JP3691951B2 - Gallium nitride compound semiconductor light emitting device - Google Patents

Gallium nitride compound semiconductor light emitting device Download PDF

Info

Publication number
JP3691951B2
JP3691951B2 JP605398A JP605398A JP3691951B2 JP 3691951 B2 JP3691951 B2 JP 3691951B2 JP 605398 A JP605398 A JP 605398A JP 605398 A JP605398 A JP 605398A JP 3691951 B2 JP3691951 B2 JP 3691951B2
Authority
JP
Japan
Prior art keywords
junction
type gan
gan layer
gallium nitride
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP605398A
Other languages
Japanese (ja)
Other versions
JPH11204832A (en
Inventor
治彦 岡崎
千里 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP605398A priority Critical patent/JP3691951B2/en
Publication of JPH11204832A publication Critical patent/JPH11204832A/en
Application granted granted Critical
Publication of JP3691951B2 publication Critical patent/JP3691951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板表面より光を取出す窒化ガリウム系化合物半導体発光素子に係り、特に素子から発光した光を蛍光体に照射して所望とする波長の発光を得る構成に関する。
【0002】
【従来の技術】
近年、紫外光領域から青色、緑色領域に至る発光ダイオード(LED)の材料として、Alx、Gay、In1−x−yN(0≦x、y≦1、x+y≦l)を用いた窒化ガリウム系化合物半導体が注目されている。このような材料の化合物半導体により、これまで困難であった発光強度の高い紫外光、青色、緑色等の発光が可能となって来ている。このような窒化ガリウム系化合物半導体は、一般に絶縁性基板であるサファイア基板上に成長形成される。
【0003】
このため、GaAs系の発光素子のように基板側に電極を設けることはできず、結晶成長基板側にアノ一ド、カソード電極の両方を形成することが必要である。そこで、カソード電極は、p型層をエッチング除去してn型層を出して電極を形成する。アノ一ド電極はp型層の表面に形成する必要があるが、p型層は導電率が低いため電極直下しか発光しない。そのため、発光領域全面に発光波長に対して透明な電極を形成しないと外部量子効率が低下することになる。
【0004】
従来の窒化ガリウム系化合物半導体発光素子(以降、単に半導体発光素子と称することもある)の構造例を図11に示す。サファイア基板1にGaNバッファ層(図示せず)及びn型GaN層2とp型GaN層3が結晶成長されて、p型GaN層3の一部がエッチング除去されてn型GaN層2が露出されている。p型GaΝ層3上にp側透明電極6、p側ボンディング電極5が形成され、n型GaN層2上にn側電極4が形成されている。
【0005】
図12に示すように、上記のような構造の半導体発光素子10はリードフレーム12上に銀ペースト等の導電性接着材料11でマウントされ、樹脂モールド8が施される構成が一般的である。また、蛍光体を発光させるには、一般に樹脂モールド8中に蛍光体9を混入させる。p側のボンディング電極5から流された電流は、導電性の良い透明電極6で広げられ、p型GaN層3からn型GaN層2に電流が注入され、その時、p型GaN層3とn型GaN層2の間に形成されるpn接合より発光し、その光は透明電極6を通してチップ外に取り出される。更に図13に示すような樹脂モールド8を介して外部に発光する。この際、樹脂モールド8中に蛍光体9があればpn接合より発光した光によって、蛍光体も発光し、蛍光体の発色の種類を選択することにより、所望の色の発光を得ることができる。
【0006】
【発明が解決しようとする課題】
上記のような従来の窒化ガリウム系化合物半導体発光素子においては、pn接合で発光した光はp型GaN層3で吸収されてしまい、表面の透明電極6まで届かず、外部に取り出せないという深刻な問題があった。
【0007】
また、p型GaN層3を薄くした場合、この層3で吸収されなかった分の光が透明電極6を通して取り出されるが、導電性が高く、半導体層に対してオーミックが取れ、しかも発光波長での吸収が少ないという電極材料は必ずしも容易に実現できないという問題があった。その上、発光波長が短波長化するにつれて、発光波長での吸収力が少ない材料は更に実現し難いという問題があった。特に、pn接合より出た光で蛍光体9を発光(特に赤色)させるためには、蛍光体9の発光変換効率の高い300nm程度の短波長の発光を前記pn接合から取り出す必要があるが、この波長領域において吸収が少ないという材料の実現は非常に難しいという問題があった。
【0008】
又、樹脂モールド8中に蛍光体9を含有させると、pn接合で発光した光の多くがすぐに蛍光体9によって変換される訳ではなく、樹脂モールド8部分を光が通過していくうちに蛍光体9で光変換されるため、光が樹脂モールド8中を伝播する際の減衰によって前記蛍光体9により効率的に変換できないとい問題と、短波長光(紫外光)により樹脂モールド8の劣化が引き起こされる等の問題もあった。更に、半導体素子を樹脂モールドしないと蛍光体9によって変換された光パワーの測定ができないため、ウエハ状態でのチップ選別が難しく、量産性に欠けるという問題もあった。
【0009】
本発明は、上述の如き従来の課題を解決するためになされたもので、その目的は、実現しがたい材料の透明電極を用いなくとも、発生した短波長光(紫外光)の光を効率よく蛍光体で可視光などに変換して外部に効率よく取り出すことができると共に、赤、緑、青の3原色を発光することができる窒化ガリウム系化合物半導体発光素子を提供することである。
【0010】
【課題を解決するための手段】
上記目的を達成するために、第1の発明の特徴は、pn接合を有する窒化ガリウム系化合物半導体において、前記pn接合の一部が除去されるように前記半導体表面から内部に向かって形成された断面が凹部状のpn接合除去部を設けたことにある。
【0011】
この第1の発明によれば、前記pn接合は、p型のGaN層とn型のGaN層の境界部に形成され、表面のp型のGaN層をエッチングしてn型のGaN層を露出するように凹部状のpn接合除去部を形成すると、pn接合除去部の側壁には前記pn接合の端面が露出する。p型のGaN層とn型のGaN層に電圧を印加すると、前記pn接合部で紫外線が発光し、この紫外線が前記pn接合の端面から前記pn接合除去部を通して外部に照射する。pn接合除去部の内部及び周辺に蛍光体を充填又は塗布しておけば、前記紫外線は直ちに前記蛍光体により可視光に変換されて外部に照射される。
【0012】
第2の発明の特徴は、前記pn接合除去部は、細長い溝状を有し、前記半導体表面に適当な間隔を空けて複数本設けられることにある。
【0013】
この第2の発明によれば、前記複数本のpn接合除去部から紫外線が外部に照射される。
【0014】
第3の発明の特徴は、前記pn接合除去部は、開口部が円形又は多角形状の穴で、前記半導体表面に適当な間隔を空けて複数個設けられることにある。
【0015】
この第3の発明によれば、例えば前記pn接合除去部は円柱形の穴などになるが、この穴の内壁面にpn接合の端部が露出し、この端部から紫外線が外部に照射される。
【0016】
第4の発明の特徴は、前記pn接合除去部の内部又は周辺部に蛍光体層を充填又は形成したことにある。
【0017】
この第4の発明によれば、前記pn接合除去部の内壁面に露出しているpn接合部から外部に照射された紫外線は前記蛍光体層により直ちに可視光線に変換されて外部に照射される。
【0018】
第5の発明の特徴は、前記半導体表面に、前記pn接合除去部の開口部の少なくとも一部も含めて覆う蛍光体層を形成することにある。
【0019】
この第5の発明によれば、前記pn接合除去部の内壁面に露出しているpn接合部から外部に照射された紫外線はこのpn接合除去部の開口部を塞ぐ前記蛍光体層により直ちに可視光線に変換されて外部に照射される。
【0020】
第6の発明の特徴は、前記蛍光体層の一部分に異なる色を発色する蛍光体を含む領域が存在することにある。
【0021】
この第6の発明によれば、前記pn接合部の端面から外部に照射された紫外線は前記蛍光体層により可視光に変換されるが、蛍光体層の種類によって異なった色の光が発光する。
【0022】
第7の発明の特徴は、p型のGaN層とその下部にあるn型のGaN層により形成されたpn接合を有する窒化ガリウム系化合物半導体において、前記半導体表面の中央部にn側電極を設けるために前記p型のGaN層をエッチングして形成したn型のGaN層の露出穴と、前記pn接合の一部が除去されるように前記半導体表面から内部に向かって形成された断面が凹部状の細長いpn接合除去部とを設け、複数本の前記pn接合除去部を前記露出穴を中心として前記半導体表面の外周部へ向かって放射状に配置することにある。
【0023】
第8の発明の特徴は、p型のGaN層とその下部にあるn型のGaN層により形成されたpn接合を有する窒化ガリウム系化合物半導体発光素子において、前記半導体表面の中央部にn側電極を設けるために前記p型のGaN層をエッチングして形成したn型のGaN層の露出穴と、前記pn接合の一部が除去されるように前記半導体表面から内部に向かって形成された断面が凹部状で細長いpn接合除去部とを設け、少なくとも1本以上の前記pn接合除去部を前記露出穴を中心とした同心円状に前記半導体表面に配置することにある。
【0024】
この第8の発明によれば、通常、半導体表面は前記pn接合除去部などを除いて、透明電極で覆われるが、この透明電極を通して半導体表面電流が集中して流れやすい前記n型のGaN層の露出穴近くの透明電極領域のpn接合部が前記pn接合除去部により同心円状に一部除去されているため、電流が半導体表面の周辺部分にも流れ、面全体で均一に発光する。
【0025】
第9の発明の特徴は、p型のGaN層とその下部にあるn型のGaN層により形成されたpn接合を有する窒化ガリウム系化合物半導体において、p型のGaN層を複数の領域に分割し、各分割領域の半導体表面に、前記pn接合の一部が除去されるように前記半導体表面から内部に向かって形成された断面が凹部状の複数のpn接合除去部を設け、且つ、前記各分割領域のpn接合除去部に各分割領域毎に異なる色を発色する蛍光体層を充填することにある。
【0026】
この第9の発明によれば、前記各分割領域のpn接合除去部に充填されている蛍光体層の発色の種類が異なるため、それぞれの分割領域は異なる色の可視光を照射する。
【0027】
第10の発明の特徴は、前記p型のGaN層を3つの領域に分割し、且つ各分割領域のpn接合除去部に、赤、青、緑の異なる色を発色する蛍光体層を充填して、前記各分割領域毎に異なる色の発光を得ることにある。
【0028】
この第10の発明によれば、3つの分割領域はそれぞれ、赤、青、緑の3原色の可視光を照射できるため、これら3原色のレベルを調整して混合することにより各種の色の可視光が得られる。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明の窒化ガリウム系化合物半導体発光素子の第1の実施の形態の構成例を示した斜視図である。サファイア基板1上にGaNバッファ層(図示せず)、n型GaN層2、p型GaN層3を順次結晶成長させる。次にp型GaN層3をPEP法によりパタ−ニングし、RIE法等によりエッチングしてn型GaN層2を露出させる。その後、PEP法を用いてパタ−ニングし、n側電極4としてTi/Au等をn型GaN層2上に蒸着して、リフトオフにより形成する。透明電極6としては、PEP法によりパタ−ニング後、真空蒸着法により厚さ10nmのNi層をp型GaN層3上に形成する。
【0030】
更に、ストライプ形成のためにPEP法によりパターニング後、10μm幅のレジストをマスクとしてNiをHCl等でウエットエッチングした後、RIE法等によりストライプ状にp型GaN層3をエッチング除去して、n型GaN層2を露出させることにより、pn接合の一部を除去したpn接合除去部100を形成する。更に、熱CVD法によりSiO2 膜を形成した後、PEP法によってNi薄膜と接続されたp側のボンディング電極5を形成する。尚、pn接合除去部100の間にあるGaN層はメサ型をしている。
【0031】
なお、このSiO2 膜は図1には明記されていないが、pn接合除去部100のメサ端面、pn接合の露出面、透明電極6の表面に亙って形成されており、n側電極4部分と透明電極6とp側のボンディング電極5の重なり部分を除く、p側電極下にも形成されている。半導体層表面が酸化物等もなく、十分に清浄な状態であれば不要な工程となる場合もあるが、透明電極6及びn側電極4と半導体層間の密着性、オーミック性向上のために450℃で、20秒のフラッシュアニールを行うことにより、電極形成する。
【0032】
次に本実施の形態の動作について説明する。カソードのp側ボンディング電極5とアノードのn側電極4との間に電圧が印加されると、p側ボンディング電極5から流入する電流は、導電性の良い透明電極6で広げられ、p型GaN層3からn型GaN層2に注入されて、これらp、n型GaN層3、2の間のpn接合部で発光し、発光した紫外線はストライプ状に形成されたpn接合除去部100の側壁に露出しているpn接合部の端面及びp型GaN層3、透明電極6を通して外部に照射される。
【0033】
ここで、ストライプ状に形成されたpn接合除去部100の壁面や底面に蛍光体が塗布又は充填されておれば、前記pn接合除去部100のpn接合端面から発光した紫外線はこの蛍光体により可視光に変換されて外部に照射される。この時、前記蛍光体の発色が赤であれば赤色が、前記蛍光体の発色が青であれば青色が、前記蛍光体の発色が緑であれば緑色が外部に照射されることになる。
【0034】
このようにして得られた本例の電流電圧特性(I−V特性)及び電流一光出力(Po)特性を図2に示す。この図2において、電流値20mAの時に、電圧4.3V、光出力58μW、発光波長は360nmが得られることが分かる。
【0035】
本実施の形態によれば、半導体表面に複数本のpn接合除去部100を形成することにより、p型GaN層3とn型GaN層2より形成されるpn接合の一部を除去して、このpn接合で発光した紫外線をpn接合除去部100の側壁に露出するpn接合端面から外部に取り出すことにより、p型GaN層3や透明電極6により前記紫外線が減衰しても、前記pn接合端面から十分なレベルの紫外線を外部に取り出すことができる。従って、透明電極6の材料としては通常のものが使用でき、容易に上記効果を得ることができる。また、発光した紫外線は蛍光体の発光変換効率が高い360nm程度の短波長であることと、pn接合端面に近接して塗布又は充填されている蛍光体により直ちに可視光に変換するため、可視光への変換効率が極めて高く、十分なレベルの可視光を効率よく得ることができると共に、前記PN接合端面から光を外部に導き出す構造のため、発光源の微細化を容易に行うことができる。更に、上記のようにpn接合部から短波長の紫外線を効率よく取り出すことができるため、この紫外線を赤色の蛍光体で赤色に変換することができ、実用レベルの赤色の発光を得ることができる。又、従来のように樹脂モールド中に蛍光体があるわけではなく、ウエハ状態で、蛍光体が塗布されているため、ウエハ状態でも前記蛍光体で変換された光の強度を測定することができ、ウエハ状態でのチップ選別を容易に行うことができ、半導体発光素子の量産性及び歩留まりの向上を図ることができる。
【0036】
尚、pn接合除去部100の半導体表面に占める面積の割合は、大きいとpn接合の面積が少なくなって、紫外線の発光量が少なくなってしまい、逆に前記pn接合除去部100の面積が小さいと、pn接合部から外部に取り出す紫外線の量が少なくなるため、前記pn接合除去部100の半導体表面に占める割合は、適切な範囲がある。
【0037】
図3は本発明の窒化ガリウム系化合物半導体発光素子の第2の実施の形態の構成例を示した斜視図である。本例は、p型GaN層3の上に形成されている透明電極6及びpn接合除去部100の上に蛍光体層7が形成されている以外は、図1に示した第1の実施の形態と同様の構造を有している。これにより、カソードのp側ボンディング電極5とアノードのn側電極4との間に電圧が印加されると、p型GaN層3とn型GaN層2の間にあるpn接合部で発光し、発光した紫外線はストライプ状に形成されたpn接合除去部100の側面に露出しているpn接合端面及びp型GaN層3、透明電極6を通して外部に照射される。この時、前記紫外線は蛍光体層7を通過する際に、可視光線に変換され、この可視光線が外部に照射されることになる。
【0038】
この場合も、蛍光体層7はストライプ状に形成されたpn接合除去部100及び透明電極6に近接して配置されているため、発光された紫外線は減衰することなく、蛍光体層7により効率的に可視光線に変換され、第1の実施の形態と同様の効果がある。特に、本例ではp型GaN層3、透明電極6を通して外部に照射され紫外線も蛍光体層7により可視光に変換でき、その分効率がよくなっている。
【0039】
図4は窒化ガリウム系化合物半導体発光素子の本発明の第3の実施の形態の構成例を示した斜視図である。本例は、半導体発光素子全体に蛍光体含有有機シラン溶液を塗布して形成した蛍光体層7で半導体発光素子全体を囲んだ構成を有している他は、図3に示した第2の実施の形態と同様であり、同様の効果がある。
【0040】
図5は本発明の窒化ガリウム系化合物半導体発光素子の第4の実施の形態の構成例を示した斜視図である。本例は、p型GaN層3とn型GaN層2のpn接合部の一部を除去するpn接合除去部100がストライプ状に形成されているが、本例はストライプ状に形成されたpn接合除去部100の間にあるp型GaN層3とn型GaN層2の部分が逆メサ型になっていている点が異なり、他の構成は図1に示した第1の実施の形態と同様であり、同様の効果がある。
【0041】
特に、ストライプ状に形成されたpn接合除去部100の間にあるp型GaN層3とn型GaN層2の部分が逆メサ型であるため、透明電極6と半導体層の接触面積を大きくし、メサエッチングされた穴の底部分21に蛍光体を含む有機シラン溶液、或いは蛍光体そのものを詰め込むことで、pn接合部の端面から外部に発光された紫外線を前記蛍光体で効率的に赤色系の可視光に変換することができる。
【0042】
図6は本発明の窒化ガリウム系化合物半導体発光素子の第5の実施の形態の構成例を示した平面図である。本例は、p型GaN層3とn型GaN層2の間にあるpn接合除去部100の形状を細長い溝型とし、このような形状のpn接合除去部100がチップ表面の中心から周辺部に向かって複数本直線上に伸びている。他の構成は図1に示した第1の実施の形態と同様であるため、pn接合除去部100の壁面に露出するpn接合部の端面から紫外線が外部に照射され、第1の実施の形態と同様の効果がある。尚、pn接合除去部100内及びその周辺部に蛍光体層を設ければ、前記紫外線を効率的に可視光に変換することができる。
【0043】
図7は本発明の窒化ガリウム系化合物半導体発光素子の第6の実施の形態の構成例を示した平面図である。本例は、p型GaN層3のほぼ中央部を円形にエッチングしてn型GaN層2を円形に露出させ、このn型GaN層2の表面の中央に、円形のn側電極4が形成されている。また、p型GaN層3とn型GaN層2の間にあるpn接合の一部を除去するpn接合除去部100の形状は細長い溝型であるが、前記円形のn型GaN層2の露出穴の外周部を形成するp型GaN層3の縁から外側に向かって放射状にpn接合除去部100が複数本配置されている。しかも、これらpn接合除去部100の一方の端部は前記露出穴に連通している。他の構成は図1に示した第1の実施の形態と同様であるため、pn接合除去部100の壁面に露出するpn接合部の端面から紫外線が外部に照射され、第1の実施の形態と同様の効果がある。尚、pn接合除去部100の中などに蛍光体層を充填すれば、この蛍光体層により前記紫外線を効率的に可視光に変換することができる。
【0044】
図8は本発明の窒化ガリウム系化合物半導体発光素子の第8の実施の形態の構成例を示した平面図である。本例は、p型GaN層3のほぼ中央部を円形にエッチングしてn型GaN層2を円形に露出させ、このn型GaN層2の表面の中央に、円形のn側電極4が形成され、p型GaN層3の隅にP側ボンディング電極5が形成されている。このP側ボンディング電極5部分を除き、n側電極4を中心として、ほぼ同心円状に複数の円形のpn接合除去部100が形成されている。これらpn接合除去部100とP側ボンディング電極5を除いて、p型GaN層3のほぼ全面を透明電極6が覆っており、この透明電極6とP側のボンディング電極5は互いに接続されている。
【0045】
本実施の形態は上記のような構造にすることにより、電流が集中して流れやすいn側電極4近くの透明電極6の領域のpn接合部が前記pn接合除去部100により同心円状に一部除去されているため、電流がP型GaN層3の周辺部分にも流れるようになり、面全体より均一な発光を得ることができる。他の構成は図1に示した第1の実施の形態と同様であるため、pn接合除去部100の壁面に露出するpn接合部の端面から紫外線が外部に照射され、第1の実施の形態と同様の効果がある。尚、pn接合除去部100の中などに蛍光体層を充填すれば、この蛍光体層により前記紫外線を効率的に可視光に変換することができる。
【0046】
図9は本発明の窒化ガリウム系化合物半導体発光素子の第8の実施の形態の構成例を示した斜視図である。本例は、p型GaN層3とn型GaN層2のpn接合部の一部をRIE法によりエッチングして除去するpn接合除去部100が円柱型をしており、この円柱型のpn接合層除去部分100が複数個適当な間隔を離して配置されている。
【0047】
他の構成は図1に示した第1の実施の形態と同様で、円柱型のpn接合除去部100の壁面に露出するpn接合部端面から紫外線が外部に取り出され、同様の効果がある。特に、円柱型のpn接合除去部100の大きさとその数を適切にすることにより、p型GaN層3と透明電極6との接触面積を増やすことができるため、素子のI−V特性を改善することができ、より安定な発光を行うことができる。
【0048】
図10は本発明の窒化ガリウム系化合物半導体発光素子の第9の実施の形態の構成例を示した斜視図である。本例は、円柱型のpn接合除去部100の開口部を塞ぐように蛍光体層7を設けてあるところが、図9に示した第8の実施の形態と異なるだけで、他の構成は第8の実施の形態と同様である。
【0049】
これにより、円柱型のpn接合除去部100から取り出される紫外線は蛍光体層7により直ちに可視光に効率よく変換されて、この可視光が外部に照射される。従って、蛍光体層7の種類を変えることにより、可視光の種類を例えば赤、青、緑と変えることができる。他の効果は第8の実施の形態と同様で、同様の効果がある。
【0050】
図11は本発明窒化ガリウム系化合物半導体発光素子の第10の実施の形態の構成例を示した斜視図である。本例は、図10に示した半導体発光素子が3個隣接して形成されている。これら3個の半導体発光素子のp型GaN層3から上の部分はそれぞれ他と区分されているが、n型GaN層2、サファイア基板1は共通で、n側電極4も共通である。これら3個の半導体発光素子の円柱型のpn接合除去部の開口部には、これを塞ぐように3原色の赤、青、緑の蛍光体層13、14、15が充填されている。このため、蛍光体層13からは赤色が発光され、蛍光体層14からは青色が発光され、蛍光体層15からは緑色が発光される。
【0051】
本実施の形態によれば、窒化ガリウム系化合物半導体発光素子のみでフルカラーの実現が可能となるばかりでなく、生産コストの低減、歩留まりの向上を図ることができると共に、発光源を微細化することができる。
【0052】
【発明の効果】
以上詳細に説明したように、第1、第2、第3、第7の発明によれば、pn接合の一部を除去するpn接合除去部を設けて、pn接合の端面を露出させ、このpn接合の端面から紫外線を取り出すことにより、実現しがたい材料の透明電極を用いなくとも、発生した紫外光を効率よく外部に取り出すことができる。
【0053】
第4、第5の発明によれば、前記pn接合の端面に近接して、蛍光体を配置することにより、前記pn接合から取り出された紫外線を前記蛍光体により直ちに可視光に変換するため、十分なレベルの赤などの可視光を効率よく得ることができる。
【0054】
第8の発明によれば、半導体表面電流が集中するn型のGaN層の露出穴の付近に同心円状のpn接合除去部が設けてあるため、半導体表面電流が表面全体に流れて、半導体表面より均一な発光を得ることができる。
【0055】
第6の発明によれば、前記pn接合の端面に近接して、複数の発色の蛍光体を配置することにより、複数の色の可視光の照射を同時に得ることができる。
【0056】
第9、10の発明によれば、各分割領域のpn接合除去部に異なる発色の蛍光体層を充填したため、各分割領域毎で異なる色の可視光を得ることができる。特に前記分割領域を3分割とし、前記異なる発色の蛍光体層を赤、青、緑の3原色とすれば、窒化ガリウム系化合物半導体発光素子のみで、カラーのLEDを容易に実現することができる。
【図面の簡単な説明】
【図1】本発明の窒化ガリウム系化合物半導体発光素子の第1の実施の形態の構成例を示した斜視図である。
【図2】図1に示した光半導体素子の電流電圧特性及び電流光出力特性を示した特性図である。
【図3】本発明の窒化ガリウム系化合物半導体発光素子の第2の実施の形態の構成例を示した斜視図である。
【図4】本発明の窒化ガリウム系化合物半導体発光素子の第3の実施の形態の構成例を示した斜視図である。
【図5】本発明の窒化ガリウム系化合物半導体発光素子の第4の実施の形態の構成例を示した斜視図である。
【図6】本発明の窒化ガリウム系化合物半導体発光素子の第5の実施の形態の構成例を示した平面図である。
【図7】本発明の窒化ガリウム系化合物半導体発光素子の第6の実施の形態の構成例を示した平面図である。
【図8】本発明の窒化ガリウム系化合物半導体発光素子の第7の実施の形態の構成例を示した平面図である。
【図9】本発明の窒化ガリウム系化合物半導体発光素子の第8の実施の形態の構成例を示した斜視図である。
【図10】本発明の窒化ガリウム系化合物半導体発光素子の第9の実施の形態の構成例を示した斜視図である。
【図11】本発明の窒化ガリウム系化合物半導体発光素子の第10の実施の形態の構成例を示した斜視図である。
【図12】従来の窒化ガリウム系化合物半導体発光素子の構成例を示した斜視図である。
【図13】従来の窒化ガリウム系化合物半導体発光素子の他の構成例を示した斜視図である。
【符号の説明】
1 サファイア基板
2 n型GaN層
3 p型GaN層
4 n側電極
5 p側のボンディング電極
6 透明電極
7、13、14、15、16 蛍光体層
100 pn接合除去部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gallium nitride-based compound semiconductor light-emitting device that extracts light from the surface of a semiconductor substrate, and more particularly, to a configuration that emits light having a desired wavelength by irradiating a phosphor with light emitted from the device.
[0002]
[Prior art]
In recent years, gallium nitride compounds using Alx, Gay, In1-xyN (0 ≦ x, y ≦ 1, x + y ≦ l) as materials for light emitting diodes (LEDs) ranging from the ultraviolet region to the blue and green regions Semiconductors are attracting attention. With compound semiconductors of such materials, it has become possible to emit ultraviolet light, blue light, green light, and the like with high light emission intensity, which has been difficult until now. Such a gallium nitride compound semiconductor is generally grown on a sapphire substrate, which is an insulating substrate.
[0003]
For this reason, an electrode cannot be provided on the substrate side like a GaAs-based light emitting element, and it is necessary to form both an anode and a cathode electrode on the crystal growth substrate side. Thus, the cathode electrode is formed by etching away the p-type layer to expose the n-type layer. The anodic electrode needs to be formed on the surface of the p-type layer, but the p-type layer emits light only directly under the electrode because of its low conductivity. For this reason, the external quantum efficiency decreases unless an electrode transparent to the emission wavelength is formed on the entire surface of the light emitting region.
[0004]
FIG. 11 shows a structural example of a conventional gallium nitride-based compound semiconductor light-emitting device (hereinafter sometimes simply referred to as a semiconductor light-emitting device). A GaN buffer layer (not shown), an n-type GaN layer 2 and a p-type GaN layer 3 are grown on the sapphire substrate 1, and a part of the p-type GaN layer 3 is etched away to expose the n-type GaN layer 2. Has been. A p-side transparent electrode 6 and a p-side bonding electrode 5 are formed on the p-type Ga layer 3, and an n-side electrode 4 is formed on the n-type GaN layer 2.
[0005]
As shown in FIG. 12, the semiconductor light emitting device 10 having the above structure is generally mounted on a lead frame 12 with a conductive adhesive material 11 such as silver paste, and a resin mold 8 is applied. Further, in order to cause the phosphor to emit light, the phosphor 9 is generally mixed in the resin mold 8. The current flowing from the p-side bonding electrode 5 is spread by the transparent electrode 6 having good conductivity, and the current is injected from the p-type GaN layer 3 to the n-type GaN layer 2. Light is emitted from a pn junction formed between the type GaN layers 2, and the light is extracted out of the chip through the transparent electrode 6. Further, light is emitted to the outside through the resin mold 8 as shown in FIG. At this time, if the phosphor 9 is present in the resin mold 8, the phosphor also emits light by the light emitted from the pn junction, and light emission of a desired color can be obtained by selecting the type of color of the phosphor. .
[0006]
[Problems to be solved by the invention]
In the conventional gallium nitride compound semiconductor light emitting device as described above, the light emitted from the pn junction is absorbed by the p-type GaN layer 3, does not reach the transparent electrode 6 on the surface, and cannot be taken out to the outside. There was a problem.
[0007]
In addition, when the p-type GaN layer 3 is thinned, light that is not absorbed by the layer 3 is extracted through the transparent electrode 6, but is highly conductive, ohmic to the semiconductor layer, and has a light emission wavelength. There is a problem that an electrode material having a small amount of absorption cannot be easily realized. In addition, as the emission wavelength becomes shorter, there is a problem that a material having a small absorption power at the emission wavelength is more difficult to realize. In particular, in order to cause the phosphor 9 to emit light (especially red) with the light emitted from the pn junction, it is necessary to extract light having a short wavelength of about 300 nm, which has high emission conversion efficiency of the phosphor 9, from the pn junction. There is a problem that it is very difficult to realize a material that absorbs little in this wavelength region.
[0008]
In addition, when the phosphor 9 is included in the resin mold 8, most of the light emitted from the pn junction is not immediately converted by the phosphor 9, but as the light passes through the resin mold 8 portion. Since the light is converted by the phosphor 9, there is a problem that light cannot be efficiently converted by the phosphor 9 due to attenuation when propagating through the resin mold 8, and deterioration of the resin mold 8 due to short wavelength light (ultraviolet light). There were also problems such as being caused. Further, since the optical power converted by the phosphor 9 cannot be measured unless the semiconductor element is resin-molded, there is a problem that chip selection in the wafer state is difficult and mass productivity is lacking.
[0009]
The present invention has been made to solve the above-described conventional problems, and its purpose is to efficiently use the generated short-wavelength light (ultraviolet light) without using a transparent electrode that is difficult to realize. It is an object to provide a gallium nitride-based compound semiconductor light-emitting element that can be converted into visible light or the like by a phosphor and can be efficiently extracted outside and can emit three primary colors of red, green, and blue.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the first invention is characterized in that, in a gallium nitride compound semiconductor having a pn junction, the semiconductor surface is formed from the semiconductor surface toward the inside so that a part of the pn junction is removed. This is because a pn junction removing portion having a concave section is provided.
[0011]
According to the first invention, the pn junction is formed at the boundary between the p-type GaN layer and the n-type GaN layer, and the n-type GaN layer is exposed by etching the p-type GaN layer on the surface. When the concave pn junction removal portion is formed as described above, the end surface of the pn junction is exposed on the side wall of the pn junction removal portion. When a voltage is applied to the p-type GaN layer and the n-type GaN layer, ultraviolet rays are emitted from the pn junction, and the ultraviolet rays are irradiated to the outside from the end face of the pn junction through the pn junction removal portion. If phosphors are filled or applied in and around the pn junction removing portion, the ultraviolet rays are immediately converted into visible light by the phosphors and irradiated to the outside.
[0012]
A feature of the second invention resides in that the pn junction removing portion has an elongated groove shape, and a plurality of the pn junction removing portions are provided at an appropriate interval on the semiconductor surface.
[0013]
According to the second aspect of the invention, ultraviolet rays are irradiated to the outside from the plurality of pn junction removal portions.
[0014]
A feature of the third invention resides in that a plurality of the pn junction removing portions are circular holes or polygonal holes, and a plurality of the pn junction removing portions are provided on the semiconductor surface with appropriate intervals.
[0015]
According to the third aspect of the invention, for example, the pn junction removing portion is a cylindrical hole or the like, but the end of the pn junction is exposed on the inner wall surface of the hole, and ultraviolet rays are irradiated from the end to the outside. The
[0016]
A feature of the fourth invention resides in that a phosphor layer is filled or formed in or around the pn junction removal portion.
[0017]
According to the fourth aspect of the invention, the ultraviolet light irradiated to the outside from the pn junction exposed on the inner wall surface of the pn junction removal portion is immediately converted into visible light by the phosphor layer and irradiated to the outside. .
[0018]
A feature of the fifth invention resides in that a phosphor layer covering at least a part of the opening of the pn junction removing portion is formed on the semiconductor surface.
[0019]
According to the fifth aspect of the invention, the ultraviolet rays irradiated to the outside from the pn junction exposed on the inner wall surface of the pn junction removal portion are immediately visible by the phosphor layer closing the opening of the pn junction removal portion. It is converted into a light beam and irradiated outside.
[0020]
A feature of the sixth invention resides in that a region containing a phosphor that emits a different color exists in a part of the phosphor layer.
[0021]
According to the sixth aspect of the invention, the ultraviolet light irradiated to the outside from the end face of the pn junction is converted into visible light by the phosphor layer, but light of different colors is emitted depending on the type of the phosphor layer. .
[0022]
According to a seventh aspect of the present invention, in a gallium nitride compound semiconductor having a pn junction formed by a p-type GaN layer and an n-type GaN layer below the p-type GaN layer, an n-side electrode is provided at the center of the semiconductor surface. Therefore, the exposed hole of the n-type GaN layer formed by etching the p-type GaN layer and the cross section formed from the semiconductor surface to the inside so as to remove a part of the pn junction are recessed. And a plurality of the pn junction removal portions are arranged radially from the exposed hole toward the outer peripheral portion of the semiconductor surface.
[0023]
According to an eighth aspect of the present invention, there is provided a gallium nitride-based compound semiconductor light emitting device having a pn junction formed by a p-type GaN layer and an n-type GaN layer below the p-type GaN layer. A cross section formed from the surface of the semiconductor toward the inside so as to remove an exposed hole of the n-type GaN layer formed by etching the p-type GaN layer to remove the pn junction. Is provided with a long and narrow pn junction removal portion, and at least one pn junction removal portion is disposed on the semiconductor surface concentrically around the exposed hole.
[0024]
According to the eighth aspect of the invention, the semiconductor surface is usually covered with a transparent electrode except for the pn junction removal portion, etc., but the n-type GaN layer in which the semiconductor surface current tends to concentrate and flow through the transparent electrode. Since the pn junction part of the transparent electrode region near the exposed hole is partially removed concentrically by the pn junction removal part, the current also flows to the peripheral part of the semiconductor surface, and the entire surface emits light uniformly.
[0025]
According to a ninth aspect of the present invention, in a gallium nitride compound semiconductor having a pn junction formed by a p-type GaN layer and an n-type GaN layer below the p-type GaN layer, the p-type GaN layer is divided into a plurality of regions. A plurality of pn junction removal portions each having a concave cross section formed from the semiconductor surface so as to remove a part of the pn junction are provided on the semiconductor surface of each divided region; and The purpose is to fill the pn junction removal portion of the divided region with a phosphor layer that develops a different color for each divided region.
[0026]
According to the ninth aspect of the invention, since the type of color development of the phosphor layers filled in the pn junction removal portion of each divided region is different, each divided region irradiates visible light of a different color.
[0027]
According to a tenth aspect of the invention, the p-type GaN layer is divided into three regions, and the pn junction removal portion of each divided region is filled with a phosphor layer that develops different colors of red, blue, and green. Thus, light emission of a different color is obtained for each of the divided regions.
[0028]
According to the tenth aspect of the invention, the three divided regions can radiate visible light of the three primary colors of red, blue, and green, respectively. By adjusting and mixing the levels of these three primary colors, various colors are visible. Light is obtained.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration example of a first embodiment of a gallium nitride-based compound semiconductor light emitting device of the present invention. A GaN buffer layer (not shown), an n-type GaN layer 2 and a p-type GaN layer 3 are sequentially grown on the sapphire substrate 1. Next, the p-type GaN layer 3 is patterned by the PEP method and etched by the RIE method or the like to expose the n-type GaN layer 2. Thereafter, patterning is performed using the PEP method, and Ti / Au or the like is deposited on the n-type GaN layer 2 as the n-side electrode 4 and formed by lift-off. As the transparent electrode 6, after patterning by the PEP method, a Ni layer having a thickness of 10 nm is formed on the p-type GaN layer 3 by a vacuum deposition method.
[0030]
Further, after patterning by the PEP method for forming a stripe, Ni is wet-etched with HCl or the like using a 10 μm-wide resist as a mask, and then the p-type GaN layer 3 is etched and removed in a stripe shape by the RIE method or the like. By exposing the GaN layer 2, the pn junction removing portion 100 from which a part of the pn junction is removed is formed. Further, after the SiO2 film is formed by the thermal CVD method, the p-side bonding electrode 5 connected to the Ni thin film is formed by the PEP method. Note that the GaN layer located between the pn junction removal portions 100 has a mesa shape.
[0031]
Although this SiO2 film is not clearly shown in FIG. 1, it is formed over the mesa end surface of the pn junction removing portion 100, the exposed surface of the pn junction, and the surface of the transparent electrode 6, and the n-side electrode 4 portion. The transparent electrode 6 and the p-side bonding electrode 5 are also formed under the p-side electrode except for the overlapping portion. If the surface of the semiconductor layer is free of oxide or the like and is sufficiently clean, it may be an unnecessary process. However, in order to improve the adhesion and ohmic properties between the transparent electrode 6 and the n-side electrode 4 and the semiconductor layer, 450 An electrode is formed by performing flash annealing at 20 ° C. for 20 seconds.
[0032]
Next, the operation of the present embodiment will be described. When a voltage is applied between the cathode p-side bonding electrode 5 and the anode n-side electrode 4, the current flowing from the p-side bonding electrode 5 is spread by the transparent electrode 6 having good conductivity, and p-type GaN. It is injected from the layer 3 into the n-type GaN layer 2 and emits light at the pn junction between the p and n-type GaN layers 3 and 2, and the emitted ultraviolet light is a side wall of the pn junction removal unit 100 formed in a stripe shape. Irradiated to the outside through the end face of the pn junction exposed to p, the p-type GaN layer 3, and the transparent electrode 6.
[0033]
Here, if the phosphor is applied or filled on the wall surface or bottom surface of the pn junction removing unit 100 formed in a stripe shape, the ultraviolet light emitted from the pn junction end surface of the pn junction removing unit 100 is visible by this phosphor. It is converted into light and irradiated outside. At this time, if the color of the phosphor is red, red is emitted, blue if the color of the phosphor is blue, and green if the color of the phosphor is green.
[0034]
FIG. 2 shows the current-voltage characteristics (IV characteristics) and the current-light output (Po) characteristics of the present example thus obtained. In FIG. 2, it can be seen that when the current value is 20 mA, a voltage of 4.3 V, an optical output of 58 μW, and an emission wavelength of 360 nm are obtained.
[0035]
According to the present embodiment, by forming a plurality of pn junction removal portions 100 on the semiconductor surface, a part of the pn junction formed by the p-type GaN layer 3 and the n-type GaN layer 2 is removed, Even if the ultraviolet light is attenuated by the p-type GaN layer 3 or the transparent electrode 6 by taking out the ultraviolet light emitted from the pn junction to the outside from the pn junction end face exposed on the side wall of the pn junction removing portion 100, the pn junction end face A sufficient level of ultraviolet light can be extracted outside. Therefore, a normal material can be used as the material of the transparent electrode 6, and the above effect can be easily obtained. In addition, the emitted ultraviolet light has a short wavelength of about 360 nm, which is high in the light emission conversion efficiency of the phosphor, and is immediately converted into visible light by the phosphor coated or filled close to the pn junction end face. Conversion efficiency is extremely high, a sufficient level of visible light can be obtained efficiently, and the light emission source can be easily miniaturized because of the structure in which light is led out from the PN junction end face. Furthermore, since the short wavelength ultraviolet rays can be efficiently taken out from the pn junction as described above, the ultraviolet rays can be converted into red with a red phosphor, and red light of a practical level can be obtained. . In addition, the phosphor is not present in the resin mold as in the prior art, and since the phosphor is applied in the wafer state, the intensity of the light converted by the phosphor can be measured even in the wafer state. Further, it is possible to easily perform chip selection in the wafer state, and it is possible to improve the mass productivity and the yield of the semiconductor light emitting device.
[0036]
Note that if the ratio of the area of the pn junction removing portion 100 to the semiconductor surface is large, the area of the pn junction is reduced, and the amount of ultraviolet light emission is reduced. Conversely, the area of the pn junction removing portion 100 is small. Since the amount of ultraviolet rays extracted from the pn junction portion to the outside decreases, the ratio of the pn junction removal portion 100 to the semiconductor surface has an appropriate range.
[0037]
FIG. 3 is a perspective view showing a configuration example of the second embodiment of the gallium nitride compound semiconductor light emitting device of the present invention. This example is different from the first embodiment shown in FIG. 1 except that the transparent electrode 6 formed on the p-type GaN layer 3 and the phosphor layer 7 are formed on the pn junction removing portion 100. It has the same structure as the form. Thus, when a voltage is applied between the cathode p-side bonding electrode 5 and the anode n-side electrode 4, light is emitted at the pn junction between the p-type GaN layer 3 and the n-type GaN layer 2, The emitted ultraviolet light is irradiated to the outside through the pn junction end face exposed on the side surface of the pn junction removal portion 100 formed in a stripe shape, the p-type GaN layer 3, and the transparent electrode 6. At this time, the ultraviolet rays are converted into visible rays when passing through the phosphor layer 7, and the visible rays are irradiated to the outside.
[0038]
Also in this case, since the phosphor layer 7 is disposed in the vicinity of the pn junction removing portion 100 and the transparent electrode 6 formed in a stripe shape, the emitted ultraviolet rays are not attenuated, and the phosphor layer 7 is more efficient. It is converted into visible light and has the same effect as in the first embodiment. In particular, in this example, the ultraviolet rays can be converted to visible light by the phosphor layer 7 by being irradiated to the outside through the p-type GaN layer 3 and the transparent electrode 6, and the efficiency is improved accordingly.
[0039]
FIG. 4 is a perspective view showing a configuration example of the third embodiment of the present invention of a gallium nitride-based compound semiconductor light emitting device. This example has a configuration in which the entire semiconductor light emitting device is surrounded by a phosphor layer 7 formed by applying a phosphor-containing organosilane solution to the entire semiconductor light emitting device, except that the second embodiment shown in FIG. This is similar to the embodiment and has the same effect.
[0040]
FIG. 5 is a perspective view showing a configuration example of the fourth embodiment of the gallium nitride compound semiconductor light emitting device of the present invention. In this example, the pn junction removing portion 100 for removing a part of the pn junction between the p-type GaN layer 3 and the n-type GaN layer 2 is formed in a stripe shape. In this example, the pn junction formed in the stripe shape is used. The difference between the p-type GaN layer 3 and the n-type GaN layer 2 between the junction removal portions 100 is an inverted mesa type, and the other configuration is the same as that of the first embodiment shown in FIG. It is the same and has the same effect.
[0041]
In particular, since the portion of the p-type GaN layer 3 and the n-type GaN layer 2 between the pn junction removal portions 100 formed in a stripe shape is an inverted mesa type, the contact area between the transparent electrode 6 and the semiconductor layer is increased. The organic silane solution containing the phosphor or the phosphor itself is packed in the bottom portion 21 of the mesa-etched hole, so that the ultraviolet light emitted to the outside from the end face of the pn junction can be efficiently reddish with the phosphor. Can be converted into visible light.
[0042]
FIG. 6 is a plan view showing a configuration example of the fifth embodiment of the gallium nitride-based compound semiconductor light emitting device of the present invention. In this example, the shape of the pn junction removal portion 100 between the p-type GaN layer 3 and the n-type GaN layer 2 is an elongated groove shape, and the pn junction removal portion 100 having such a shape extends from the center of the chip surface to the peripheral portion. A plurality of straight lines are extended toward. Since the other configuration is the same as that of the first embodiment shown in FIG. 1, the ultraviolet light is irradiated to the outside from the end face of the pn junction exposed on the wall surface of the pn junction removing unit 100, and the first embodiment. Has the same effect. In addition, if the phosphor layer is provided in the pn junction removing part 100 and its peripheral part, the ultraviolet rays can be efficiently converted into visible light.
[0043]
FIG. 7 is a plan view showing a configuration example of the sixth embodiment of the gallium nitride-based compound semiconductor light emitting device of the present invention. In this example, the central portion of the p-type GaN layer 3 is etched in a circular shape to expose the n-type GaN layer 2 in a circular shape, and a circular n-side electrode 4 is formed at the center of the surface of the n-type GaN layer 2. Has been. Further, the shape of the pn junction removing portion 100 for removing a part of the pn junction between the p-type GaN layer 3 and the n-type GaN layer 2 is an elongated groove type, but the circular n-type GaN layer 2 is exposed. A plurality of pn junction removal portions 100 are arranged radially from the edge of the p-type GaN layer 3 forming the outer periphery of the hole toward the outside. In addition, one end of the pn junction removing portion 100 communicates with the exposed hole. Since the other configuration is the same as that of the first embodiment shown in FIG. 1, the ultraviolet light is irradiated to the outside from the end face of the pn junction exposed on the wall surface of the pn junction removing unit 100, and the first embodiment. Has the same effect. If the phosphor layer is filled in the pn junction removing unit 100 or the like, the phosphor layer can efficiently convert the ultraviolet light into visible light.
[0044]
FIG. 8 is a plan view showing a configuration example of the eighth embodiment of the gallium nitride-based compound semiconductor light emitting device of the present invention. In this example, the central portion of the p-type GaN layer 3 is etched in a circular shape to expose the n-type GaN layer 2 in a circular shape, and a circular n-side electrode 4 is formed at the center of the surface of the n-type GaN layer 2. A P-side bonding electrode 5 is formed at the corner of the p-type GaN layer 3. Except for the P-side bonding electrode 5 portion, a plurality of circular pn junction removal portions 100 are formed substantially concentrically around the n-side electrode 4. Except for the pn junction removing portion 100 and the P-side bonding electrode 5, the transparent electrode 6 covers almost the entire surface of the p-type GaN layer 3, and the transparent electrode 6 and the P-side bonding electrode 5 are connected to each other. .
[0045]
In this embodiment, the pn junction portion in the region of the transparent electrode 6 near the n-side electrode 4 where current tends to flow due to concentration is partially concentrically formed by the pn junction removal portion 100 by adopting the structure as described above. Since the current is removed, the current flows also to the peripheral portion of the P-type GaN layer 3, and uniform light emission can be obtained from the entire surface. Since the other configuration is the same as that of the first embodiment shown in FIG. 1, the ultraviolet light is irradiated to the outside from the end face of the pn junction exposed on the wall surface of the pn junction removing unit 100, and the first embodiment. Has the same effect. If the phosphor layer is filled in the pn junction removing unit 100 or the like, the phosphor layer can efficiently convert the ultraviolet light into visible light.
[0046]
FIG. 9 is a perspective view showing a configuration example of the eighth embodiment of the gallium nitride-based compound semiconductor light emitting device of the present invention. In this example, a pn junction removing portion 100 that removes a part of the pn junction between the p-type GaN layer 3 and the n-type GaN layer 2 by etching using the RIE method has a cylindrical shape. A plurality of layer removal portions 100 are arranged at an appropriate interval.
[0047]
The other configuration is the same as that of the first embodiment shown in FIG. 1, and ultraviolet rays are taken out from the end surface of the pn junction part exposed on the wall surface of the columnar pn junction removal unit 100, and the same effect is obtained. In particular, by making the size and number of columnar pn junction removal portions 100 appropriate, the contact area between the p-type GaN layer 3 and the transparent electrode 6 can be increased, so that the IV characteristics of the device are improved. And more stable light emission can be performed.
[0048]
FIG. 10 is a perspective view showing a configuration example of the ninth embodiment of the gallium nitride-based compound semiconductor light emitting device of the present invention. In this example, the phosphor layer 7 is provided so as to close the opening of the columnar pn junction removing unit 100. However, this embodiment is different from the eighth embodiment shown in FIG. This is the same as the eighth embodiment.
[0049]
Thereby, the ultraviolet rays extracted from the columnar pn junction removing unit 100 are immediately and efficiently converted into visible light by the phosphor layer 7, and the visible light is irradiated to the outside. Therefore, by changing the type of the phosphor layer 7, the type of visible light can be changed to, for example, red, blue, and green. Other effects are the same as in the eighth embodiment, and there are similar effects.
[0050]
FIG. 11 is a perspective view showing a configuration example of a tenth embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention. In this example, three semiconductor light emitting elements shown in FIG. 10 are formed adjacent to each other. The upper part of the three semiconductor light emitting elements from the p-type GaN layer 3 is divided from the others, but the n-type GaN layer 2 and the sapphire substrate 1 are common, and the n-side electrode 4 is also common. The openings of the cylindrical pn junction removal portions of these three semiconductor light emitting elements are filled with phosphor layers 13, 14, and 15 of three primary colors so as to close the openings. For this reason, red light is emitted from the phosphor layer 13, blue light is emitted from the phosphor layer 14, and green light is emitted from the phosphor layer 15.
[0051]
According to the present embodiment, it is possible not only to realize a full color with only a gallium nitride-based compound semiconductor light-emitting element, but also to reduce the production cost and improve the yield, and to miniaturize the light-emitting source. Can do.
[0052]
【The invention's effect】
As described in detail above, according to the first, second, third, and seventh inventions, the pn junction removing portion that removes a part of the pn junction is provided to expose the end face of the pn junction. By extracting ultraviolet light from the end face of the pn junction, the generated ultraviolet light can be efficiently extracted to the outside without using a transparent electrode made of a material that is difficult to realize.
[0053]
According to the fourth and fifth inventions, by arranging the phosphor in the vicinity of the end surface of the pn junction, the ultraviolet light extracted from the pn junction is immediately converted into visible light by the phosphor. A sufficient level of visible light such as red can be obtained efficiently.
[0054]
According to the eighth invention, since the concentric pn junction removing portion is provided in the vicinity of the exposed hole of the n-type GaN layer where the semiconductor surface current is concentrated, the semiconductor surface current flows over the entire surface, and the semiconductor surface More uniform light emission can be obtained.
[0055]
According to the sixth aspect, by arranging a plurality of colored phosphors in the vicinity of the end face of the pn junction, it is possible to simultaneously obtain a plurality of colors of visible light irradiation.
[0056]
According to the ninth and tenth aspects of the invention, the phosphor layers having different colors are filled in the pn junction removal portions of the respective divided regions, so that visible light having different colors can be obtained for the respective divided regions. In particular, if the divided region is divided into three and the phosphor layers of different colors are made three primary colors of red, blue, and green, a color LED can be easily realized with only a gallium nitride compound semiconductor light emitting element. .
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration example of a first embodiment of a gallium nitride-based compound semiconductor light emitting device of the present invention.
2 is a characteristic diagram showing current-voltage characteristics and current-light output characteristics of the optical semiconductor device shown in FIG. 1; FIG.
FIG. 3 is a perspective view showing a configuration example of a second embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention.
FIG. 4 is a perspective view showing a configuration example of a third embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention.
FIG. 5 is a perspective view showing a configuration example of a fourth embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention.
FIG. 6 is a plan view showing a configuration example of a fifth embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention.
FIG. 7 is a plan view showing a configuration example of a sixth embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention.
FIG. 8 is a plan view showing a configuration example of a seventh embodiment of a gallium nitride-based compound semiconductor light emitting element of the present invention.
FIG. 9 is a perspective view showing a configuration example of an eighth embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention.
FIG. 10 is a perspective view showing a configuration example of a ninth embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention.
FIG. 11 is a perspective view showing a configuration example of a tenth embodiment of a gallium nitride-based compound semiconductor light-emitting element according to the present invention.
FIG. 12 is a perspective view showing a configuration example of a conventional gallium nitride compound semiconductor light emitting device.
FIG. 13 is a perspective view showing another configuration example of a conventional gallium nitride-based compound semiconductor light emitting device.
[Explanation of symbols]
1 Sapphire substrate
2 n-type GaN layer
3 p-type GaN layer
4 n-side electrode
5 p-side bonding electrode
6 Transparent electrodes
7, 13, 14, 15, 16 Phosphor layer
100 pn junction removal part

Claims (4)

p型のGaN層とその下部にあるn型のGaN層により形成されたpn接合を有する窒化ガリウム系化合物半導体発光素子において、
前記半導体表面の中央部にn側電極を設けるために前記p型のGaN層をエッチングして形成したn型のGaN層の露出穴と、
前記pn接合の一部が除去されるように前記半導体表面から内部に向かって形成された断面が凹部状の細長いpn接合除去部とを設け、
複数本の前記pn接合除去部を前記露出穴を中心として前記半導体表面の外周部へ向かって放射状に配置することを特徴とする窒化ガリウム系化合物半導体発光素子。
In a gallium nitride-based compound semiconductor light emitting device having a pn junction formed by a p-type GaN layer and an n-type GaN layer below the p-type GaN layer,
An exposed hole in the n-type GaN layer formed by etching the p-type GaN layer to provide an n-side electrode in the center of the semiconductor surface;
An elongated pn junction removing portion having a recess formed in a cross section formed inward from the semiconductor surface so that a part of the pn junction is removed;
A gallium nitride-based compound semiconductor light emitting device, wherein a plurality of the pn junction removal portions are arranged radially toward the outer peripheral portion of the semiconductor surface with the exposed hole as a center.
p型のGaN層とその下部にあるn型のGaN層により形成されたpn接合を有する窒化ガリウム系化合物半導体発光素子において、
前記半導体表面の中央部にn側電極を設けるために前記p型のGaN層をエッチングして形成したn型のGaN層の露出穴と、
前記pn接合の一部が除去されるように前記半導体表面から内部に向かって形成された断面が凹部状で細長いpn接合除去部とを設け、
少なくとも一本以上の前記pn接合除去部を前記露出穴を中心とした同心円状に前記半導体表面に配置することを特徴とする窒化ガリウム系化合物半導体発光素子。
In a gallium nitride-based compound semiconductor light emitting device having a pn junction formed by a p-type GaN layer and an n-type GaN layer below the p-type GaN layer,
An exposed hole in the n-type GaN layer formed by etching the p-type GaN layer to provide an n-side electrode in the center of the semiconductor surface;
A pn junction removing portion having an elongated cross section formed in a concave shape from the semiconductor surface so as to remove a part of the pn junction;
A gallium nitride-based compound semiconductor light emitting element, wherein at least one or more pn junction removal portions are concentrically arranged on the semiconductor surface with the exposed hole as a center.
p型のGaN層とその下部にあるn型のGaN層により形成されたpn接合を有する窒化ガリウム系化合物半導体発光素子において、
p型のGaN層を複数の領域に分割し、各分割領域の半導体表面に、前記pn接合の一部が除去されるように前記半導体表面から内部に向かって形成された断面が凹部状の複数のpn接合除去部を設け、
且つ、前記各分割領域のpn接合除去部に各分割領域毎に異なる色を発色する蛍光体層を充填することを特徴とする窒化ガリウム系化合物半導体発光素子。
In a gallium nitride-based compound semiconductor light emitting device having a pn junction formed by a p-type GaN layer and an n-type GaN layer below the p-type GaN layer,
A p-type GaN layer is divided into a plurality of regions, and a plurality of concave portions are formed on the semiconductor surface of each divided region from the semiconductor surface toward the inside so that a part of the pn junction is removed. A pn junction removal portion of
A gallium nitride-based compound semiconductor light emitting device, wherein the pn junction removing portion of each divided region is filled with a phosphor layer that develops a different color for each divided region.
前記各分割領域のpn接合除去部に、赤、青、緑の異なる色を発色する蛍光体層を充填して、前記各分割領域毎に異なる色の発光を得ることを特徴とする請求項記載の窒化ガリウム系化合物半導体発光素子。Wherein the pn junction removing portions of the divided regions, red, blue, and filled with a phosphor layer for color green different colors, according to claim 3, characterized in that to obtain light emission of different colors wherein each divided region The gallium nitride-based compound semiconductor light-emitting device described.
JP605398A 1998-01-14 1998-01-14 Gallium nitride compound semiconductor light emitting device Expired - Lifetime JP3691951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP605398A JP3691951B2 (en) 1998-01-14 1998-01-14 Gallium nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP605398A JP3691951B2 (en) 1998-01-14 1998-01-14 Gallium nitride compound semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005127194A Division JP3936368B2 (en) 2005-04-25 2005-04-25 Gallium nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH11204832A JPH11204832A (en) 1999-07-30
JP3691951B2 true JP3691951B2 (en) 2005-09-07

Family

ID=11627884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP605398A Expired - Lifetime JP3691951B2 (en) 1998-01-14 1998-01-14 Gallium nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3691951B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708730B2 (en) * 1998-12-01 2005-10-19 三菱電線工業株式会社 Light emitting device
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
TW480744B (en) * 2000-03-14 2002-03-21 Lumileds Lighting Bv Light-emitting diode, lighting device and method of manufacturing same
JP4501234B2 (en) * 2000-06-28 2010-07-14 日亜化学工業株式会社 Nitride semiconductor device
ATE486374T1 (en) * 2003-08-08 2010-11-15 Kang Sang Kyu HIGH BRIGHTNESS NITRIDE MICROLIGHT EMISSION DIODE AND PRODUCTION METHOD THEREOF
US8134172B2 (en) 2003-09-01 2012-03-13 Lg Innotek Co., Ltd. LED and fabrication method thereof
KR101047680B1 (en) 2003-09-22 2011-07-08 엘지이노텍 주식회사 Light emitting diodes and manufacturing method
JP2006019400A (en) * 2004-06-30 2006-01-19 Sanyo Electric Co Ltd Light emitting device and its manufacturing method
JP2007059418A (en) * 2005-08-22 2007-03-08 Showa Denko Kk Nitride gallium based compound semiconductor light-emitting element
JP2007173569A (en) * 2005-12-22 2007-07-05 Kyocera Corp Light emitting element
KR20070088145A (en) * 2006-02-24 2007-08-29 엘지전자 주식회사 Light emitting diode and fabricating method thereof
DE102006024165A1 (en) * 2006-05-23 2007-11-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Optoelectronic semiconductor chip with a wavelength conversion substance and optoelectronic semiconductor component with such a semiconductor chip and method for producing the optoelectronic semiconductor chip
KR100818451B1 (en) * 2006-07-03 2008-04-01 삼성전기주식회사 Polarized semiconductor light emitting device
JP2008047854A (en) * 2006-07-19 2008-02-28 Mitsubishi Cable Ind Ltd Nitride semiconductor light emitting diode
US20090039375A1 (en) * 2007-08-07 2009-02-12 Cree, Inc. Semiconductor light emitting devices with separated wavelength conversion materials and methods of forming the same
US9196807B2 (en) 2012-10-24 2015-11-24 Nichia Corporation Light emitting element
JP6713720B2 (en) * 2013-08-30 2020-06-24 エルジー イノテック カンパニー リミテッド Light emitting device package and vehicle lighting device including the same
CN108682726B (en) * 2018-05-18 2021-04-13 厦门乾照光电股份有限公司 Light emitting diode, chip thereof, manufacturing method thereof and light emitting method of chip

Also Published As

Publication number Publication date
JPH11204832A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP3691951B2 (en) Gallium nitride compound semiconductor light emitting device
US6583448B2 (en) Light emitting diode and method for manufacturing the same
US8507923B2 (en) Light emitting diode package
US6998642B2 (en) Series connection of two light emitting diodes through semiconductor manufacture process
KR100576855B1 (en) High power flip chip led
US7420217B2 (en) Thin film LED
US8288787B2 (en) Thin film light emitting diode
EP3474337A1 (en) Semiconductor device
TWI478372B (en) Light emitting device having pillar structure with hollow structure and the forming method thereof
JP2006500767A (en) Light emitting diode and manufacturing method thereof
US6828599B2 (en) Semiconductor light-emitting diode
KR100890468B1 (en) Light emitting diode device using conductive interconnection part
JPH11261114A (en) Light-emitting diode
KR20090080217A (en) Nitride light emitting device
JP2007324411A (en) Semiconductor light-emitting device and manufacturing method therefor and illumination apparatus using the same
JP3936368B2 (en) Gallium nitride compound semiconductor light emitting device
JP2003142727A (en) Semiconductor light emitting device and its manufacturing method
KR100433989B1 (en) Semiconductor LED device and manufacturing metheod thereof
KR100648444B1 (en) A high luminiscent light emitting diode and method for fabricating thereof
TW201635589A (en) Light emitting diodes with current injection enhancement from the periphery
KR101055778B1 (en) Light emitting diodes and method for manufacturing same
JP2003101065A (en) Light-emitting diode and manufacturing method therefor
WO2019037429A1 (en) Light emitting diode and manufacturing method therefor
KR101411375B1 (en) Vertical Light Emitting Diode and Method of Manufacturing for the Same
KR102592990B1 (en) Smeiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term