for
The center line average roughness of the suction surface of the flexible film for mounting the insulating dielectric layer is Ri der less 0.5 [mu] m, the electrostatic attraction electrodes are bipolar structure having a positive electrode and a negative electrode And the outermost end thereof has the same polarity, and the interval between the positive electrode and the negative electrode forming the electrode for electrostatic attraction is 1 to 10 times the thickness of the insulating dielectric layer. An electrostatic adsorption device for a flexible film.
前記絶縁性誘電体層の体積固有抵抗値が10〜1012Ωcmであることを特徴とする請求項1記載の可撓性フィルムの静電吸着装置。Electrostatic chuck of the flexible film of claim 1 Symbol placement, wherein the volume resistivity of the insulating dielectric layer is 10 8 ~10 12 Ωcm. 請求項1記載の可撓性フィルムの静電吸着装置を用いて可撓性フィルムを静電吸着する方法において、
静電吸着用電極の吸着面側の面積を、可撓性フィルムが吸着面と接触している面積の10〜80%とすることを特徴とする可撓性フィルムの静電吸着方法。
In the method of electrostatically adsorbing a flexible film using the electrostatic attraction apparatus of the flexible film according to claim 1,
A method for electrostatic attraction of a flexible film, characterized in that an area on the adsorption surface side of the electrode for electrostatic adsorption is 10 to 80% of an area where the flexible film is in contact with the adsorption surface.
請求項記載の可撓性フィルムの静電吸着装置を用いて可撓性フィルムを静電吸着する方法において、
静電吸着用電極の最外端を可撓性フィルムの最外周端よりも突出した状態で絶縁性誘電体層の吸着面に可撓性フィルムを静電吸着し、その突出長を4mm以下とすることを特徴とする可撓性フィルムの静電吸着方法。
In the method of electrostatically adsorbing a flexible film using the electrostatic attraction apparatus of the flexible film according to claim 1 ,
The flexible film is electrostatically adsorbed on the adsorption surface of the insulating dielectric layer with the outermost end of the electrode for electrostatic adsorption protruding from the outermost peripheral end of the flexible film, and the protruding length is 4 mm or less. A method for electrostatically adsorbing a flexible film, comprising:
可撓性フィルムを静電吸着し、前記可撓性フィルムの表面を処理する方法において、
可撓性フィルムを請求項1記載の可撓性フィルムの静電吸着装置を用いて静電吸着した後、静電吸着電圧を低下させるか、または静電吸着電圧の印加を停止した後、前記可撓性フィルムの表面を処理することを特徴とする可撓性フィルムの表面処理方法。
In a method of electrostatically adsorbing a flexible film and treating the surface of the flexible film ,
After electrostatically adsorbing the flexible film using the electrostatic film electrostatic adsorption device according to claim 1 , the electrostatic adsorption voltage is lowered or the application of the electrostatic adsorption voltage is stopped , the surface treatment method of a flexible film, which comprises treating the surface of the flexible film.
JP2000223029A 2000-07-24 2000-07-24 Flexible film electrostatic adsorption apparatus, flexible film electrostatic adsorption method, and flexible film surface treatment method Expired - Fee Related JP3693895B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000223029A JP3693895B2 (en) 2000-07-24 2000-07-24 Flexible film electrostatic adsorption apparatus, flexible film electrostatic adsorption method, and flexible film surface treatment method
US09/909,075 US6730276B2 (en) 2000-07-24 2001-07-18 Plastic film electrostatic adsorption apparatus and electrostatic adsorption method
KR10-2001-0044112A KR100537410B1 (en) 2000-07-24 2001-07-23 Plastic film electrostatic adsorption apparatus and electrostatic adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223029A JP3693895B2 (en) 2000-07-24 2000-07-24 Flexible film electrostatic adsorption apparatus, flexible film electrostatic adsorption method, and flexible film surface treatment method

Publications (2)

Publication Number Publication Date
JP2002044971A JP2002044971A (en) 2002-02-08
JP3693895B2 true JP3693895B2 (en) 2005-09-14

Family

ID=18717187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223029A Expired - Fee Related JP3693895B2 (en) 2000-07-24 2000-07-24 Flexible film electrostatic adsorption apparatus, flexible film electrostatic adsorption method, and flexible film surface treatment method

Country Status (3)

Country Link
US (1) US6730276B2 (en)
JP (1) JP3693895B2 (en)
KR (1) KR100537410B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061941A1 (en) * 2002-12-26 2004-07-22 Mitsubishi Heavy Industries, Ltd. Electrostatic chuck
JP4008230B2 (en) 2001-11-14 2007-11-14 住友大阪セメント株式会社 Manufacturing method of electrostatic chuck
CA2503193A1 (en) * 2002-10-22 2004-05-06 The Biomerix Corporation Method and system for intravesicular delivery of therapeutic agents
JP4082985B2 (en) * 2002-11-01 2008-04-30 信越化学工業株式会社 Heating device having electrostatic adsorption function and method of manufacturing the same
JP2004167688A (en) * 2002-11-15 2004-06-17 Nippon Petrochemicals Co Ltd Film smoothing method
JP2007516743A (en) * 2003-12-12 2007-06-28 ザ ユニバーシティ オブ ウェスタン オンタリオ Method and system for optimizing dose delivery of radiation
JP4545572B2 (en) * 2004-12-07 2010-09-15 サムコ株式会社 Fixing jig for vacuum processing equipment of flexible substrate
JP5090230B2 (en) * 2008-03-28 2012-12-05 旭化成イーマテリアルズ株式会社 Load-resistant insulation test apparatus for battery separator and test method thereof
US9884437B2 (en) * 2014-06-20 2018-02-06 Palo Alto Research Center Incorporated Integral vasculature
JP6558567B2 (en) * 2015-03-31 2019-08-14 パナソニックIpマネジメント株式会社 Plasma processing apparatus and plasma processing method
TW201808651A (en) * 2016-09-07 2018-03-16 台灣格雷蒙股份有限公司 Flexible substrate debonding apparatus
CN106738964A (en) * 2017-02-23 2017-05-31 浙江恩鸿电子有限公司 Full-automatic sponge washer canning machine
CN116945720B (en) * 2023-08-09 2024-01-09 南京航空航天大学 Adhesive film composite electrostatic adsorption device for noninductive adhesion task

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257481A (en) * 1987-04-14 1988-10-25 Abisare:Kk Static retainer
JPH056933A (en) 1991-06-27 1993-01-14 Kyocera Corp Electrostatic chuck made of ceramic
JP2798570B2 (en) 1992-12-01 1998-09-17 京セラ株式会社 Electrostatic chuck
JPH07297265A (en) 1994-04-26 1995-11-10 Shin Etsu Chem Co Ltd Electrostatic chuck
US5751537A (en) * 1996-05-02 1998-05-12 Applied Materials, Inc. Multielectrode electrostatic chuck with fuses
US5748436A (en) * 1996-10-02 1998-05-05 Advanced Ceramics Corporation Ceramic electrostatic chuck and method
JP3919942B2 (en) 1998-06-16 2007-05-30 株式会社アルバック Electrostatic adsorption device and vacuum processing device
JP2000021963A (en) * 1998-07-06 2000-01-21 Nippon Steel Corp Electrostatic chuck device
JP3805134B2 (en) * 1999-05-25 2006-08-02 東陶機器株式会社 Electrostatic chuck for insulating substrate adsorption

Also Published As

Publication number Publication date
KR20020008791A (en) 2002-01-31
JP2002044971A (en) 2002-02-08
US6730276B2 (en) 2004-05-04
KR100537410B1 (en) 2005-12-19
US20020008015A1 (en) 2002-01-24

Similar Documents

Publication Publication Date Title
JP3693895B2 (en) Flexible film electrostatic adsorption apparatus, flexible film electrostatic adsorption method, and flexible film surface treatment method
EP0360529A2 (en) Electrostatic chuck
JP4418032B2 (en) Electrostatic chuck
JPH04186653A (en) Electrostatic chuck
WO2004084298A1 (en) Substrate holding mechanism using electrostaic chuck and method of manufacturing the same
JP2008251737A (en) Electrode member for electrostatic chuck device, electrostatic chuck device using same, and electrostatic adsorption releasing method
JPH08236602A (en) Electrostatic chuck
JP2005064105A (en) Electrostatic chuck device, electrode sheet therefor and adsorption method
JP2000332089A (en) Electrostatic chuck for heating and holding wafer
JP2004047979A (en) Electrostatic gripping device and its manufacturing method
JP3287996B2 (en) Electrostatic chuck device
JPH07130826A (en) Electrostatic chuck
JP3527823B2 (en) Electrostatic chuck
JP2006060040A (en) Electrostatically chucking plate, and manufacturing method thereof
JP3933289B2 (en) Electrostatic chuck
JP2000340640A (en) Non-contacting electrostatically attracting apparatus
JP2000216232A (en) Electrostatic chuck and manufacture thereof
JPH11251419A (en) Electrostatic chuck for holding substrate and substrate holding method therefor
JP4056599B2 (en) Method for attracting glass substrate for liquid crystal display device using electrostatic chuck
JP3818412B2 (en) Adsorption method of insulating substrate with adsorption electrode by electrostatic chuck
JP2000091408A (en) Electrostatic attraction apparatus and wafer processing apparatus using the same
CN114144873A (en) Landing and separating device
JP2004031599A (en) Electrostatic chuck
JPH0794576A (en) Electrostatic attracter
JPH09129716A (en) Electrostatic attraction apparatus, manufacture thereof and wafer processing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3693895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees