JP3690395B2 - Joint structure of support pile and structure - Google Patents

Joint structure of support pile and structure Download PDF

Info

Publication number
JP3690395B2
JP3690395B2 JP2003051629A JP2003051629A JP3690395B2 JP 3690395 B2 JP3690395 B2 JP 3690395B2 JP 2003051629 A JP2003051629 A JP 2003051629A JP 2003051629 A JP2003051629 A JP 2003051629A JP 3690395 B2 JP3690395 B2 JP 3690395B2
Authority
JP
Japan
Prior art keywords
steel
steel member
pile
pile head
tie band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003051629A
Other languages
Japanese (ja)
Other versions
JP2004257187A (en
Inventor
徹 宇佐美
洋文 金子
耕一 下野
清 山下
富男 土屋
純次 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003051629A priority Critical patent/JP3690395B2/en
Publication of JP2004257187A publication Critical patent/JP2004257187A/en
Application granted granted Critical
Publication of JP3690395B2 publication Critical patent/JP3690395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Building Environments (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、支持杭の杭頭部と構造物との接合構造の技術分野に属し、更に云えば、支持杭の杭頭部と構造物とを、両者の間に好適な隙間を設けて、塑性ヒンジを構成する鉄骨部材で連結することにより、当該杭頭部と構造物との接合部に生じる曲げモーメントを効果的に低減できる、支持杭と構造物との接合構造に関する。
【0002】
【従来技術】
地震や風などにより、支持杭や、建物などの構造物には水平力が作用する。通常、支持杭の杭頭部と、構造物の基礎梁あるいはマットスラブ、フーチングとは、鉄筋等で緊結されて剛接合されている。その結果、前記水平力が作用することに伴い、前記杭頭部と構造物との接合部に曲げモーメントが生じる。
【0003】
当該接合部に生じる曲げモーメントを低減する技術として、従来、
(1)支持杭の杭頭部と構造物の基礎梁部分とを、両者の間に隙間を設けた状態で、前記杭頭部より曲げ剛性の小さな柱部材を介して接合した構成とすることにより、当該接合部に生じる曲げモーメントを低減していた(例えば、特許文献1〜3参照)。前記杭頭部より曲げ剛性の小さな柱部材としては、鉄の塊や、コンクリート充填鋼管(CFT)、或いは鉄筋コンクリート(RC)柱、鉄骨鉄筋コンクリート(SRC)柱、H形鋼柱を用いて実施していた。
【0004】
(2)鋼管杭とフーチングとを、両者の間に隙間を設けた状態で接合部鋼管を介して接合し、当該隙間部分に従来地盤より剛性を高めた地盤を充填することにより、当該接合部に生じる曲げモーメントを低減していた(例えば、特許文献4〜6参照)。
【0005】
【特許文献1】
特開2000−104336号公報
【特許文献2】
特開2000−144904号公報
【特許文献3】
特開2000−282484号公報
【特許文献4】
特開2001−159142号公報
【特許文献5】
特開2002−4298号公報
【特許文献6】
特開2002−54158号公報
【0006】
【本発明が解決しようとする課題】
上記従来技術(1)について、上記柱部材は、杭頭部に作用するせん断力や軸力を十分に負担できる断面にして実施すると、柱の断面が大きくなる。これに伴い、柱部材の曲げ耐力が高くなるため、杭頭部の曲げモーメントを低減するには、杭頭部と構造物との隙間を非常に大きくしなければならず、そうすると構造自体が不安定で有害な変形が残り易くなり、実用的ではなかった。一方、柱部材の断面を小さくすると、軸力(圧縮応力および引張応力)やせん断力に耐えられないという問題があった。
【0007】
上記従来技術(2)について、鋼管杭とフーチングとの接合構造自体に何の工夫も施されておらず、接合部に生じる曲げモーメントを低減する手法が二次的でであり、手間とコストが嵩み、改良の余地が残されていた。
【0008】
本発明の目的は、支持杭の杭頭部と構造物とを、両者の間に好適な隙間を設けて、塑性ヒンジを構成する鉄骨部材で連結することにより、曲げモーメントを効果的に低減できる、支持杭と構造物との接合構造を提供することにある。
【0009】
【課題を解決するための手段】
上述した課題を解決するための手段として、請求項1に記載した発明に係る支持杭と構造物との接合構造は、
支持杭の杭頭部に設けた鉄骨部材と、構造物の下端部に設けた鉄骨部材とが突き合わされ、杭頭部と構造物との間に隙間が設けられており、突き合わされた前記上下の鉄骨部材は、鉛直方向の引張応力によって塑性変形するエネルギー吸収部材で連結され曲げモーメントに対する塑性ヒンジが構成されていることを特徴とする。
【0010】
請求項に記載した発明に係る支持杭と構造物との接合構造は、
支持杭の杭頭部に設けた鉄骨部材と、構造物の下端部に設けた鉄骨部材とのいずれか一方の鉄骨部材の端部に、タイバンドが当該鉄骨部材を取巻く配置に固定して設けられ、他方の鉄骨部材の端部は前記タイバンドの内側へ差入れられて上下の鉄骨部材が突き合わされ、杭頭部と構造物との間に隙間が設けられており、突き合わされた前記上下の鉄骨部材は、前記タイバンドと前記他方の鉄骨部材とが鉛直方向の引張応力によって塑性変形するエネルギー吸収部材で連結され曲げモーメントに対する塑性ヒンジが構成されていることを特徴とする
【0011】
請求項に記載した発明は、請求項1又は2に記載した支持杭と構造物との接合構造に
おいて、上下の鉄骨部材のいずれか一方の鉄骨部材の端部に軸方向の凸部が設けられ、他方の鉄骨部材の端部に軸方向の凹部が設けられており、前記凸部と凹部とをはめ合わせて前記上下の鉄骨部材の端部が突き合わされていることを特徴とする。
【0012】
【発明の実施形態及び実施例】
図1は、請求項1に記載した支持杭1と構造物2との接合構造の実施形態を示している。
【0013】
支持杭1の杭頭部1aに所要の長さだけ挿入して設けた、当該杭頭部1aより小径の鉄骨部材3bと、構造物2の下端部に所要の長さだけ挿入して設けた鉄骨部材3aとが一連に突き合わされて、杭頭部1aと構造物2との間に隙間Hが設けられている。前記突き合わされた上下の鉄骨部材3a、3bは、鉛直方向の引張応力によって塑性変形するエネルギー吸収部材4で連結され曲げモーメントに対する塑性ヒンジが構成されている(請求項1記載の発明)。
【0014】
前記支持杭1は、鋼管杭、鉄筋コンクリート杭などの所謂支持杭1であればよく、杭の種類は特に限定されない。
【0015】
前記構造物2は、具体的には構造物の基礎梁2を示しているが、これに限定されず、マットスラブやフーチングなどでもほぼ同様に実施できる。
【0016】
前記上下の鉄骨部材3a、3bは、横断面が同形同大の方形状の角形鋼管柱で実施されており、上位の鉄骨部材3aの上端部は構造物2の下端部に、コンクリート等の定着手段で強固に定着され、下位の鉄骨部材3bの下端部は杭頭部1aにやはり、コンクリート等の定着手段で強固に定着されている。なお、前記鉄骨部材3a、3bは、角形鋼管柱には限定されず、図4A、Bに示したように、円形鋼管柱やH形鋼柱などでもほぼ同様に実施できる。
【0017】
上位の鉄骨部材3aの下端面3cは、図2に示したように、下位の鉄骨部材3bの上端面3cへ浮き上がり可能な当接状態(メタルタッチ)に接続され、圧縮応力は鉄骨部材3a、3bの柱断面3c、3c間で伝達し、引張応力は上位の鉄骨部材3aの浮き上がり効果及びエネルギー吸収部材4として使用する鋼板4によってそのエネルギーを吸収可能に構成されている。水平力(せん断力)にはエネルギー吸収部材4として使用する鋼板4の強度、剛性によって抵抗する。
【0018】
なお、図示例では、上下の鉄骨部材3a、3bをそれぞれほぼ同じ長さだけ突き出して前記隙間H部分のほぼ中央で当接した構成で実施しているが、当接位置はこれに限定されず、隙間H部分の上方で当接した構成で実施してもよいし、下方で当接した構成で実施してもよい。
【0019】
前記エネルギー吸収部材4として使用する鋼板4は、図3に示したように、鉄骨部材(角形鋼管柱)3a、3bの四方に1枚ずつ計4枚配置され、その上端部(上半分)の一側面を前記上位の鉄骨部材3aの下端部へ当接し、溶接等の接合手段で直接接合され、下端部(下半分)の一側面を前記下位の鉄骨部材3bの上端部へ当接し、溶接等の接合手段で直接接合されている。
【0020】
なお、本実施形態では、エネルギー吸収部材4として、普通の鋼材より成る鋼板4を使用しているが、これに限定されず、極抵降伏点鋼や低降伏点鋼等の履歴ダンパーを使用してももちろん実施できる。前記極低降伏点鋼を使用する際に溶接による降伏応力度の上昇が懸念される場合には、溶接熱の影響のない領域を変形長さとすると共に、座屈による性能劣化をしない長さに設計することに留意する。
【0021】
前記鋼板4の形状、配置、及び使用する枚数は図示例に限定されない。構造設計上必要なせん断力を負担できる強度を得ることができることを条件に、鉄骨部材3a、3bの形状等に応じてフレキシブルに変更可能である。例えば、前記鉄骨部材3a、3bが円形鋼管柱の場合には、図4Aに示したように、当該円形鋼管柱3a、3bの外周にぴったり重なり合う曲率の鋼板4を必要枚数(図示例では4枚)用いて溶接等の接合手段で直接接合して実施する。前記鉄骨部材3a、3bがH形鋼柱の場合には、図4Bに示したように、当該H形鋼柱のフランジ部の外側面とウエブ部の両側面とに計4枚の鋼板4を溶接等の接合手段で直接接合して実施する。
【0022】
従って、地震時の水平力(せん断力)は、エネルギー吸収部材4として使用する鋼板4の強度及び剛性により抵抗し、上下の鉄骨部材3a、3bの接続状態は安定に保持される。また、引張応力が作用した場合には、上位の鉄骨部材3aの浮上がりと、それに伴うエネルギー吸収部材4として使用する鋼板4の塑性変形とにより、地震エネルギーを吸収して過大な変形を抑制する。したがって、上位の鉄骨部材3aの復元時に衝撃的な騒音を発生する虞はない。更に、杭頭部1aと構造物2との接合部に曲げモーメントを受けると、当該上下の鉄骨部材3a、3bの当接部分のエネルギー吸収部材4として使用する鋼板4が曲げモーメントに対する塑性ヒンジを構成するので、当該接合部に生じる曲げモーメントを低減でき、ひいては建物等の構造物2に作用する地震応答を低減することができる。
【0023】
図5と図6は、請求項2に記載した発明に係る支持杭1と構造物2との接合構造の実施形態を段階的に示している。この実施形態は、上述した図1〜図4に係る実施形態と比して、前記エネルギー吸収部材4のみでは構造設計上せん断力を負担するのが難しい場合等に、せん断耐力を向上させるために好適に実施されるものである。
【0024】
図5A〜Cは、上下に接合される鉄骨部材3a、3bのうち、下位の鉄骨部材3bの上端部に、当該接合部に作用するせん断力に耐える強度及び剛性のタイバンド5を同柱3bの外周を取り巻く配置に環状に設けた状態を示す。ちなみに、図5Aは角形鋼管柱を示し、図5Bは円形鋼管柱を示し、図5CはH形鋼柱を示している。前記タイバンド5もそれぞれ鋼製であり、溶接等の接合手段で、下位の鉄骨部材3bに固定されている。
【0025】
上位の鉄骨部材3aの下端部は、前記タイバンド5の内側へそれぞれ差入れられ、下位の鉄骨部材3bの上端面へ浮き上がり可能な当接状態(メタルタッチ)に接続されている(符号3cが当接位置を示す)。
【0026】
なお、本実施形態では、前記タイバンド5を下位の鉄骨部材3bの上端部に設けて実施しているが、図6Cに示したように、上位の鉄骨部材3aの下端部に設けてもほぼ同様に実施できる。
【0027】
図6A〜Cは、上記のように当接状態に接続した上下の鉄骨部材3a、3bについて、前記タイバンド5と上位の鉄骨部材3aとが鉛直方向の引張応力によって塑性変形するエネルギー吸収部材4で連結した状態を示す(以上、請求項2記載の発明)。ちなみに、図6A〜Cに使用されている鉄骨部材3a、3bはすべて、角形鋼管柱で実施した場合を示している。
【0028】
具体的に、図6Aは、上下の鉄骨部材3a、3bをそれぞれほぼ同じ長さだけ突き出して前記隙間H部分のほぼ中央で当接した状態を示しており、前記タイバンド5を下位の鉄骨部材3bの上端部に設け、エネルギー吸収部材4として使用される鋼板4を4枚用い、その上端部4aは上位の鉄骨部材3aへ溶接で接合され、同下端部4bは前記タイバンド5の上端面へ溶接で接合されている。
【0029】
図6Bは、上位の鉄骨部材3aを長く、下位の鉄骨部材3bを短く突き出して前記隙間H部分の下方で当接した状態を示しており、図6Aと同様に、前記タイバンド5を下位の鉄骨部材3bの上端部に設け、エネルギー吸収部材4として使用される鋼板4を4枚用い、その上端部4aは上位の鉄骨部材3aへ溶接で接合され、同下端部4bは前記タイバンド5の上端面へ溶接で接合されている。
【0030】
図6Cは、上位の鉄骨部材3aを短く、下位の鉄骨部材3bを長く突き出して前記隙間H部分の上方で当接した状態を示しており、前記タイバンド5を上位の鉄骨部材3aの下端部に設け、エネルギー吸収部材4として使用される鋼板4を4枚用い、その上端部4aは前記タイバンド5の下端面へ溶接で接合され、同下端部4bは下位の鉄骨部材bへ溶接で接合されている
【0031】
なお、本実施形態では、鋼板4の板厚とタイバンド5の肉厚とをほぼ同厚で外周面が面一となるように実施しているが、勿論これに限定されない。
【0032】
従って、請求項2に記載した発明に係る支持杭と構造物との接合構造の実施形態によれば、上述した図1〜図4に係る実施形態と同様の作用効果を奏する上に、地震時の水平力(せん断力)に対して、エネルギー吸収部材4として使用される鋼板4の強度及び剛性に加えて、タイバンド5の強度及び剛性によっても抵抗できるので、上下の鉄骨部材3a、3bの接続状態を更に安定して保持することができる。
【0033】
図7A〜Cは、請求項に記載した発明に係る支持杭1と構造物2との接合構造の実施形態を示している。この実施形態は、上述した請求項2に係る実施形態と同様に、前記図1〜図4に係る実施形態と比して、前記鋼板4のみでは、構造設計上、せん断力を負担するのが難しい場合等に、せん断耐力を向上させるために好適に実施されるものである。
【0034】
本実施形態は、上述した図1〜図4に係る実施形態と比して、上下に接合される鉄骨部材3a、3bのうち、上位の鉄骨部材3aの下端部に軸方向下向きの凸部6aを設け、下位の鉄骨部材3bの上端部に軸方向上向きに開口する凹部6bを設けた構造とすることのみ相違する。但し、図7Cは、H形鋼柱3の端縁部自体を凹部6bとして実施している。
【0035】
なお、前記凸部6aと凹部6bの形状は、図示例に限定されず、はめ合わせた凸部6aと凹部6bとが所謂ダボ効果を発揮する形状であればよい。勿論、前記凸部6aを下位の鉄骨部材3bに設け、凹部6bを上位の鉄骨部材3aに設けても同様に実施できる。
【0036】
従って、請求項に記載した発明に係る支持杭と構造物との接合構造の実施形態によれば、上述した図1〜図4に係る実施形態と同様の作用効果を奏する上に、地震時の水平力(せん断力)に対して、エネルギー吸収部材4として使用される鋼板4の強度及び剛性に加えて、はめ合わせた凸部6aと凹部6bとの所謂ダボ効果(支圧効果)によっても抵抗するので、上下の鉄骨部材3a、3bの接続状態を更に安定して保持することができる。
【0037】
以上に実施形態を図面に基づいて説明したが、本発明は、図示例の実施形態の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常行う設計変更、応用のバリエーションの範囲を含むことを念のために説明する。
【0038】
例えば、図5と図6に基づいて説明したタイバンドを使用する技術的思想と、図7に基づいて説明したダボ効果を発揮する技術的思想とを併用することにより、上下の鉄骨部材の接続状態を飛躍的に安定して保持することができ、十分なせん断耐力を保有する構造で実施することもできる(請求項記載の発明)。
【0039】
【本発明が奏する効果】
請求項1に記載した発明に係る支持杭と構造物との接合構造によれば、
1)地震時の水平力(せん断力)は、エネルギー吸収部材の強度及び剛性により抵抗し、上下の鉄骨部材の接続状態は安定して保持される。引張応力が作用した場合には、上位の鉄骨部材の浮上がりと、それに伴うエネルギー吸収部材の塑性変形とにより、地震エネルギーを吸収して過大な変形を抑制する。よって、上位の鉄骨部材の復元時に衝撃的な騒音を発生する虞はない。
2)鉄骨部材は、曲げモーメントを受けると上下の鉄骨部材の当接部分のエネルギー吸収部材が塑性ヒンジを構成するので、接合部(杭頭部)に生じる曲げモーメントを低減でき、ひいては建物等の構造物に作用する地震応答を低減することができる。
3)杭頭部と構造物との隙間も、鉄骨部材が塑性ヒンジを許容できる長さで足りるので、従来技術のように、非常に大きくする必要性は一切なく、構造物に有害な変形が残ることもない。
4)請求項2、3に記載した発明に係る支持杭と構造物との接合構造によれば、上記1)〜3)の効果に加えて、上下の鉄骨部材の接続状態を更に安定して保持することができ、十分なせん断耐力を保有する構造を実現することができる。
【図面の簡単な説明】
【図1】 請求項1に記載した発明に係る支持杭と構造部との接合構造の実施形態を示した立面図である。
【図2】 図1で使用する角形鋼管柱を示した分解斜視図である。
【図3】 図1の主要部を示した横断面図である。
【図4】 Aは、鉄骨部材を円形鋼管柱で実施した場合の横断面図を示しており、Bは、鉄骨部材をH形鋼柱で実施した場合の横断面図を示している。
【図5】 A、B、Cはそれぞれ、請求項2に記載した発明に係るタイバンドが下位の鉄骨部材を取巻くように固定して設けられ、上位の鉄骨部材の端部が前記タイバンドの内側へ差入れられる段階を示した斜視図である。
【図6】 A、B、Cはそれぞれ、請求項2に記載した発明に係る支持杭と構造部との接合構造の実施形態を示した立面図である。
【図7】 A、B、Cはそれぞれ、請求項に記載した発明に係る支持杭と構造部との接合構造の実施形態を示した分解斜視図である。
【符号の説明】
1 支持杭
1a 杭頭部
2 構造物
3a 上位の鉄骨部材
3b 下位の鉄骨部材
4 エネルギー吸収部材(鋼板)
5 タイバンド
6a 凸部
6b 凹部
[0001]
BACKGROUND OF THE INVENTION
This invention belongs to the technical field of the joint structure between the pile head of the support pile and the structure, and more specifically, the pile head of the support pile and the structure are provided with a suitable gap between them, It is related with the connection structure of a support pile and a structure which can reduce effectively the bending moment which arises in the junction part of the said pile head and a structure by connecting with the steel frame member which comprises a plastic hinge .
[0002]
[Prior art]
Horizontal forces act on structures such as support piles and buildings due to earthquakes and winds. Usually, the pile head of the support pile and the foundation beam or mat slab and footing of the structure are tightly coupled by a reinforcing bar or the like and are rigidly joined. As a result, a bending moment is generated at the joint between the pile head and the structure as the horizontal force acts.
[0003]
As a technique for reducing the bending moment generated in the joint,
(1) A structure in which a pile head of a support pile and a foundation beam portion of a structure are joined via a column member having a smaller bending rigidity than the pile head with a gap provided therebetween. Thus, the bending moment generated in the joint portion has been reduced (see, for example, Patent Documents 1 to 3). As the column member having bending rigidity smaller than that of the pile head, an iron lump, a concrete filled steel pipe (CFT), a reinforced concrete (RC) column, a steel reinforced concrete (SRC) column, or an H-shaped steel column is used. It was.
[0004]
(2) The steel pipe pile and the footing are joined via a joint steel pipe with a gap between them, and the joint is filled with a ground having higher rigidity than the conventional ground. The bending moment generated in the above is reduced (see, for example, Patent Documents 4 to 6).
[0005]
[Patent Document 1]
JP 2000-104336 A [Patent Document 2]
JP 2000-144904 A [Patent Document 3]
JP 2000-282484 A [Patent Document 4]
JP 2001-159142 A [Patent Document 5]
Japanese Patent Laid-Open No. 2002-4298 [Patent Document 6]
JP 2002-54158 A [0006]
[Problems to be solved by the present invention]
About the said prior art (1), if the said column member implements it as a cross section which can fully bear the shear force and axial force which act on a pile head, the cross section of a column will become large. Along with this, the bending strength of the column members increases, so in order to reduce the bending moment of the pile head, the gap between the pile head and the structure must be made very large. Stable and harmful deformation tends to remain, which is not practical. On the other hand, when the cross section of the column member is made small, there is a problem that it cannot withstand axial force (compressive stress and tensile stress) and shear force.
[0007]
Regarding the above prior art (2), there is no contrivance in the joining structure itself of the steel pipe pile and the footing, and the technique for reducing the bending moment generated in the joint is secondary, and labor and cost are reduced. It was bulky and there was room for improvement.
[0008]
An object of the present invention, a pile head and the structure of the support piles, provided suitable clearance between them, by coupling with steel members constituting the plastic hinge, effectively reduce the bending moment It is possible to provide a joint structure between a support pile and a structure.
[0009]
[Means for Solving the Problems]
As a means for solving the above-described problem, the joint structure between the support pile and the structure according to the invention described in claim 1 is:
A steel member provided on pile head of the support piles, are matched and the steel member provided at the lower portion of the structure is provided with a gap between the pile head and the structure was combined can butt It said upper and lower steel member, characterized in that塑 property hinge is configured with respect to a bending moment is coupled to lead a straight direction of tensile stress Therefore the energy absorbing member plastically deformed.
[0010]
The joint structure between the support pile and the structure according to the invention described in claim 2 is:
At the end of one of the steel member provided at the pile head of the support pile and the steel member provided at the lower end of the structure, the tie band is fixed in an arrangement surrounding the steel member. The end of the other steel member is inserted into the inside of the tie band, the upper and lower steel members are butted, and a gap is provided between the pile head and the structure. The steel member is characterized in that the tie band and the other steel member are connected by an energy absorbing member that is plastically deformed by a tensile stress in the vertical direction to form a plastic hinge against a bending moment .
[0011]
According to a third aspect of the present invention, in the joining structure of the support pile and the structure according to the first or second aspect , an axial convex portion is provided at an end of one of the upper and lower steel members. The other steel frame member is provided with an axial recess, and the ends of the upper and lower steel members are abutted with each other by fitting the projection and the recess .
[0012]
Embodiments and Examples of the Invention
FIG. 1 shows an embodiment of a joint structure between a support pile 1 and a structure 2 described in claim 1.
[0013]
Provided by inserting the required length into the pile head 1a of the support pile 1 and inserting the required length into the steel member 3b having a smaller diameter than the pile head 1a and the lower end of the structure 2. The steel frame member 3 a is abutted in series, and a gap H is provided between the pile head 1 a and the structure 2. The butted upper and lower steel member 3a, 3b is (the invention according to claim 1) in which the vertical direction of the tensile stress thus coupled with the energy absorbing member 4 to plastically deform bending塑 of the hinge for the moment is constituted .
[0014]
The support pile 1 may be a so-called support pile 1 such as a steel pipe pile or a reinforced concrete pile, and the type of the pile is not particularly limited.
[0015]
Although the structure 2 specifically shows the foundation beam 2 of the structure, the structure 2 is not limited to this, and the structure 2 can be implemented in substantially the same manner with a mat slab or footing.
[0016]
The upper and lower steel members 3a and 3b are implemented by rectangular steel pipe columns having the same shape and the same size in cross section, and the upper end of the upper steel member 3a is formed at the lower end of the structure 2, such as concrete. It is firmly fixed by the fixing means, and the lower end portion of the lower steel frame member 3b is also firmly fixed to the pile head 1a by fixing means such as concrete. The steel members 3a and 3b are not limited to square steel pipe columns, and can be implemented in substantially the same manner with circular steel pipe columns or H-shaped steel columns as shown in FIGS. 4A and 4B.
[0017]
As shown in FIG. 2, the lower end surface 3c of the upper steel member 3a is connected to a contact state (metal touch) that can be lifted to the upper end surface 3c of the lower steel member 3b, and the compressive stress is the steel member 3a, The tensile stress is transmitted between the column cross-sections 3c and 3c of 3b, and the energy of the tensile stress can be absorbed by the steel plate 4 used as the energy absorbing member 4 and the lifting effect of the upper steel member 3a . The horizontal force (shearing force) is resisted by the strength and rigidity of the steel plate 4 used as the energy absorbing member 4.
[0018]
In the illustrated example, the upper and lower steel members 3a and 3b are protruded by substantially the same length and are in contact with each other at substantially the center of the gap H, but the contact position is not limited to this. , it may be carried out in contact with structure above the gap between the H moiety may be carried out in contact with structure in the lower.
[0019]
As shown in FIG. 3, the steel plate 4 used as the energy absorbing member 4 is arranged in a total of four pieces of steel members (square steel pipe columns) 3a and 3b, one on each side, and the upper end portion (upper half) of the steel plate 4 is arranged. One side is brought into contact with the lower end of the upper steel member 3a and directly joined by a welding means such as welding, and one side of the lower end (lower half) is brought into contact with the upper end of the lower steel member 3b and welded. It is directly joined by joining means such as.
[0020]
In the present embodiment, the steel plate 4 made of ordinary steel is used as the energy absorbing member 4. However, the present invention is not limited to this, and a hysteresis damper such as an extremely low yield point steel or a low yield point steel is used. But of course it can be done. When there is a concern about the increase in yield stress due to welding when using the ultra-low yield point steel, the region not affected by welding heat is set as the deformation length, and the length does not deteriorate performance due to buckling. Remember to design.
[0021]
The shape, arrangement, and number of sheets used of the steel plate 4 are not limited to the illustrated example. It can be flexibly changed according to the shape of the steel members 3a and 3b, etc., on the condition that a strength capable of bearing a shearing force necessary for the structural design can be obtained. For example, when the steel members 3a and 3b are circular steel pipe columns, as shown in FIG. 4A, the required number of steel plates 4 having a curvature that exactly overlaps the outer periphery of the circular steel pipe columns 3a and 3b (four in the illustrated example). ) Use and join directly by welding means. When the steel members 3a and 3b are H-shaped steel columns, as shown in FIG. 4B, a total of four steel plates 4 are provided on the outer surface of the flange portion of the H-shaped steel column and both side surfaces of the web portion. It is carried out by directly joining with a joining means such as welding.
[0022]
Accordingly, the horizontal force (shearing force) at the time of the earthquake is resisted by the strength and rigidity of the steel plate 4 used as the energy absorbing member 4, and the connection state of the upper and lower steel members 3a and 3b is stably maintained. Further, when tensile stress is applied, seismic energy is absorbed and excessive deformation is suppressed by the floating of the upper steel member 3a and the plastic deformation of the steel plate 4 used as the energy absorbing member 4 associated therewith. . Therefore, there is no possibility of generating shocking noise when the upper steel member 3a is restored. Further, when receiving a bending moment at the joint between the pile head 1a and the structure 2, the steel plate 4 used as the energy absorbing member 4 at the contact portion of the upper and lower steel members 3a, 3b has a plastic hinge against the bending moment. Since it comprises, the bending moment which arises in the said junction part can be reduced, and by extension, the seismic response which acts on structures 2 such as a building can be reduced.
[0023]
5 and 6 show stepwise embodiments of the joint structure of the support pile 1 and the structure 2 according to the invention described in claim 2 . Compared with the above-described embodiments according to FIGS. 1 to 4, this embodiment is for improving the shear strength when it is difficult to bear the shear force due to the structural design only with the energy absorbing member 4. It is preferably implemented.
[0024]
FIGS. 5A to 5C show that a tie band 5 having strength and rigidity that can withstand shearing force acting on the joining portion is attached to the upper end portion of the lower steel member 3b among the steel members 3a and 3b joined up and down. The state which provided in cyclic | annular arrangement | positioning surrounding the outer periphery of this is shown. Incidentally, FIG. 5A shows a square steel pipe column, FIG. 5B shows a circular steel pipe column, and FIG. 5C shows an H-shaped steel column. Each of the tie bands 5 is also made of steel, and is fixed to the lower steel frame member 3b by joining means such as welding.
[0025]
The lower end portion of the upper steel member 3a is inserted into the inside of the tie band 5 and connected to a contact state (metal touch) that can be lifted to the upper end surface of the lower steel member 3b (reference numeral 3c is the corresponding one). Tangent position).
[0026]
In this embodiment, the tie band 5 is provided at the upper end of the lower steel member 3b . However, as shown in FIG. 6C, the tie band 5 is substantially provided at the lower end of the upper steel member 3a. Ru can be carried out in the same manner.
[0027]
FIG 6A~C the upper and lower steel member 3a connected to the contact state as described above, for 3b, the energy absorbing member and the steel member 3a of the tie band 5 and the upper is thus plastically deformed in the vertical direction of the tensile stress 4 shows the connected state (the invention according to claim 2). Incidentally, all the steel members 3a and 3b used in FIGS. 6A to 6C show a case where the steel members are implemented by square steel pipe columns.
[0028]
Specifically, FIG. 6A, upper and lower steel member 3a, substantially centrally shows the contact state, the lower steel member the tie band 5 only projecting the gap H moiety substantially the same length 3b respectively provided at the upper end portion of 3b, using four steel plates 4 to be used as an energy absorbing member 4, the upper end portion 4a is joined by welding to the upper steel member 3a, the lower portion 4b the upper end surface of the tie band 5 It is joined by welding.
[0029]
FIG. 6B shows a state in which the upper steel member 3a is long and the lower steel member 3b is protruded short and is in contact with the lower portion of the gap H. Similarly to FIG. 6A, the tie band 5 is provided at the upper end portion of the steel frame member 3b, using four steel plates 4 to be used as an energy absorbing member 4, the upper end portion 4a is joined by welding to the upper steel member 3a, the lower unit 4b of the tie band 5 It is joined to the upper end surface by welding.
[0030]
FIG. 6C shows a state in which the upper steel member 3a is shortened and the lower steel member 3b is protruded long and is in contact with the upper portion of the gap H, and the tie band 5 is connected to the lower end of the upper steel member 3a. in the provided, using four steel plates 4 to be used as an energy absorbing member 4, the upper end portion 4a is joined by welding to the lower end surface of the tie band 5, the lower portion 4b is welded to the lower steel member 3 b It is joined .
[0031]
In the present embodiment, the thickness of the steel plate 4 and the thickness of the tie band 5 are substantially the same and the outer peripheral surface is flush with each other. However, the present invention is not limited to this.
[0032]
Therefore, according to the embodiment of the joint structure between the support pile and the structure according to the invention described in claim 2, in addition to the same function and effect as the embodiment according to FIGS. In addition to the strength and rigidity of the steel plate 4 used as the energy absorbing member 4 , the horizontal force (shearing force) can be resisted by the strength and rigidity of the tie band 5, so that the upper and lower steel members 3 a and 3 b The connection state can be maintained more stably.
[0033]
7A to 7C show an embodiment of a joint structure between the support pile 1 and the structure 2 according to the invention described in claim 3 . Similar to the embodiment according to claim 2 described above, this embodiment bears a shearing force in terms of structural design only with the steel plate 4 as compared with the embodiment according to FIGS. This is preferably performed to improve the shear strength in difficult cases.
[0034]
Compared with the embodiments according to FIGS. 1 to 4 described above, the present embodiment has an axially downward projecting portion 6a at the lower end portion of the upper steel member 3a among the steel members 3a and 3b joined up and down. The difference is only that the lower steel frame member 3b is provided with a recess 6b that opens upward in the axial direction at the upper end of the lower steel member 3b. However, in FIG. 7C, the edge part itself of the H-shaped steel column 3 is implemented as the recess 6b.
[0035]
In addition, the shape of the said convex part 6a and the recessed part 6b is not limited to the example of illustration, What is necessary is just the shape where the fitted convex part 6a and the recessed part 6b exhibit what is called a dowel effect. Of course, the same can be implemented by providing the convex portion 6a in the lower steel member 3b and providing the concave portion 6b in the upper steel member 3a.
[0036]
Therefore, according to the embodiment of the joint structure between the support pile and the structure according to the invention described in claim 3 , in addition to the same operational effects as the embodiment according to FIGS. In addition to the strength and rigidity of the steel plate 4 used as the energy absorbing member 4 , the so-called dowel effect (bearing effect) between the fitted convex portions 6 a and the concave portions 6 b is also applied to the horizontal force (shearing force). since the resistance can be retained steel members 3a of the upper bottom, the connection state of 3b further stably.
[0037]
Although the embodiments have been described with reference to the drawings, the present invention is not limited to the embodiments shown in the drawings, and is within the scope of design changes and application variations that are usually made by those skilled in the art without departing from the technical idea thereof. In order to include that.
[0038]
For example, by combining the technical idea of using the tie band described with reference to FIGS. 5 and 6 and the technical idea of exhibiting the dowel effect described with reference to FIG. The state can be maintained remarkably and stably, and a structure having sufficient shear strength can also be implemented (the invention according to claim 3 ).
[0039]
[Effects of the present invention]
According to the joint structure between the support pile and the structure according to the invention described in claim 1,
1) The horizontal force (shearing force) during an earthquake is resisted by the strength and rigidity of the energy absorbing member, and the connection state of the upper and lower steel members is stably maintained. When tensile stress is applied, seismic energy is absorbed and excessive deformation is suppressed by the floating of the upper steel member and the accompanying plastic deformation of the energy absorbing member. Therefore, there is no possibility of generating shocking noise when the upper steel member is restored.
2) When the steel member is subjected to a bending moment, the energy absorbing member at the contact portion of the upper and lower steel members constitutes a plastic hinge, so the bending moment generated at the joint (pile head) can be reduced, and as a result The seismic response acting on the structure can be reduced.
3) The gap between the pile head and the structure is sufficient to allow the steel member to accept the plastic hinge, so there is no need to make it very large as in the prior art, and there is no harmful deformation to the structure. It will not remain.
4) According to the joint structure between the support pile and the structure according to the invention described in claims 2 and 3 , in addition to the effects of 1) to 3), the connection state of the upper and lower steel members is further stabilized. The structure which can hold | maintain and has sufficient shear strength can be implement | achieved.
[Brief description of the drawings]
FIG. 1 is an elevational view showing an embodiment of a joint structure between a support pile and a structure portion according to the invention described in claim 1;
FIG. 2 is an exploded perspective view showing a square steel pipe column used in FIG.
3 is a cross-sectional view showing the main part of FIG. 1. FIG.
FIG. 4A shows a cross-sectional view when the steel member is implemented with a circular steel pipe column, and FIG. 4B shows a cross-sectional view when the steel member is implemented with an H-shaped steel column.
5A, 5B, and 5C, the tie band according to the invention described in claim 2 is provided so as to surround the lower steel member, and the end of the upper steel member is the end of the tie band. It is the perspective view which showed the step inserted inside .
FIGS. 6A and 6B are elevation views showing an embodiment of a joint structure between a support pile and a structure portion according to the invention described in claim 2 ; FIGS.
FIGS. 7A and 7B are exploded perspective views each showing an embodiment of a joint structure between a support pile and a structure portion according to the third aspect of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Support pile 1a Pile head 2 Structure 3a Upper steel member 3b Lower steel member 4 Energy absorption member (steel plate)
5 Tie band 6a Convex part 6b Concave part

Claims (3)

支持杭の杭頭部に設けた鉄骨部材と、構造物の下端部に設けた鉄骨部材とが突き合わされ、杭頭部と構造物との間に隙間が設けられており、突き合わされた前記上下の鉄骨部材は、鉛直方向の引張応力によって塑性変形するエネルギー吸収部材で連結され曲げモーメントに対する塑性ヒンジが構成されていることを特徴とする、支持杭と構造物との接合構造。A steel member provided on pile head of the support piles, are matched and the steel member provided at the lower portion of the structure is provided with a gap between the pile head and the structure was combined can butt It said upper and lower steel member, characterized in that塑 property hinge is configured with respect to a bending moment is coupled to lead a straight direction of tensile stress Therefore the energy absorbing member plastically deforms, the junction between the support piles and the structure structure . 支持杭の杭頭部に設けた鉄骨部材と、構造物の下端部に設けた鉄骨部材とのいずれか一方の鉄骨部材の端部に、タイバンドが当該鉄骨部材を取巻く配置に固定して設けられ、他方の鉄骨部材の端部は前記タイバンドの内側へ差入れられて上下の鉄骨部材が突き合わされ、杭頭部と構造物との間に隙間が設けられており、突き合わされた前記上下の鉄骨部材は、前記タイバンドと前記他方の鉄骨部材とが鉛直方向の引張応力によって塑性変形するエネルギー吸収部材で連結され曲げモーメントに対する塑性ヒンジが構成されていることを特徴とする、支持杭と構造物との接合構造。 At the end of one of the steel member provided at the pile head of the support pile and the steel member provided at the lower end of the structure, the tie band is fixed in an arrangement surrounding the steel member. The end of the other steel member is inserted into the inside of the tie band, the upper and lower steel members are butted, and a gap is provided between the pile head and the structure. A steel pile member is characterized in that the tie band and the other steel piece member are connected by an energy absorbing member that is plastically deformed by a tensile stress in the vertical direction to form a plastic hinge against a bending moment. Bonding structure with objects. 上下の鉄骨部材のいずれか一方の鉄骨部材の端部に軸方向の凸部が設けられ、他方の鉄骨部材の端部に軸方向の凹部が設けられており、前記凸部と凹部とをはめ合わせて前記上下の鉄骨部材の端部が突き合わされていることを特徴とする、請求項1又は2に記載した支持杭と構造物との接合構造。An axial convex portion is provided at the end of one of the upper and lower steel members, and an axial concave portion is provided at the end of the other steel member. The convex portion and the concave portion are fitted to each other. junction structure between the characterized in that the ends of the upper and lower steel member is butted, bearing pile and the structure according to claim 1 or 2 combined.
JP2003051629A 2003-02-27 2003-02-27 Joint structure of support pile and structure Expired - Fee Related JP3690395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051629A JP3690395B2 (en) 2003-02-27 2003-02-27 Joint structure of support pile and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051629A JP3690395B2 (en) 2003-02-27 2003-02-27 Joint structure of support pile and structure

Publications (2)

Publication Number Publication Date
JP2004257187A JP2004257187A (en) 2004-09-16
JP3690395B2 true JP3690395B2 (en) 2005-08-31

Family

ID=33116726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051629A Expired - Fee Related JP3690395B2 (en) 2003-02-27 2003-02-27 Joint structure of support pile and structure

Country Status (1)

Country Link
JP (1) JP3690395B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299683A (en) * 2017-06-02 2017-10-27 长安大学 Compound concrete-filled tubular column assembled docks node and connection method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821569B2 (en) * 2006-11-10 2011-11-24 Jfeスチール株式会社 Joint structure of footing and steel pipe pile
CN109487677B (en) * 2018-12-11 2021-02-12 衡水云岭路桥工程有限公司 Bridge plate pier connection method of prefabricated bridge
CN111719912B (en) * 2020-06-05 2024-08-23 福建金启点实业有限公司 Steel construction factory building

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299683A (en) * 2017-06-02 2017-10-27 长安大学 Compound concrete-filled tubular column assembled docks node and connection method
CN107299683B (en) * 2017-06-02 2019-03-29 长安大学 Compound concrete-filled tubular column assembled docks node and connection method

Also Published As

Publication number Publication date
JP2004257187A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP3629638B2 (en) Steel column and steel beam joint structure for steel structure with high rigidity and excellent damage controllability
JP3678709B2 (en) Column-beam connection structure
JP4683579B1 (en) Reinforcement structure for wooden buildings
KR100516332B1 (en) Steel structure equipped with connection damper
JP2006037628A (en) Earthquake resistant reinforcement method for existing building
KR102108335B1 (en) Composite Steel Structure with Seismic Performance Joint
JP4719119B2 (en) Seismic retrofitting method for existing building structures
JP3690395B2 (en) Joint structure of support pile and structure
JP6013028B2 (en) Outer shell structure
JP6447777B2 (en) Column beam connection structure and steel reinforced concrete column
JP5132503B2 (en) Seismic structure and building
JP5654060B2 (en) Damper brace and damping structure
JP4414833B2 (en) Seismic walls using corrugated steel
JP3931944B2 (en) Damping damper and its installation structure
JP5934033B2 (en) Seismic reinforcement structure and method using compression braces
KR101299574B1 (en) Moment connection structure using panel zone of rectangular shape
JP3772259B2 (en) Column joint with energy absorbing member
JPH11152929A (en) Earthquake resistant reinforcing method for building of steel frame construction
JPH0776953A (en) Damping structure
JP6268998B2 (en) End structure of steel member
KR20000040240A (en) Steel frame forming damper joint
JP2005171643A (en) Earthquake resistant structure using pc binding method
JP4771162B2 (en) Joint structure of steel column and steel beam
JP4563875B2 (en) An improved method for reducing the eccentricity of a structure using corrugated steel sheets and a structure having a reduced eccentricity using corrugated steel sheets
JP2001115599A (en) Steel structural member and frame member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Ref document number: 3690395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees