JP3818412B2 - Adsorption method of insulating substrate with adsorption electrode by electrostatic chuck - Google Patents

Adsorption method of insulating substrate with adsorption electrode by electrostatic chuck Download PDF

Info

Publication number
JP3818412B2
JP3818412B2 JP32368997A JP32368997A JP3818412B2 JP 3818412 B2 JP3818412 B2 JP 3818412B2 JP 32368997 A JP32368997 A JP 32368997A JP 32368997 A JP32368997 A JP 32368997A JP 3818412 B2 JP3818412 B2 JP 3818412B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
insulating substrate
electrode
insulating
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32368997A
Other languages
Japanese (ja)
Other versions
JPH11163111A (en
Inventor
潔 川合
清 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP32368997A priority Critical patent/JP3818412B2/en
Publication of JPH11163111A publication Critical patent/JPH11163111A/en
Application granted granted Critical
Publication of JP3818412B2 publication Critical patent/JP3818412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁基板、特に、液晶表示装置用基板を電気的に吸着して保持固定又は搬送する静電チャックによる吸着電極形成絶縁基板の吸着方法に関する。
【0002】
【従来の技術】
液晶の製造工程において、ガラス基板などの絶縁基板にドライエッチング、CVD、スパッタリング等の処理を行う際に絶縁基板の保持固定又は搬送手段としては、メカニカルチャックや真空チャックが使用されている。しかしながら、絶縁基板の大型化やスループットの向上に伴い、半導体の製造工程で実用化されている静電チャックの実用化が検討されている。
【0003】
この静電チャックの構造は、特開昭53−77489号公報に示されるように金属板上に絶縁性高分子材料のポリイミドシートを接着剤で貼り付けたもの、特開昭63−95644号公報、特開平4−206545号公報、特開平5−36819号公報等に示されるように2枚の絶縁性セラミックス板間に電極を設けたもの、特開昭59−152636号公報に示されるように絶縁性セラミックス板上の電極を溶射法により絶縁性セラミックス膜で被覆したものなどがある。
【0004】
電気的に試料を保持する静電チャックの吸着力は、平行平面コンデンサの電極に働く力で説明され、その吸着力は電荷の2乗に比例するものである。図4は従来の原理的構成を説明する静電チャックの断面図であり、絶縁性基板1、電圧印加電極2、絶縁性誘電体層3及び直流電源4から構成されている静電チャックにおいて、半導体ウエハ5に働く吸着力Fは次式で表わされる。
【0005】
【数2】

Figure 0003818412
ただし、εoは真空の誘電率、εrは絶縁性誘電体層の比誘電率、Sは電圧印加電極の面積、Vは印加電圧及びdは絶縁性誘電体層の厚さである。
【0006】
上式に示されるように吸着力は、真空の誘電率の1乗、絶縁性誘電体層の比誘電率の2乗、面積の1乗、印加電圧の2乗に比例し、絶縁性誘電体層の厚さの2乗に逆比例する。従って、低い印加電圧で吸着力の大きな静電チャックを得るためには絶縁性誘電体層の厚さをできるだけ薄く、例えば3mm以下にする必要がある。
【0007】
しかしながら、従来の静電チャックは、半導体ウエハを吸着することを目的としているため、絶縁基板を吸着するにはその吸着力が非常に小さく実用化が困難である。そこで、絶縁基板の片面には静電吸着する際に吸着電極となる導電性の透明な電極が形成されている。絶縁基板を静電チャックで吸着する場合、吸着面がガラス面又は吸着電極面になる場合がある。吸着面が吸着電極面になる場合は、半導体ウエハを吸着する場合と類似しており、絶縁基板を保持固定又は搬送するのに十分な吸着力が得られる。しかし、吸着面がガラス面になる場合は、絶縁基板を吸着するにはその吸着力が非常に小さくなり、実用化が困難である。
【0008】
【発明が解決しようとする課題】
本発明は、吸着面がガラス面になる場合においても絶縁基板を保持固定又は搬送するのに十分な吸着力が得られる静電チャックによる吸着電極形成絶縁基板の吸着方法を提供するものである。
【0009】
【課題を解決するための手段】
発明は、電圧印加電極が形成された絶縁性誘電体層を有する静電チャックによって、片面に吸着電極が形成された絶縁基板を吸着する方法であって、前記絶縁性誘電体層の抵抗は前記絶縁基板の抵抗よりも低くしてなり、前記絶縁性誘電体層の電圧印加電極が形成されている側と反対側の層上に、前記絶縁基板の吸着電極が形成されている面と反対側の面を載置し、前記電圧印加電極と前記吸着電極の間に電圧を印加する静電チャックによる吸着電極形成絶縁基板の吸着方法に関する。
【0010】
【発明の実施の形態】
本発明は、絶縁性誘電体層の抵抗が絶縁基板の抵抗よりも低いことが必要とされ、絶縁性誘電体層の抵抗が絶縁基板の抵抗と同等又は絶縁性誘電体層の抵抗が絶縁基板の抵抗より高い場合は、吸着力が低下し、絶縁基板を保持固定又は搬送することができない。絶縁性誘電体層の抵抗を絶縁基板の抵抗より低くするには、絶縁性誘電体層の材質とその厚さを選定することにより達成できる。絶縁性誘電体層の抵抗は、絶縁基板の抵抗の1/3〜1/1000であることが好ましく、1/10〜1/1000であることがさらに好ましい。例えば、寸法が50×50mm及び体積固有抵抗が5×104Ωcmのときの絶縁基板の抵抗が1.4×1012Ωの場合、絶縁性誘電体層の抵抗は、4.7×1011〜1.4×109Ωであることが好ましく、1.4×1011〜1.4×109Ωであることがさらに好ましい。本発明における絶縁基板としてはガラス基板などがあり、例えば液晶表示装置用の絶縁基板として使用されるものがある。
【0011】
本発明において、絶縁性誘電体層に用いられる材料としては、機械的強度に優れるAl23、Si34、AlN、SiC、SiO2、BaTiO3等のセラミックス材料が用いられる。絶縁性誘電体層は、1層又は2層以上形成してもよく特に制限はない。なお2層以上形成する場合は、前記のセラミックス材料の表面にポリイミド樹脂、ポリアミドイミド樹脂等を被膜してもよい。
【0012】
電圧印加電極としては、例えばAg−Pd、W、Ag、Au−Pt等の金属ペーストを焼付けて形成するか又はAl、Cu、Ag、Au等の金属板又は箔を電極として用いることができる。なお本発明における電圧印加電極の一方の面、即ち絶縁基板を吸着する側の面は絶縁性誘電体層で覆われている。他方の面は露出しておいても差し支えないが、放電防止、電圧印加電極を保護するなどの点で絶縁性基板で被覆することが好ましい。
【0013】
絶縁性基板としては、Al23、Si34、AlN、SiC、SiO2等のセラミックス材料、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、エポキシ樹脂ガラス布基材積層板などが用いられる。
【0014】
絶縁基板に形成される吸着電極材料としては、透明なインジウム−スズ酸化物(ITO膜)が用いられているが、この他にAl、Ta、Mo、Cr、Ti等の金属を用いることができる。
【0015】
以下、本発明の実施の形態を図面を引用して詳述する。図1は、本発明の原理的構成を説明する静電チャックの断面図及び図、図1の等価回路を示す図である。
【0016】
次に上記に示す構成の静電チャックを用いて液晶表示装置用ガラス基板を電気的に吸着する方法を示す。図1に示すように、静電チャックの絶縁性誘電体層3上に、液晶表示装置用ガラス基板6を載置し、電圧印加電極2と直流電源4とを接続し、直流電源4により電圧Vを電圧印加電極2と液晶表示装置用ガラス基板6と一体形成された吸着電極7間に印加すると、液晶表示装置用ガラス基板6にかかる電圧V1は図3に示す等価回路により、
【数4】
Figure 0003818412
となる。ここで絶縁性誘電体層3の抵抗をR3、液晶表示装置用ガラス基板6の抵抗をR4とすると、絶縁性誘電体層3の抵抗R3を液晶表示装置用ガラス基板6の抵抗R4よりも小さくなるように、静電チャックの絶縁性誘電体層3の材質とその厚さを選定すると、液晶表示装置用ガラス基板6にかかる電圧V1を上式により印加電圧Vに近い値にすることができる。即ち液晶表示装置用ガラス基板6にかかる電圧V1を電圧Vを印加した状態にほぼ近い状態にすることができ、この液晶表示装置用ガラス基板6に誘起される電荷により吸着力を発生することができる。
【0017】
【実施例】
以下本発明の実施例を説明するが、本発明はこれに制限されるものではない。
実施例1
1に示すように、絶縁性誘電体層3として厚さが2mm、縦及び横の寸法が54mmで、体積固有抵抗が3×1011ΩcmのSiCセラミックス焼結体(日立化成工業(株)製、商標名ヘキサロイ)を用い、この片側の表面にAg−Pdペーストをスクリーン印刷法で塗布し、650℃の温度で焼き付けて、厚さが10μmで縦及び横の寸法が50mmの正方形状に電圧印加電極2を形成した。
【0018】
次に電圧印加電極2の露出面に、絶縁性基板1として厚さが4mmで、縦及び横の寸法が54mmのアルミナセラミックス焼結体(日立化成工業(株)製、商品名ハロックス580)を接着剤で張り合わせて静電チャックを得た。
【0019】
実施例2
実施例1で用いた絶縁性誘電体層に代えて、平均粒径が0.7μmのアルミナ粉末95重量部に対し、平均粒径が0.6μmのSiC粉末5重量部を添加した体積固有抵抗が4×1013ΩcmのSiC−アルミナセラミックス焼結体を用いた以外は実施例1と同様の工程を経て静電チャックを得た。
【0020】
実施例3
実施例1で用いた絶縁性誘電体層に代えて、平均粒径が0.7μmのアルミナ粉末90重量部に対し、平均粒径が0.6μmのSiC粉末10重量部を添加した体積固有抵抗が2×1012ΩcmのSiC−アルミナセラミックス焼結体を用いた以外は実施例1と同様の工程を経て静電チャックを得た。
【0021】
実施例4
実施例1で用いたSiCセラミックス焼結体の片面の表面に実施例1と同様の電圧印加電極を形成し、他の全表面にスピンコート法によりポリイミド樹脂(日立化成工業(株)製、商品名PIQ1400)を塗布し、厚さが10μmのポリイミド膜を形成した。以下実施例1と同様の工程を経て静電チャックを得た。
【0022】
比較例1
実施例1で用いた絶縁性誘電体層に代えて、体積固有抵抗が1×1016Ωcmのアルミナセラミックス焼結体(日立化成工業(株)製、商品名ハロックス580)を用いた以外は実施例1と同様の工程を経て静電チャックを得た。
【0023】
次に図1に示すように各実施例及び比較例1で得られた静電チャックの絶縁性誘電体層3上に、片側の全表面に厚さが0.3μmのインジウム−スズ酸化物膜を形成した吸着電極7を有する厚さが0.7mmで、縦及び横の寸法が60mm並びに体積固有抵抗が5×1014Ωcmの液晶表示装置用ガラス基板6のガラス基板側を載置した後、電圧印加電極2と直流電源4とを接続した。
【0024】
次いで電圧印加電極2と液晶表示装置用ガラス基板6間に直流電源4により、図に示すものは3kVの電圧を印加し、吸着力の評価を行った。その結果を表に示す。表は、図に示すように吸着面がガラス面となる場合の吸着力の評価を示す。
【0025】
【表1】
Figure 0003818412
【0026】
においてR4は液晶表示装置用ガラス基板の抵抗を示し、この液晶表示装置用ガラス基板の抵抗R4は1.4×1012Ωである。また実施例4の絶縁性誘電体層の抵抗R3はポリイミド樹脂膜を含む抵抗である。
【0027】
ここで抵抗R3及びR4は次式により求められる。
【数5】
Figure 0003818412
ただしρは絶縁性誘電体層の体積固有抵抗、dは絶縁性誘電体層の厚さ及びSは絶縁性誘電体層の面積又は液晶表示装置用ガラス基板面積である。またρ′は液晶表示装置用ガラス基板の体積固有抵抗及びd′は液晶用ガラス基板の厚さである。
【0028】
に示されるように、本発明の実施例になる静電チャックを用いたものは、比較例の静電チャックを用いたものに比較して大きな吸着力が得られ、液晶表示装置用ガラス基板を保持固定又は搬送するのに十分な吸着力が得られることが明らかである。
【0029】
【発明の効果】
本発明になる静電チャックによる吸着電極形成絶縁基板の吸着方法は、絶縁基板を保持固定又は搬送するのに十分な吸着力が得られ、工業的に極めて好適な静電チャックである。
【図面の簡単な説明】
【図1】 本発明の原理的構成を説明する静電チャックの断面図である。
【図2】 図の等価回路を示す図である。
【図3】 従来の原理的構成を説明する静電チャックの断面図である。
【符号の説明】
1 絶縁性基板
2 電圧印加電極
3 絶縁性誘電体層
4 直流電源
5 半導体ウエハ
6 液晶表示装置用ガラス基板
7 吸着電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of attracting an insulating substrate, in particular, an attracting electrode-formed insulating substrate by an electrostatic chuck that electrically attracts, holds, fixes, or conveys the substrate for a liquid crystal display device.
[0002]
[Prior art]
In the manufacturing process of liquid crystal, when an insulating substrate such as a glass substrate is subjected to processing such as dry etching, CVD, sputtering, etc., a mechanical chuck or a vacuum chuck is used as means for holding and fixing the insulating substrate or conveying means. However, with the increase in the size of the insulating substrate and the improvement of the throughput, the practical application of the electrostatic chuck that has been put into practical use in the semiconductor manufacturing process is being studied.
[0003]
The structure of this electrostatic chuck is such that a polyimide sheet made of an insulating polymer material is attached to a metal plate with an adhesive as disclosed in JP-A-53-77489, JP-A-63-95644. As shown in Japanese Patent Laid-Open No. 59-152636, an electrode is provided between two insulating ceramic plates as disclosed in Japanese Patent Laid-Open Nos. 4-206545 and 5-36819. There are those in which an electrode on an insulating ceramic plate is coated with an insulating ceramic film by a thermal spraying method.
[0004]
The attracting force of the electrostatic chuck that electrically holds the sample is explained by the force acting on the electrode of the parallel plane capacitor, and the attracting force is proportional to the square of the electric charge. FIG. 4 is a cross-sectional view of an electrostatic chuck illustrating a conventional principle configuration. In an electrostatic chuck including an insulating substrate 1, a voltage application electrode 2, an insulating dielectric layer 3, and a DC power source 4, The adsorption force F acting on the semiconductor wafer 5 is expressed by the following equation.
[0005]
[Expression 2]
Figure 0003818412
Where εo is the dielectric constant of vacuum, εr is the relative dielectric constant of the insulating dielectric layer, S is the area of the voltage application electrode, V is the applied voltage, and d is the thickness of the insulating dielectric layer.
[0006]
As shown in the above equation, the adsorption force is proportional to the first dielectric constant of the vacuum, the second dielectric constant of the insulating dielectric layer, the first square of the area, and the second square of the applied voltage. It is inversely proportional to the square of the layer thickness. Therefore, in order to obtain an electrostatic chuck having a large attractive force with a low applied voltage, the thickness of the insulating dielectric layer needs to be as thin as possible, for example, 3 mm or less.
[0007]
However, since the conventional electrostatic chuck is intended to attract the semiconductor wafer, the attracting force is very small and difficult to put into practical use to attract the insulating substrate. In view of this, a conductive transparent electrode is formed on one surface of the insulating substrate to serve as an adsorption electrode when electrostatically adsorbed. When the insulating substrate is attracted by an electrostatic chuck, the attracting surface may be a glass surface or an attracting electrode surface. When the suction surface becomes the suction electrode surface, it is similar to the case of sucking the semiconductor wafer, and a suction force sufficient to hold, fix, or transport the insulating substrate can be obtained. However, when the adsorption surface is a glass surface, the adsorption force is very small to adsorb the insulating substrate, and it is difficult to put it to practical use.
[0008]
[Problems to be solved by the invention]
The present invention provides a method of attracting an attracting electrode-formed insulating substrate by an electrostatic chuck that can obtain an attracting force sufficient to hold, fix, or transport the insulating substrate even when the attracting surface is a glass surface.
[0009]
[Means for Solving the Problems]
The present invention relates to a method of adsorbing an insulating substrate having an adsorption electrode formed on one side by an electrostatic chuck having an insulating dielectric layer on which a voltage application electrode is formed, wherein the resistance of the insulating dielectric layer is It is lower than the resistance of the insulating substrate, and is opposite to the surface of the insulating substrate on which the adsorption electrode is formed on the layer opposite to the side on which the voltage application electrode is formed. The present invention relates to an adsorption method of an adsorption electrode forming insulating substrate by an electrostatic chuck that places a surface on the side and applies a voltage between the voltage application electrode and the adsorption electrode.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention requires that the resistance of the insulating dielectric layer is lower than the resistance of the insulating substrate, and the resistance of the insulating dielectric layer is equal to the resistance of the insulating substrate or the resistance of the insulating dielectric layer is the insulating substrate. When the resistance is higher than the resistance, the attractive force is reduced, and the insulating substrate cannot be held, fixed, or transported. The resistance of the insulating dielectric layer can be made lower than the resistance of the insulating substrate by selecting the material of the insulating dielectric layer and its thickness. The resistance of the insulating dielectric layer is preferably 1/3 to 1/1000 of the resistance of the insulating substrate, and more preferably 1/10 to 1/1000. For example, when the resistance of the insulating substrate is 1.4 × 10 12 Ω when the dimension is 50 × 50 mm and the volume resistivity is 5 × 10 4 Ωcm, the resistance of the insulating dielectric layer is 4.7 × 10 11. it is preferably ~1.4 × 10 9 Ω, more preferably from 1.4 × 10 11 ~1.4 × 10 9 Ω. Examples of the insulating substrate in the present invention include a glass substrate, and for example, there are substrates used as an insulating substrate for a liquid crystal display device.
[0011]
In the present invention, ceramic materials such as Al 2 O 3 , Si 3 N 4 , AlN, SiC, SiO 2 , and BaTiO 3 that are excellent in mechanical strength are used as the material used for the insulating dielectric layer. The insulating dielectric layer may be formed by one layer or two or more layers, and is not particularly limited. In addition, when forming two or more layers, you may coat a polyimide resin, a polyamidoimide resin, etc. on the surface of the said ceramic material.
[0012]
As the voltage application electrode, for example, a metal paste such as Ag—Pd, W, Ag, or Au—Pt is baked, or a metal plate or foil such as Al, Cu, Ag, or Au can be used as the electrode. In the present invention, one surface of the voltage application electrode, that is, the surface that adsorbs the insulating substrate is covered with an insulating dielectric layer. The other surface may be exposed, but is preferably covered with an insulating substrate in terms of preventing discharge and protecting the voltage application electrode.
[0013]
As the insulating substrate, ceramic materials such as Al 2 O 3 , Si 3 N 4 , AlN, SiC, SiO 2 , thermosetting resins such as epoxy resin and phenol resin, polyethylene terephthalate film, polyimide film, polyamideimide film, An epoxy resin glass cloth base laminate or the like is used.
[0014]
Transparent indium-tin oxide (ITO film) is used as the adsorption electrode material formed on the insulating substrate, but other metals such as Al, Ta, Mo, Cr, and Ti can be used. .
[0015]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings . Figure 1 is a cross-sectional view and FIG. 2 of the electrostatic chuck for explaining the principle configuration of the present invention is a diagram showing an equivalent circuit of FIG.
[0016]
Next, a method for electrically adsorbing a glass substrate for a liquid crystal display device using the electrostatic chuck having the above-described configuration will be described . As shown in FIG. 1 , a glass substrate 6 for a liquid crystal display device is placed on an insulating dielectric layer 3 of an electrostatic chuck, and a voltage application electrode 2 and a DC power supply 4 are connected. When V is applied between the voltage application electrode 2 and the adsorption electrode 7 formed integrally with the glass substrate 6 for a liquid crystal display device, the voltage V 1 applied to the glass substrate 6 for the liquid crystal display device is expressed by the equivalent circuit shown in FIG.
[Expression 4]
Figure 0003818412
It becomes. Here, assuming that the resistance of the insulating dielectric layer 3 is R 3 and the resistance of the glass substrate 6 for the liquid crystal display device is R 4 , the resistance R 3 of the insulating dielectric layer 3 is the resistance R of the glass substrate 6 for the liquid crystal display device. When the material and thickness of the insulating dielectric layer 3 of the electrostatic chuck are selected so as to be smaller than 4 , the voltage V 1 applied to the glass substrate 6 for the liquid crystal display device is a value close to the applied voltage V according to the above equation. Can be. That is, the voltage V 1 applied to the glass substrate 6 for a liquid crystal display device can be brought into a state almost similar to the state where the voltage V is applied, and an adsorbing force is generated by the charge induced in the glass substrate 6 for the liquid crystal display device. Can do.
[0017]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto.
Example 1
As shown in FIG. 1, a SiC ceramic sintered body having a thickness of 2 mm, a vertical and horizontal dimension of 54 mm, and a volume resistivity of 3 × 10 11 Ωcm as an insulating dielectric layer 3 (Hitachi Chemical Industry Co., Ltd.) The product is trade name Hexalloy, and Ag-Pd paste is applied to the surface of one side by a screen printing method and baked at a temperature of 650 ° C. to form a square shape having a thickness of 10 μm and vertical and horizontal dimensions of 50 mm. A voltage application electrode 2 was formed.
[0018]
Next, on the exposed surface of the voltage application electrode 2, an alumina ceramic sintered body (made by Hitachi Chemical Co., Ltd., trade name Harox 580) having a thickness of 4 mm and a vertical and horizontal dimension of 54 mm is formed as the insulating substrate 1. An electrostatic chuck was obtained by pasting with an adhesive.
[0019]
Example 2
In place of the insulating dielectric layer used in Example 1, 95 parts by weight of alumina powder having an average particle size of 0.7 μm and 5 parts by weight of SiC powder having an average particle size of 0.6 μm were added. Obtained an electrostatic chuck through the same steps as in Example 1 except that a 4 × 10 13 Ωcm SiC-alumina ceramic sintered body was used.
[0020]
Example 3
In place of the insulating dielectric layer used in Example 1, 90 parts by weight of alumina powder having an average particle size of 0.7 μm and 10 parts by weight of SiC powder having an average particle size of 0.6 μm were added. Obtained an electrostatic chuck through the same steps as in Example 1 except that a 2 × 10 12 Ωcm SiC-alumina ceramic sintered body was used.
[0021]
Example 4
A voltage application electrode similar to that in Example 1 is formed on one surface of the SiC ceramics sintered body used in Example 1, and polyimide resin (manufactured by Hitachi Chemical Co., Ltd. No. PIQ1400) was applied to form a polyimide film having a thickness of 10 μm. The electrostatic chuck was obtained through the same steps as in Example 1 below.
[0022]
Comparative Example 1
Instead of the insulating dielectric layer used in Example 1, an alumina ceramic sintered body having a volume resistivity of 1 × 10 16 Ωcm (product name: Harox 580, manufactured by Hitachi Chemical Co., Ltd.) was used. An electrostatic chuck was obtained through the same steps as in Example 1.
[0023]
Next, as shown in FIG. 1, an indium-tin oxide film having a thickness of 0.3 μm on the entire surface on one side is formed on the insulating dielectric layer 3 of the electrostatic chuck obtained in each of the examples and the comparative example 1. After the glass substrate side of the glass substrate 6 for a liquid crystal display device having a thickness of 0.7 mm, a vertical and horizontal dimension of 60 mm, and a volume resistivity of 5 × 10 14 Ωcm, having the adsorption electrode 7 formed with The voltage application electrode 2 and the DC power source 4 were connected.
[0024]
By then the voltage application electrode 2 and the DC power source 4 between the liquid crystal display device glass substrate 6, as shown in Figure 1 by applying a voltage of 3 kV, was evaluated suction force. The results are shown in Table 1 . Table 1 shows the evaluation of the adsorption force when the suction surface as shown in FIG. 1 is a glass surface.
[0025]
[Table 1]
Figure 0003818412
[0026]
In Table 1 , R 4 represents the resistance of the glass substrate for liquid crystal display device, and the resistance R 4 of the glass substrate for liquid crystal display device is 1.4 × 10 12 Ω. Further, the resistance R 3 of the insulating dielectric layer of Example 4 is a resistance including a polyimide resin film.
[0027]
Here, the resistances R 3 and R 4 are obtained by the following equations.
[Equation 5]
Figure 0003818412
Where ρ is the volume resistivity of the insulating dielectric layer, d is the thickness of the insulating dielectric layer, and S is the area of the insulating dielectric layer or the glass substrate area for the liquid crystal display device. Further, ρ ′ is the volume resistivity of the glass substrate for liquid crystal display device, and d ′ is the thickness of the glass substrate for liquid crystal.
[0028]
As shown in Table 1 , the one using the electrostatic chuck according to the embodiment of the present invention has a larger adsorption force than the one using the electrostatic chuck of the comparative example, and the glass for liquid crystal display device It is apparent that sufficient adsorption force can be obtained for holding, fixing or transporting the substrate.
[0029]
【The invention's effect】
The suction method of the suction electrode forming insulating substrate by the electrostatic chuck according to the present invention is an electrostatic chuck that is industrially extremely suitable because it can obtain a suction force sufficient to hold, fix, or transport the insulating substrate.
[Brief description of the drawings]
1 is a cross-sectional view of an electrostatic chuck for explaining the principle configuration of the present invention.
FIG. 2 is a diagram showing an equivalent circuit of FIG. 1 ;
FIG. 3 is a cross-sectional view of an electrostatic chuck for explaining a conventional principle configuration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Voltage application electrode 3 Insulating dielectric layer 4 DC power supply 5 Semiconductor wafer 6 Glass substrate for liquid crystal display device 7 Adsorption electrode

Claims (1)

電圧印加電極が形成された絶縁性誘電体層を有する静電チャックによって、片面に吸着電極が形成された絶縁基板を吸着する方法であって、前記絶縁性誘電体層の抵抗は前記絶縁基板の抵抗よりも低くしてなり、前記絶縁性誘電体層の電圧印加電極が形成されている側と反対側の層上に、前記絶縁基板の吸着電極が形成されている面と反対側の面を載置し、前記電圧印加電極と前記吸着電極の間に電圧を印加する静電チャックによる吸着電極形成絶縁基板の吸着方法。A method of adsorbing an insulating substrate having an adsorption electrode formed on one side by an electrostatic chuck having an insulating dielectric layer on which a voltage applying electrode is formed, wherein the resistance of the insulating dielectric layer is the resistance of the insulating substrate The surface opposite to the surface on which the adsorption electrode of the insulating substrate is formed is formed on the layer opposite to the side on which the voltage application electrode of the insulating dielectric layer is formed. An adsorption method of an adsorption electrode forming insulating substrate by an electrostatic chuck that is placed and applies a voltage between the voltage application electrode and the adsorption electrode.
JP32368997A 1997-11-26 1997-11-26 Adsorption method of insulating substrate with adsorption electrode by electrostatic chuck Expired - Fee Related JP3818412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32368997A JP3818412B2 (en) 1997-11-26 1997-11-26 Adsorption method of insulating substrate with adsorption electrode by electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32368997A JP3818412B2 (en) 1997-11-26 1997-11-26 Adsorption method of insulating substrate with adsorption electrode by electrostatic chuck

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006125582A Division JP4419096B2 (en) 2006-04-28 2006-04-28 Electrostatic chuck transfer system

Publications (2)

Publication Number Publication Date
JPH11163111A JPH11163111A (en) 1999-06-18
JP3818412B2 true JP3818412B2 (en) 2006-09-06

Family

ID=18157506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32368997A Expired - Fee Related JP3818412B2 (en) 1997-11-26 1997-11-26 Adsorption method of insulating substrate with adsorption electrode by electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3818412B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475726B1 (en) * 2001-03-22 2005-03-10 코닉시스템 주식회사 Pressure apparatus for joining process of LCD cell
JP2002368071A (en) * 2001-06-11 2002-12-20 Ulvac Japan Ltd Treatment board
JP4884811B2 (en) * 2006-03-20 2012-02-29 三菱重工業株式会社 Glass substrate electrostatic adsorption device and adsorption / desorption method thereof

Also Published As

Publication number Publication date
JPH11163111A (en) 1999-06-18

Similar Documents

Publication Publication Date Title
CA1313428C (en) Electrostatic chuck
JP2865472B2 (en) Electrostatic chuck
JPH04186653A (en) Electrostatic chuck
JP2008251737A (en) Electrode member for electrostatic chuck device, electrostatic chuck device using same, and electrostatic adsorption releasing method
KR100614021B1 (en) Electrode sheet for electrostatic chuck apparatus, electrostatic chuck apparatus, and adsorption method
JP3847198B2 (en) Electrostatic chuck
JPS63194345A (en) Electrostatic chuck
JP4677397B2 (en) Electrostatic adsorption method
JP4159926B2 (en) Electrostatic gripping device and method for manufacturing the same
JP3693895B2 (en) Flexible film electrostatic adsorption apparatus, flexible film electrostatic adsorption method, and flexible film surface treatment method
JP3818412B2 (en) Adsorption method of insulating substrate with adsorption electrode by electrostatic chuck
JP4056599B2 (en) Method for attracting glass substrate for liquid crystal display device using electrostatic chuck
JP4419096B2 (en) Electrostatic chuck transfer system
EP0506537A1 (en) Electrostatic chuck
JPH056933A (en) Electrostatic chuck made of ceramic
JP2002345273A (en) Electrostatic chuck
JPH11260899A (en) Electrostatic chuck
JP2004319700A (en) Electrostatic chuck
JP2006049852A (en) Electrostatic chuck
JP2000340640A (en) Non-contacting electrostatically attracting apparatus
JP4934907B2 (en) Electrostatic chuck
JPH09293774A (en) Electrostatic chuck
JP4419579B2 (en) Electrostatic chuck
JPH11251419A (en) Electrostatic chuck for holding substrate and substrate holding method therefor
JPH0831917A (en) Electrostatic chuck and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees