JP3689518B2 - Resin solution composition for electronic materials - Google Patents

Resin solution composition for electronic materials Download PDF

Info

Publication number
JP3689518B2
JP3689518B2 JP03371497A JP3371497A JP3689518B2 JP 3689518 B2 JP3689518 B2 JP 3689518B2 JP 03371497 A JP03371497 A JP 03371497A JP 3371497 A JP3371497 A JP 3371497A JP 3689518 B2 JP3689518 B2 JP 3689518B2
Authority
JP
Japan
Prior art keywords
siloxane
diamine
resin solution
solution composition
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03371497A
Other languages
Japanese (ja)
Other versions
JPH10231424A (en
Inventor
極 徳久
明 徳光
諭 財部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP03371497A priority Critical patent/JP3689518B2/en
Priority to TW087102185A priority patent/TW593543B/en
Priority to KR10-1998-0004987A priority patent/KR100494349B1/en
Priority to US09/025,629 priority patent/US5916688A/en
Publication of JPH10231424A publication Critical patent/JPH10231424A/en
Application granted granted Critical
Publication of JP3689518B2 publication Critical patent/JP3689518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Die Bonding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プリント基板等配線部品の層間絶縁膜や表面保護膜、あるいは半導体パッケージ用ダイボンディング剤、液状封止剤、その他電子材料用耐熱接着剤などに利用可能な電子材料用樹脂溶液組成物に関するものである。
【0002】
【従来の技術】
芳香族ポリイミドワニス又は芳香族ポリイミド前駆体(芳香族ポリアミック酸)ワニスを、電気絶縁性の保護膜(層間絶縁膜など)として利用することは、例えば特開昭62−242393号公報等において既に種々提案されている。この場合、芳香族ポリイミドは、ほとんどの有機溶媒に溶解しないため、溶剤可溶性に比較的優れたポリイミドの前駆体であるポリアミック酸ワニスが使用されることが多い。ところが、芳香族ポリアミック酸ワニスは基板などに塗布し、溶剤を除去した後、最終的なイミド化反応を完結させるために250℃以上の高温で長時間の硬化処理が必要となるため、硬化設備、作業性、生産性の点から問題があった。また、プリント基板等の保護膜にポリアミック酸ワニスを用いる場合には高温での熱処理によって銅箔回路表面に酸化膜が生じ、信頼性を低下させる原因にもなっていた。
【0003】
一方、主鎖中にエーテル、スルホン、ケトンなどの化学構造を導入し、溶剤溶解性を改良した芳香族ポリアミック酸ワニスにおいても、有機溶剤中の樹脂濃度は塗布特性などにおける制限から最高でも20数%程度の樹脂濃度のものしか用いることができず、厚膜塗布が必要な用途の場合には、一度の処理によって十分な膜厚が得られないという問題があった。
【0004】
かかる硬化温度や溶剤可溶性の問題を解決するための手法として、シロキサンジアミンを共重合によりポリマー主鎖中に導入したポリイミド、ポリアミック酸が提案され(特開昭57−143328号公報、特開昭58−13631号公報)、シロキサンジアミンの共重合比に応じて硬化温度と溶剤可溶性の改善が図られてはいるものの、逆に耐溶剤性が低下するという問題が生じた。
【0005】
特に、シロキサンジアミン共重合比が高いシロキサンポリイミド樹脂は、N,N-ジメチルアセトアミド、N-メチル-2- ピロリドン等のアミド系溶剤、ジグライム等のグライム系溶剤はもちろんのこと、アセトン、メチルエチルケトン等の汎用のケトン系溶媒に対する耐溶剤性が低く、用途が限定されるという欠点を有していた。
【0006】
更に、末端にアミノアルキル構造を有する汎用のシロキサンジアミンを用いたポリアミック酸ワニスは、ワニス中への水分の吸湿により容易に加水分解しやすく、保存中に粘度が低下するという問題点があった。
【0007】
【発明が解決しようとする課題】
したがって、本発明の目的は、保存安定性に優れ、比較的低温硬化が可能で、硬化後の耐熱性、高周波特性、耐薬品性、応力緩和特性などのバランスに優れた硬化物を与える電子材料用樹脂溶液組成物を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、かかる課題について鋭意検討を重ねた結果、芳香族テトラカルボン酸二無水物とシロキサンジアミンからなるイミド部位及び芳香族テトラカルボン酸二無水物と芳香族ジアミンからなるアミック酸部位を有するポリイミドアミック酸共重合樹脂とエポキシ樹脂とを、有機溶媒に均一に溶解してなる樹脂溶液組成物が、前記課題を達成しうることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、芳香族テトラカルボン酸二無水物とシロキサンジアミンを重縮合させてなるイミド部位及び芳香族テトラカルボン酸二無水物とシロキサンジアミン以外の芳香族ジアミン成分を重付加させてなるアミック酸部位を有する下記一般式(1)で表わされるシロキサンポリイミドアミック酸共重合樹脂100重量部とエポキシ樹脂1〜50重量部とを有機溶媒に溶解してなる電子材料用樹脂溶液組成物である。
【化3】

Figure 0003689518
(式中、Xは芳香族テトラカルボン酸二無水物残基を、Yはシロキサンジアミン残基を、Zは芳香族ジアミン残基を、l及びmはそれぞれ独立に整数を、nは1以上の数を示す)
【0010】
以下、本発明を詳細に説明する。
本発明において用いる芳香族テトラカルボン酸二無水物とは、カルボン酸基が芳香族に結合した化合物をいう。芳香族テトラカルボン酸二無水物の例を挙げると、ピロメリット酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,2',3,3'-ベンゾフェノンテトラカルボン酸二無水物、2,3,3',4'-ベンゾフェノンテトラカルボン酸二無水物、ナフタレン-2,3,6,7- テトラカルボン酸二無水物、ナフタレン-1,2,5,6- テトラカルボン酸二無水物、ナフタレン-1,2,4,5- テトラカルボン酸二無水物、ナフタレン-1,4,5,8- テトラカルボン酸二無水物、ナフタレン-1,2,6,7- テトラカルボン酸二無水物、2,6-ジクロロナフタレン-1,4,5,8- テトラカルボン酸二無水物、2,7-ジクロロナフタレン-1,4,5,8- テトラカルボン酸二無水物、2,3,6,7-テトラクロロナフタレン-1,4,5,8- テトラカルボン酸二無水物、1,4,5,8-テトラクロロナフタレン-2,3,6,7- テトラカルボン酸二無水物、3,3',4,4'-ジフェニルテトラカルボン酸二無水物、2,2',3,3'-ジフェニルテトラカルボン酸二無水物、2,3,3',4'-ジフェニルテトラカルボン酸二無水物、3,3'',4,4''-p-テルフェニルテトラカルボン酸二無水物、2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,3,3'',4''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3- ジカルボキシフェニル)-プロパン二無水物、2,2-ビス(3,4- ジカルボキシフェニル)-プロパン二無水物、ビス(2,3- ジカルボキシフェニル) エーテル二無水物、ビス(2,3- ジカルボキシフェニル) メタン二無水物、ビス(3,4- ジカルボキシフェニル) メタン二無水物、ビス(2,3- ジカルボキシフェニル) スルホン二無水物、ビス(3,4- ジカルボキシフェニル) スルホン二無水物、1,1-ビス(2,3- ジカルボキシフェニル) エタン二無水物、1,1-ビス(3,4- ジカルボキシフェニル) エタン二無水物、ペリレン-2,3,8,9- テトラカルボン酸二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、ペリレン-4,5,10,11- テトラカルボン酸二無水物、ペリレン-5,6,11,12- テトラカルボン酸二無水物、フェナンスレン-1,2,7,8- テトラカルボン酸二無水物、フェナンスレン-1,2,6,7- テトラカルボン酸二無水物、フェナンスレン-1,2,9,10-テトラカルボン酸二無水物、ピラジン-2,3,5,6- テトラカルボン酸二無水物、チオフェン-2,3,4,5- テトラカルボン酸二無水物、4,4'- オキシジフタル酸二無水物などが挙げられる。これらは単独で使用してもよく、また2種以上を併用してもよい。これらのうち、特にビス(3,4- ジカルボキシフェニル) スルホン二無水物が、前記シロキサンポリイミドアミック酸共重合樹脂の有機溶媒に対する溶解性、銅面との密着性に優れているので好適である。
【0011】
また、本発明において、芳香族テトラカルボン酸二無水物と共に使用するジアミン成分は、シロキサンポリイミドアミック酸共重合樹脂中のイミド部位を形成させるにはシロキサンジアミンを用い、ポリイミドアミック酸共重合樹脂中のアミック酸部位を形成させるには芳香族ジアミンを用いる。
【0012】
本発明において用いるシロキサンジアミンは、下記一般式(2)で表されるものであることが好ましい。
【化4】
Figure 0003689518
(式中、R1 及びR2 は二価の炭化水素基を、R3 〜R6 はそれぞれ炭素数1〜6の炭化水素基を、pは1〜30の整数を示す)
【0013】
上記一般式(2)において、R1 及びR2 はそれぞれ炭素数3〜5の複数のメチレン基又はフェニレン基、R3 〜R6 はメチル基、エチル基、プロピル基又はフェニル基、平均繰り返し単位(p)は1〜20の整数であることが好ましい。
【0014】
シロキサンジアミンの具体的化合物としては、例えばω,ω'-ビス(2- アミノエチル) ポリジメチルシロキサン、ω,ω'-ビス(3- アミノプロピル) ポリジメチルシロキサン、ω,ω'-ビス(4- アミノフェニル) ポリジメチルシロキサン、ω,ω'-ビス(3- アミノプロピル) ポリジフェニルシロキサン、ω,ω'-ビス(3- アミノプロピル) ポリメチルフェニルシロキサンなどが挙げられる。
【0015】
本発明においては、シロキサンポリイミドアミック酸共重合樹脂の芳香族テトラカルボン酸二無水物とシロキサンジアミンが付加して形成されるイミド部位は、実質的に安定なイミドを形成していることが好ましい。
【0016】
本発明で用いる芳香族ジアミンとは、アミノ基が芳香族に結合している化合物をいう。芳香族ジアミン例を挙げると、3,3'- ジメチル-4,4'-ジアミノビフェニル、4,6-ジメチル-m- フェニレンジアミン、2,5-ジメチル-p- フェニレンジアミン、2,4-ジアミノメシチレン、4,4'- メチレン- ジ-o- トルイジン、4,4'- メチレン- ジ-2,6- キシリジン、2,4-トルエンジアミン、m-フェニレン- ジアミン、p-フェニレン- ジアミン、4,4'- ジアミノ- ジフェニルプロパン、3,3'- ジアミノ- ジフェニルプロパン、4,4'- ジアミノ- ジフェニルエタン、3,3'- ジアミノ- ジフェニルエタン、4,4'- ジアミノ- ジフェニルメタン、3,3'- ジアミノ- ジフェニルメタン、2,2-ビス[4-(4-アミノフェノキシ) フェニル] プロパン、4,4'- ジアミノ- ジフェニルスルフィド、3,3'- ジアミノ- ジフェニルスルフィド、4,4'- ジアミノ- ジフェニルスルホン、3,3'- ジアミノ- ジフェニルスルホン、4,4'- ジアミノ- ジフェニルエーテル、3,3'- ジアミノ- ジフェニルエーテル、ベンジジン、3,3'- ジアミノ- ビフェニル、3,3'- ジメチル-4,4'-ジアミノ- ビフェニル、3,3'- ジメトキシ- ベンジジン、4,4'- ジアミノ-p- テルフェニル、3,3'- ジアミノ-p- テルフェニル、1,5-ジアミノ- ナフタレン、2,6-ジアミノ- ナフタレン、2,4-ジアミノ- トルエン、m-キシレン-2,5- ジアミン、p-キシレン-2,5- ジアミン、1,3-ビス(3-アミノフェノキシ) ベンゼンなどが挙げられる。これらは単独で使用してもよく、また2種以上を併用してもよい。これらのうち、特に2,2-ビス[4-(4-アミノフェノキシ) フェニル] プロパンが、前記シロキサンポリイミドアミック酸共重合樹脂の有機溶媒に対する溶解性などに優れているので好適である。
【0017】
本発明において、通常の重縮合系ポリマーの場合と同様にモノマー成分のモル比を調節することにより分子量を制御することができる。具体的には、全芳香族テトラカルボン酸二無水物1モルに対し、0.8〜1.2モルのジアミンを使用することが好ましい。このモル比が0.8より小さかったり、1.2より大きくなると低分子量のものしか得られず、充分な耐熱性が得られない。更に好ましくは、芳香族テトラカルボン酸二無水物1モルに対し、0.95〜1.05、最も好ましくは0.98〜1.02モル比のジアミンの使用である。
【0018】
本発明において、シロキサンジアミンと芳香族ジアミンのモル比は、30/70〜99/1であることが好ましい。このモル比が30/70より小さいとシロキサンポリイミドアミック酸共重合樹脂の溶剤可溶性や硬化樹脂の応力緩和特性が悪化し、99/1を超えるとシロキサンポリイミドアミック酸共重合樹脂のエポキシ樹脂との反応点が少なくなり、硬化樹脂の耐薬品性が低下する。
【0019】
本発明において用いるシロキサンポリイミドアミック酸共重合樹脂は、その分子量の目安として、対数粘度が0.08〜1.2であることが好ましい。対数粘度は、シロキサンポリイミドアミック酸共重合樹脂をメチルジグライムに均一に溶解し、濃度0.5g/100mlの溶液を調製し、ウベローデ型粘度計によりその溶液粘度及びメチルジグライムの粘度を30℃で測定し、下記式で算出したものである。
対数粘度=In(溶液粘度/溶媒粘度)/溶液濃度
シロキサンポリイミドアミック酸共重合樹脂の対数粘度が0.08より低いと硬化樹脂の耐薬品性、耐熱性が悪化し、1.2を超えると樹脂溶液組成物の粘度が高くなりすぎて作業性が低下する。
【0020】
本発明において、シロキサンポリイミドアミック酸共重合樹脂と配合するエポキシ樹脂は、特に限定されるものではないが、エポキシ当量が100〜5000特に100〜1000程度である液状又は粉末状のエポキシ樹脂が好ましい。エポキシ樹脂の具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4'- ビフェノール、2,2'- ビフェノール、ハイドロキノン、レゾルシン等のフェノール類、トリス-(4-ヒドロキシフェニル) エタン、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類、又はテトラブロモビスフェノールA、ブロモフェノールノボラック等のハロゲン化ビスフェノール類から誘導されるグリシジルエーテル化合物などが挙げられる。これらは単独で使用してもよいし、2種以上を併用してもよい。樹脂溶液組成物の安定性のため、また低弾性率で応力緩和特性を有する硬化物を得るためには、エポキシ当量が比較的大きい2官能型のビスフェノール型エポキシ樹脂が好ましい。
【0021】
エポキシ樹脂の配合量は、シロキサンポリイミドポリアミック酸共重合樹脂100重量部に対し、1〜50重量部であることを要し、好ましくは3〜30重量部である。エポキシ樹脂の配合量が、50重量部を超えると硬化樹脂の応力緩和特性や耐熱性などが低下し、また1重量部より少ないと耐薬品性が悪化する。
【0022】
また、本発明においては、必要に応じて上記シロキサンポリイミドアミック酸共重合樹脂及びエポキシ樹脂の他に、硬化促進の目的でエポキシ樹脂硬化剤を配合することもできる。
【0023】
本発明において用いられる有機溶媒は特に限定されるものではないが、本樹脂組成物を均一溶解可能なものならば、単独でもよいし、2種以上を併用した混合溶媒であっても差し支えない。例えば、フェノール系溶媒や、ピロリドン系溶媒、アセトアミド系溶媒等のアミド系溶媒や、ジオキサン、トリオキサン等のオキサン系溶媒や、シクロヘキサノン等のケトン系溶媒や、メチルジグライム、メチルトリグライム等のグライム系溶媒などが挙げられる。また必要に応じて、ベンゼン、トルエン等の芳香族炭化水素系溶媒やヘキサン、デカン等の脂肪族炭化水素系溶媒などを均一に溶解できる範囲で混合し使用することもできる。有機溶媒の量は、シロキサンポリイミドアミック酸共重合樹脂とエポキシ樹脂の合計量を固形分量としたとき、固形分と溶媒の重量比(固形分/溶媒)が(20〜80)/(80〜20)であり、好ましくは(40〜70)/(60〜30)である。溶媒比が80を超えると十分な厚さの硬化物を得ることが難しくなり、溶媒比が20より少ないと樹脂溶液組成物の粘度が高くなりすぎて作業性が低下する。
【0024】
【発明の実施の形態】
本発明の樹脂溶液組成物は、以下の方法で調製することができる。
まず、予めシロキサンジアミンに対して過剰量の芳香族テトラカルボン酸二無水物を有機溶媒中に溶解又は懸濁させておき、シロキサンジアミンを徐々に添加する。混合物は室温付近の温度で2〜3時間攪拌した後、イミド化が進行しうる温度で縮合水を除去しながら10〜24時間重合とイミド化を行い、末端に酸無水物を有するシロキサンポリイミドオリゴマーを得る。シロキサンポリイミドオリゴマーのイミド化率(%)は、赤外線吸収スペクトル分析法で測定して、実質的に100 %であり、アミック酸部位がないことが好ましい。続いて、室温付近まで反応混合物を冷却後、酸無水物と全ジアミン成分が略等モル量になるように芳香族ジアミンを添加し、イミド化の進行しない温度で反応させてシロキサンポリイミドポリアミック酸共重合樹脂溶液を得る。次いで、ポリイミドポリアミック酸共重合樹脂溶液にエポキシ樹脂を均一に溶解させることにより、本発明の樹脂溶液組成物を得る。
【0025】
ここで、反応に使用される有機溶媒は特に限定されるものではなく、前記の有機極性溶媒を使用することでよいが、反応時間の短縮、溶媒散逸の問題により、沸点150 ℃以上のものがよく、特に200 ℃以上である有機極性溶媒(例えばメチルトリグライムなど)が最も好ましい。
【0026】
本発明の樹脂溶液組成物には、上記各成分の他に、必要に応じて従来より公知の硬化促進剤、カップリング剤、充填剤、顔料、チクソトロピー性付与剤、消泡剤などを適宜配合してもよい。
【0027】
【実施例】
以下、実施例により本発明を詳細に説明する。なお、樹脂溶液組成物の特性評価は下記の事項及び評価方法により行った。
【0028】
[はんだ耐熱性]
厚さ18μm の銅箔(三井金属株式会社製0.5 オンス圧延箔)の銅粗化面に、熱処理後の膜厚が15〜20μm になるように各組成に調製した樹脂溶液組成物を流延して、130 ℃で15分間予備乾燥後、180 ℃で30分間熱処理し塗膜を作成する。1cm ×2cm の塗付箔を作製し、300 ℃に調整した溶融はんだ浴に60秒間浸漬し、皮膜の銅表面からの剥離や皮膜外観上に変化の無いものを○とし、剥離や皮膜外観上に変化が生じたものを×として、はんだ耐熱性を評価した。
【0029】
[弾性率]
厚さ35μm の銅箔(三井金属株式会社製、1 オンス圧延箔)に、熱処理後の膜厚が15〜20μm になるように各組成に調製した樹脂溶液組成物を流延して、130 ℃で15分予備乾燥後、180 ℃で30分間熱処理し塗膜を作製する。塗膜形成された銅箔はエッチング液により完全に銅を除去した後、12.5cm×20cmの皮膜試験片を作製し、引っ張り試験機(東洋精機株式会社製、STROGRAPH-R1)に取り付け、荷重100kg 、引っ張り速度5mm/min で弾性率を測定した。
【0030】
[対数粘度]
シロキサンポリイミドアミック酸共重合樹脂の分子量の目安としての対数粘度は、シロキサンポリイミドアミック酸共重合樹脂をメチルジグライムに均一に溶解し、濃度0.5g/100mlの溶液を調製し、ウベローデ型粘度計によりその溶液粘度及びメチルジグライムの粘度を30℃で測定し、下記式で算出した。
対数粘度=In(溶液粘度/溶媒粘度)/溶液濃度
【0031】
[溶液粘度]
各組成に調製した樹脂溶液組成物の粘度はB型粘度計により25℃で測定した。
【0032】
[アセトン可溶分]
厚さ35μm の銅箔(三井金属株式会社製、1 オンス圧延箔)に、熱処理後の膜厚が15〜20μm になるように各組成に調製した樹脂溶液組成物を流延して、130 ℃で15分予備乾燥後、180 ℃で30分熱処理し塗膜を作製した。塗膜形成された銅箔はエッチング液により完全に銅を除去した後、10cm×10cmの皮膜を作製し、25℃のアセトン溶液に30分間浸漬し、皮膜の重量減少量をアセトン可溶分とした。
【0033】
[誘電率]
厚さ35μm の銅箔(三井金属株式会社製、1 オンス圧延箔)の銅粗化面に、熱処理後の膜厚が40〜50μm になるように各組成に調製した樹脂溶液組成物を流延し、130 ℃で15分予備乾燥後、180 ℃で30分熱処理して塗膜を作製した。作製した塗膜上に、上記同一種の銅箔の銅粗化面を、温度200 ℃、圧力40Kgf/cm2 で1 時間熱圧着して両面銅張積層板を作製した。次いで、IPC-TM650.2.5.5A規格に従って両面銅張積層板を回路加工して誘電率測定用試験片を作製し、インピーダンスアナライザーに取り付け、1Mhzの誘電率を測定した。
【0034】
製造例1
撹拌器、窒素導入管を備えたDean-Shyurark 型の反応器に、ビス(3,4- ジカルボキシフェニル) スルホン二無水物39.6g(0.110mol) とトリグライム118gを装入し、窒素雰囲気下でω,ω'-ビス(3-アミノプロピル)ポリジメチルシロキサン71.4g(p=8,0.093 mol)を滴下ロートを用いて滴下し、室温で約2 時間撹拌した。続いて、この反応溶液を窒素雰囲気下190 ℃に加熱して、水を除去しながら15時間加熱攪拌した。次いで、この反応溶液を室温まで冷却し、2,2-ビス[4-(4-アミノフェノキシ) フェニル] プロパン7.1g(0.017mol)を加え、窒素雰囲気下に室温で撹拌しながら、この反応溶液を室温で約5 時間撹拌し、固形分濃度51重量部のシロキサンポリイミドアミック酸共重合樹脂溶液を得た。得られたシロキサンポリイミドアミック酸共重合樹脂の対数粘度(温度30℃、濃度0.5g/100ml)は0.26であった。
【0035】
製造例2
撹拌器、窒素導入管を備えたDean-Shyurark 型の反応器に、ビス(3,4- ジカルボキシフェニル) スルホン二無水物39.6g(0.110mol) とトリグライム120gを装入し、窒素雰囲気下でω,ω'-ビス(3-アミノプロピル)ポリジメチルシロキサン76.3g(p=8,0.099mol) を滴下ロートを用いて滴下し、室温で約2 時間撹拌した。続いて、この反応溶液を窒素雰囲気下において190 ℃に加熱して、水を除去しながら15時間加熱攪拌した。次いで、この反応溶液を室温まで冷却し、2,2-ビス[4-(4-アミノフェノキシ) フェニル] プロパン4.5g(0.011mol)を加え、窒素雰囲気下に室温で撹拌しながら、この反応溶液を室温で約5 時間撹拌し、固形分濃度51重量部のシロキサンポリイミドアミック酸共重合樹脂溶液を得た。得られたシロキサンポリイミドアミック酸共重合樹脂の対数粘度(温度30℃、濃度0.5g/100ml)は0.23であった。
【0036】
製造例3
撹拌器、窒素導入管を備えた反応器に、ビス(3,4- ジカルボキシフェニル) スルホン二無水物39.6g(0.110mol) とトリグライム118gを装入し、窒素雰囲気下でω,ω'-ビス(3-アミノプロピル)ポリジメチルシロキサン71.4g(p=8,0.093mol) を滴下ロートを用いて滴下し、室温て約5 時間撹拌した。次いで、この反応溶液に2,2-ビス[4-(4-アミノフェノキシ) フェニル] プロパン7.1g(0.017mol)を加え、窒素雰囲気下に室温で撹拌しながら、この反応溶液を室温で約5 時間撹拌し、固形分濃度50重量部のシロキサンポリアミック酸共重合樹脂溶液を得た。得られたシロキサンポリアミック酸共重合樹脂の対数粘度(温度30℃、濃度0.5g/100ml)は0.27であった。
【0037】
実施例1
500ml の反応器に、製造例1で得たシロキサンポリイミドアミック酸共重合樹脂溶液100gとビスフェノールA 型エポキシ樹脂(東都化成株式会社製、YD-011、エポキシ当量=476)4.1gを装入し、室温で均一になるまで撹拌混合し、樹脂溶液組成物を得た。この樹脂溶液組成物を用いて、保存安定性試験、弾性率測定、はんだ耐熱試験、耐薬品性試験及び誘電率測定を行った。この樹脂溶液組成物は1週間室温で放置しても、均一な溶液の状態、粘度を保持していた。また、5℃以下の状態で3カ月間放置しても、粘度変化はほとんど観察されなかった。
【0038】
実施例2
500ml の反応器に、製造例1で得たシロキサンポリイミドアミック酸共重合樹脂溶液100gとビスフェノールA 型エポキシ樹脂(東都化成株式会社製、YD-014、エポキシ当量=956)8.2gを装入し、室温で均一になるまで撹拌混合し、樹脂溶液組成物を得た。この樹脂溶液組成物を用いて、保存安定性試験、弾性率測定、はんだ耐熱試験、耐薬品性試験及び誘電率測定を行った。この樹脂溶液組成物は1週間室温で放置しても、均一な溶液の状態、粘度を保持していた。また、5℃以下の状態で3カ月間放置しても、粘度変化はほとんど観察されなかった。
【0039】
実施例3
500ml の反応器に、製造例2で得たシロキサンポリイミドアミック酸共重合樹脂溶液100gとビスフェノールA 型エポキシ樹脂(東都化成株式会社製、YD-011、エポキシ当量=476)4.1gを装入し、室温で均一になるまで撹拌混合し、樹脂溶液組成物を得た。この樹脂溶液組成物を用いて、保存安定性試験、弾性率測定、はんだ耐熱試験、耐薬品性試験及び誘電率測定を行った。この樹脂溶液組成物は1週間室温で放置しても、均一な溶液の状態、粘度を保持していた。また、5℃以下の状態で3カ月間放置しても、粘度変化はほとんど観察されなかった。
【0040】
比較例1
エポキシ樹脂を用いなかったこと以外は実施例1と同様に行い、保存安定性試験、弾性率測定、はんだ耐熱試験、耐薬品性試験及び誘電率測定を行った。その結果、この樹脂溶液組成物は耐薬品性が極めて悪く、アセトンにほぼ完全に溶解した。
【0041】
比較例2
500ml の反応器に、製造例3で得たシロキサンポリアミック酸共重合樹脂溶液100gとビスフェノールA 型エポキシ樹脂(東都化成株式会社製、YD-011、エポキシ当量=476)4.1gを装入し、室温で均一になるまで撹拌混合し、樹脂溶液組成物を得た。この樹脂溶液組成物を用いて、保存安定性試験、弾性率測定、はんだ耐熱試験、耐薬品性試験及び誘電率測定を行った。この樹脂溶液組成物は室温で1週間放置したところ、著しい粘度低下を示した。また、5℃以下の状態でも著しい粘度低下が観察された。
【0042】
上記の実施例及び比較例の樹脂溶液組成物の配合組成並びに保存安定性試験、弾性率測定、はんだ耐熱試験、耐薬品性試験、誘電率測定の結果を表1に掲げる。ここで、弾性率測定、耐薬品性試験及び誘電率測定は、樹脂溶液組成物を製造した日[0day]に、溶液粘度測定及びはんだ耐熱性は、樹脂溶液組成物を製造した日[0day]と、90日間5 ℃の状態で保存した後[90day] に測定を行った。
【0043】
【表1】
Figure 0003689518
【0044】
【発明の効果】
本発明の電子材料用樹脂溶液組成物は、保存安定性に優れ、180℃以下の低温硬化が可能であり、これを硬化すると耐熱性、高周波特性、耐薬品性、応力緩和特性等に優れた硬化物が得られる。したがって、本発明の電子材料用樹脂溶液組成物は、例えばプリント基板等配線部品の層間絶縁膜や表面保護膜、あるいは半導体パッケージ用ダイボンディング剤、液状封止剤、その他電子材料用耐熱接着剤などに好適に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin solution composition for electronic materials that can be used for interlayer insulating films and surface protective films for wiring components such as printed circuit boards, die bonding agents for semiconductor packages, liquid sealants, and other heat resistant adhesives for electronic materials. It is about.
[0002]
[Prior art]
The use of an aromatic polyimide varnish or an aromatic polyimide precursor (aromatic polyamic acid) varnish as an electrically insulating protective film (such as an interlayer insulating film) has already been variously disclosed in, for example, JP-A No. 62-242393. Proposed. In this case, since aromatic polyimide does not dissolve in most organic solvents, polyamic acid varnish, which is a polyimide precursor that is relatively excellent in solvent solubility, is often used. However, since the aromatic polyamic acid varnish is applied to a substrate and the like, and after removing the solvent, a long curing process is required at a high temperature of 250 ° C. or higher to complete the final imidization reaction. There was a problem in terms of workability and productivity. Further, when a polyamic acid varnish is used for a protective film such as a printed circuit board, an oxide film is formed on the surface of the copper foil circuit due to heat treatment at a high temperature, which causes a decrease in reliability.
[0003]
On the other hand, even in aromatic polyamic acid varnishes in which a chemical structure such as ether, sulfone, or ketone is introduced into the main chain and the solvent solubility is improved, the resin concentration in the organic solvent is at most 20 due to limitations in coating properties. Only those having a resin concentration of about% can be used, and there has been a problem that a sufficient film thickness cannot be obtained by a single treatment in applications where thick film coating is required.
[0004]
As a technique for solving such problems of curing temperature and solvent solubility, polyimide and polyamic acid in which siloxane diamine is introduced into the polymer main chain by copolymerization have been proposed (Japanese Patent Laid-Open Nos. 57-143328 and 58). No. 13631), although the curing temperature and solvent solubility were improved according to the copolymerization ratio of siloxane diamine, there was a problem that the solvent resistance was lowered.
[0005]
In particular, siloxane polyimide resins with a high siloxane diamine copolymerization ratio include amide solvents such as N, N-dimethylacetamide and N-methyl-2-pyrrolidone, and glyme solvents such as diglyme, as well as acetone and methyl ethyl ketone. The solvent resistance to general-purpose ketone solvents was low, and there was a drawback that the application was limited.
[0006]
Furthermore, the polyamic acid varnish using a general-purpose siloxane diamine having an aminoalkyl structure at the terminal is easily hydrolyzed due to moisture absorption into the varnish, and has a problem that the viscosity decreases during storage.
[0007]
[Problems to be solved by the invention]
Therefore, an object of the present invention is an electronic material that has excellent storage stability, can be cured at a relatively low temperature, and provides a cured product with excellent balance of heat resistance after curing, high frequency characteristics, chemical resistance, stress relaxation characteristics, etc. Another object is to provide a resin solution composition.
[0008]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have found that an imide moiety comprising an aromatic tetracarboxylic dianhydride and a siloxane diamine and an amic acid moiety comprising an aromatic tetracarboxylic dianhydride and an aromatic diamine. The present inventors have found that a resin solution composition obtained by uniformly dissolving a polyimide amic acid copolymer resin and an epoxy resin having an organic solvent can achieve the above-mentioned problems, and has completed the present invention.
[0009]
That is, the present invention provides an imide moiety formed by polycondensation of an aromatic tetracarboxylic dianhydride and a siloxane diamine, and an amic formed by polyaddition of an aromatic tetracarboxylic dianhydride and an aromatic diamine component other than the siloxane diamine. It is a resin solution composition for an electronic material obtained by dissolving 100 parts by weight of a siloxane polyimide amic acid copolymer resin represented by the following general formula (1) having an acid site and 1 to 50 parts by weight of an epoxy resin in an organic solvent.
[Chemical 3]
Figure 0003689518
Wherein X is an aromatic tetracarboxylic dianhydride residue, Y is a siloxane diamine residue, Z is an aromatic diamine residue, l and m are each independently an integer, and n is 1 or more. Number)
[0010]
Hereinafter, the present invention will be described in detail.
The aromatic tetracarboxylic dianhydride used in the present invention refers to a compound in which a carboxylic acid group is bonded to an aromatic group. Examples of aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 2,2', 3,3'-benzophenone Tetracarboxylic dianhydride, 2,3,3 ', 4'-benzophenonetetracarboxylic dianhydride, naphthalene-2,3,6,7- tetracarboxylic dianhydride, naphthalene-1,2,5, 6-tetracarboxylic dianhydride, naphthalene-1,2,4,5-tetracarboxylic dianhydride, naphthalene-1,4,5,8- tetracarboxylic dianhydride, naphthalene-1,2,6 , 7-tetracarboxylic dianhydride, 2,6-dichloronaphthalene-1,4,5,8- tetracarboxylic dianhydride, 2,7-dichloronaphthalene-1,4,5,8- tetracarboxylic acid Dianhydride, 2,3,6,7-tetrachloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 1,4,5,8-tetrachloronaphthalene-2,3,6,7 -Tetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl Tetracarboxylic dianhydride, 2,2 ', 3,3'-diphenyltetracarboxylic dianhydride, 2,3,3', 4'-diphenyltetracarboxylic dianhydride, 3,3``, 4 , 4``-p-terphenyltetracarboxylic dianhydride, 2,2 '', 3,3 ''-p-terphenyltetracarboxylic dianhydride, 2,3,3 '', 4 '' -p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3-dicarboxyphenyl) -propane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -propane dianhydride Bis (2,3-dicarboxyphenyl) ether dianhydride, bis (2,3-dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride, bis (2 , 3-dicarboxyphenyl) sulfone dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1- Bis (3,4-dicarboxyphenyl) Tan dianhydride, perylene-2,3,8,9-tetracarboxylic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, perylene-4,5,10,11-tetra Carboxylic dianhydride, perylene-5,6,11,12- tetracarboxylic dianhydride, phenanthrene-1,2,7,8- tetracarboxylic dianhydride, phenanthrene-1,2,6,7- Tetracarboxylic dianhydride, phenanthrene-1,2,9,10-tetracarboxylic dianhydride, pyrazine-2,3,5,6-tetracarboxylic dianhydride, thiophene-2,3,4,5 -Tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride and the like. These may be used alone or in combination of two or more. Of these, bis (3,4-dicarboxyphenyl) sulfone dianhydride is particularly preferable because it has excellent solubility in the organic solvent and adhesion to the copper surface of the siloxane polyimide amic acid copolymer resin. .
[0011]
In the present invention, the diamine component used together with the aromatic tetracarboxylic dianhydride uses siloxane diamine to form an imide moiety in the siloxane polyimide amic acid copolymer resin, and in the polyimide amic acid copolymer resin. An aromatic diamine is used to form an amic acid site.
[0012]
The siloxane diamine used in the present invention is preferably one represented by the following general formula (2).
[Formula 4]
Figure 0003689518
(In the formula, R 1 and R 2 are divalent hydrocarbon groups, R 3 to R 6 are each a hydrocarbon group having 1 to 6 carbon atoms, and p is an integer of 1 to 30)
[0013]
In the above general formula (2), R 1 and R 2 are each a plurality of methylene groups or phenylene groups having 3 to 5 carbon atoms, R 3 to R 6 are methyl groups, ethyl groups, propyl groups or phenyl groups, average repeating units (P) is preferably an integer of 1 to 20.
[0014]
Specific examples of the siloxane diamine include ω, ω′-bis (2-aminoethyl) polydimethylsiloxane, ω, ω′-bis (3-aminopropyl) polydimethylsiloxane, ω, ω′-bis (4 -Aminophenyl) polydimethylsiloxane, ω, ω'-bis (3-aminopropyl) polydiphenylsiloxane, ω, ω'-bis (3-aminopropyl) polymethylphenylsiloxane, and the like.
[0015]
In the present invention, it is preferable that the imide moiety formed by adding the aromatic tetracarboxylic dianhydride of the siloxane polyimide amic acid copolymer resin and the siloxane diamine forms a substantially stable imide.
[0016]
The aromatic diamine used in the present invention refers to a compound in which an amino group is bonded to an aromatic group. Examples of aromatic diamines include 3,3'-dimethyl-4,4'-diaminobiphenyl, 4,6-dimethyl-m-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, 2,4-diamino Mesitylene, 4,4'-methylene-di-o-toluidine, 4,4'-methylene-di-2,6-xylidine, 2,4-toluenediamine, m-phenylene-diamine, p-phenylene-diamine, 4 , 4'-diamino-diphenylpropane, 3,3'-diamino-diphenylpropane, 4,4'-diamino-diphenylethane, 3,3'-diamino-diphenylethane, 4,4'-diamino-diphenylmethane, 3, 3'-diamino-diphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 4,4'-diamino-diphenyl sulfide, 3,3'-diamino-diphenyl sulfide, 4,4'- Diamino-diphenylsulfone, 3,3'-diamino-diphenylsulfone, 4,4'-dia No-diphenyl ether, 3,3'-diamino-diphenyl ether, benzidine, 3,3'-diamino-biphenyl, 3,3'-dimethyl-4,4'-diamino-biphenyl, 3,3'-dimethoxy-benzidine, 4 , 4'-Diamino-p-terphenyl, 3,3'-diamino-p-terphenyl, 1,5-diamino-naphthalene, 2,6-diamino-naphthalene, 2,4-diamino-toluene, m-xylene -2,5-diamine, p-xylene-2,5-diamine, 1,3-bis (3-aminophenoxy) benzene and the like. These may be used alone or in combination of two or more. Of these, 2,2-bis [4- (4-aminophenoxy) phenyl] propane is particularly preferable because of its excellent solubility in the organic solvent of the siloxane polyimide amic acid copolymer resin.
[0017]
In the present invention, the molecular weight can be controlled by adjusting the molar ratio of the monomer components in the same manner as in the case of an ordinary polycondensation polymer. Specifically, it is preferable to use 0.8 to 1.2 moles of diamine with respect to 1 mole of wholly aromatic tetracarboxylic dianhydride. If this molar ratio is smaller than 0.8 or larger than 1.2, only a low molecular weight can be obtained, and sufficient heat resistance cannot be obtained. More preferred is the use of a diamine in a ratio of 0.95 to 1.05, most preferably 0.98 to 1.02 per mole of aromatic tetracarboxylic dianhydride.
[0018]
In the present invention, the molar ratio of siloxane diamine to aromatic diamine is preferably 30/70 to 99/1. If this molar ratio is less than 30/70, the solvent solubility of the siloxane polyimide amic acid copolymer resin and the stress relaxation property of the cured resin deteriorate, and if it exceeds 99/1, the reaction of the siloxane polyimide amic acid copolymer resin with the epoxy resin. The number of points decreases, and the chemical resistance of the cured resin decreases.
[0019]
The siloxane polyimide amic acid copolymer resin used in the present invention preferably has a logarithmic viscosity of 0.08 to 1.2 as a measure of its molecular weight. The logarithmic viscosity is obtained by uniformly dissolving the siloxane polyimide amic acid copolymer resin in methyl diglyme to prepare a solution having a concentration of 0.5 g / 100 ml. Using an Ubbelohde viscometer, the solution viscosity and the viscosity of methyl diglyme at 30 ° C. Measured and calculated by the following formula.
Logarithmic Viscosity = In (Solution Viscosity / Solvent Viscosity) / Solution Concentration When the logarithmic viscosity of the siloxane polyimide amic acid copolymer resin is lower than 0.08, the chemical resistance and heat resistance of the cured resin are deteriorated. The viscosity of the resin solution composition becomes too high and workability is lowered.
[0020]
In the present invention, the epoxy resin blended with the siloxane polyimide amic acid copolymer resin is not particularly limited, but a liquid or powdery epoxy resin having an epoxy equivalent of about 100 to 5,000, particularly about 100 to 1,000 is preferable. Specific examples of epoxy resins include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, phenols such as 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcin, and tris- (4-hydroxyphenyl). Examples thereof include glycidyl ether compounds derived from trivalent or higher phenols such as ethane, phenol novolak, o-cresol novolak, and halogenated bisphenols such as tetrabromobisphenol A and bromophenol novolak. These may be used alone or in combination of two or more. A bifunctional bisphenol type epoxy resin having a relatively large epoxy equivalent is preferred for the stability of the resin solution composition and for obtaining a cured product having a low elastic modulus and stress relaxation properties.
[0021]
The compounding quantity of an epoxy resin needs to be 1-50 weight part with respect to 100 weight part of siloxane polyimide polyamic acid copolymer resins, Preferably it is 3-30 weight part. When the compounding amount of the epoxy resin exceeds 50 parts by weight, the stress relaxation characteristics and heat resistance of the cured resin are lowered, and when it is less than 1 part by weight, the chemical resistance is deteriorated.
[0022]
Moreover, in this invention, an epoxy resin hardening | curing agent can also be mix | blended for the purpose of hardening acceleration other than the said siloxane polyimide amic acid copolymer resin and an epoxy resin as needed.
[0023]
The organic solvent used in the present invention is not particularly limited, but may be a single solvent or a mixed solvent in which two or more are used in combination as long as the resin composition can be uniformly dissolved. For example, phenol solvents, amide solvents such as pyrrolidone solvents and acetamide solvents, oxane solvents such as dioxane and trioxane, ketone solvents such as cyclohexanone, and glyme solvents such as methyl diglyme and methyl triglyme A solvent etc. are mentioned. If necessary, aromatic hydrocarbon solvents such as benzene and toluene and aliphatic hydrocarbon solvents such as hexane and decane can be mixed and used as long as they can be uniformly dissolved. The amount of the organic solvent is such that when the total amount of the siloxane polyimide amic acid copolymer resin and the epoxy resin is a solid content, the weight ratio of the solid content to the solvent (solid content / solvent) is (20 to 80) / (80 to 20 And preferably (40-70) / (60-30). When the solvent ratio exceeds 80, it becomes difficult to obtain a cured product having a sufficient thickness. When the solvent ratio is less than 20, the viscosity of the resin solution composition becomes too high and workability is lowered.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The resin solution composition of the present invention can be prepared by the following method.
First, an excess amount of aromatic tetracarboxylic dianhydride with respect to siloxane diamine is dissolved or suspended in an organic solvent in advance, and siloxane diamine is gradually added. The mixture is stirred at a temperature close to room temperature for 2 to 3 hours, then polymerized and imidized for 10 to 24 hours while removing condensed water at a temperature at which imidization can proceed, and a siloxane polyimide oligomer having an acid anhydride at the terminal. Get. The imidation ratio (%) of the siloxane polyimide oligomer is substantially 100% as measured by infrared absorption spectrum analysis, and preferably has no amic acid moiety. Subsequently, after cooling the reaction mixture to near room temperature, an aromatic diamine is added so that the acid anhydride and the total diamine component are in an approximately equimolar amount, and the reaction is carried out at a temperature at which imidization does not proceed. A polymerized resin solution is obtained. Next, the resin solution composition of the present invention is obtained by uniformly dissolving the epoxy resin in the polyimide polyamic acid copolymer resin solution.
[0025]
Here, the organic solvent used for the reaction is not particularly limited, and the above-mentioned organic polar solvent may be used. However, due to the problem of shortening the reaction time and dissipation of the solvent, a solvent having a boiling point of 150 ° C. or higher may be used. In particular, an organic polar solvent (for example, methyltriglyme) having a temperature of 200 ° C. or higher is most preferable.
[0026]
In addition to the above-mentioned components, the resin solution composition of the present invention appropriately contains conventionally known curing accelerators, coupling agents, fillers, pigments, thixotropic agents, antifoaming agents and the like as necessary. May be.
[0027]
【Example】
Hereinafter, the present invention will be described in detail by way of examples. In addition, the characteristic evaluation of the resin solution composition was performed by the following matters and evaluation methods.
[0028]
[Solder heat resistance]
The resin solution composition prepared in each composition was cast on a roughened copper surface of a 18 μm thick copper foil (0.5 ounce rolled foil manufactured by Mitsui Kinzoku Co., Ltd.) so that the film thickness after heat treatment was 15 to 20 μm. Then, after preliminary drying at 130 ° C. for 15 minutes, heat treatment is performed at 180 ° C. for 30 minutes to form a coating film. Prepare a 1cm x 2cm coated foil and immerse it in a molten solder bath adjusted to 300 ° C for 60 seconds. The heat resistance of the solder was evaluated with x indicating that the change occurred.
[0029]
[Elastic modulus]
The resin solution composition prepared in each composition was cast on a copper foil of 35 μm thickness (manufactured by Mitsui Kinzoku Co., Ltd., 1 ounce rolled foil) so that the film thickness after heat treatment was 15 to 20 μm, and 130 ° C. After 15 minutes of preliminary drying, heat treatment is performed at 180 ° C. for 30 minutes to produce a coating film. The copper foil on which the film was formed was completely removed with an etching solution, and then a 12.5 cm x 20 cm film test piece was prepared and attached to a tensile tester (Toyo Seiki Co., Ltd., STROGRAPH-R1), with a load of 100 kg The elastic modulus was measured at a pulling speed of 5 mm / min.
[0030]
[Logarithmic viscosity]
The logarithmic viscosity as a measure of the molecular weight of the siloxane polyimide amic acid copolymer resin is obtained by uniformly dissolving the siloxane polyimide amic acid copolymer resin in methyl diglyme, preparing a solution with a concentration of 0.5 g / 100 ml, and using an Ubbelohde viscometer. The solution viscosity and the viscosity of methyl diglyme were measured at 30 ° C. and calculated by the following formula.
Logarithmic viscosity = In (solution viscosity / solvent viscosity) / solution concentration
[Solution viscosity]
The viscosity of the resin solution composition prepared for each composition was measured at 25 ° C. with a B-type viscometer.
[0032]
[Acetone-soluble matter]
The resin solution composition prepared in each composition was cast on a copper foil of 35 μm thickness (manufactured by Mitsui Kinzoku Co., Ltd., 1 ounce rolled foil) so that the film thickness after heat treatment was 15 to 20 μm, and 130 ° C. Was pre-dried for 15 minutes and then heat-treated at 180 ° C. for 30 minutes to prepare a coating film. The copper foil on which the film was formed was completely stripped of copper with an etching solution, and then a 10 cm x 10 cm film was prepared and immersed in an acetone solution at 25 ° C for 30 minutes. did.
[0033]
[Dielectric constant]
Cast a resin solution composition prepared for each composition on a roughened copper surface of a 35μm thick copper foil (Mitsui Kinzoku Co., Ltd., 1 ounce rolled foil) so that the film thickness after heat treatment is 40-50μm. Then, after preliminary drying at 130 ° C. for 15 minutes, heat treatment was performed at 180 ° C. for 30 minutes to prepare a coating film. On the prepared coating film, the copper roughened surface of the same type of copper foil was thermocompression bonded at a temperature of 200 ° C. and a pressure of 40 kgf / cm 2 for 1 hour to prepare a double-sided copper-clad laminate. Next, a double-sided copper-clad laminate was circuit processed according to the IPC-TM650.2.5.5A standard to produce a dielectric constant measurement test piece, which was attached to an impedance analyzer, and a dielectric constant of 1 Mhz was measured.
[0034]
Production Example 1
A Dean-Shyurark type reactor equipped with a stirrer and a nitrogen introduction tube was charged with 39.6 g (0.110 mol) of bis (3,4-dicarboxyphenyl) sulfone dianhydride and 118 g of triglyme under a nitrogen atmosphere. 71.4 g (p = 8,0.093 mol) of ω, ω′-bis (3-aminopropyl) polydimethylsiloxane was added dropwise using a dropping funnel and stirred at room temperature for about 2 hours. Subsequently, the reaction solution was heated to 190 ° C. under a nitrogen atmosphere, and stirred for 15 hours while removing water. The reaction solution was then cooled to room temperature, 7.1 g (0.017 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane was added, and the reaction solution was stirred at room temperature under a nitrogen atmosphere. Was stirred at room temperature for about 5 hours to obtain a siloxane polyimide amic acid copolymer resin solution having a solid content of 51 parts by weight. The logarithmic viscosity (temperature 30 ° C., concentration 0.5 g / 100 ml) of the obtained siloxane polyimide amic acid copolymer resin was 0.26.
[0035]
Production Example 2
A Dean-Shyurark reactor equipped with a stirrer and a nitrogen inlet tube was charged with 39.6 g (0.110 mol) of bis (3,4-dicarboxyphenyl) sulfone dianhydride and 120 g of triglyme under a nitrogen atmosphere. 76.3 g (p = 8,0.099 mol) of ω, ω′-bis (3-aminopropyl) polydimethylsiloxane was added dropwise using a dropping funnel and stirred at room temperature for about 2 hours. Subsequently, the reaction solution was heated to 190 ° C. in a nitrogen atmosphere, and stirred for 15 hours while removing water. Next, the reaction solution was cooled to room temperature, 4.5 g (0.011 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane was added, and the reaction solution was stirred at room temperature under a nitrogen atmosphere. Was stirred at room temperature for about 5 hours to obtain a siloxane polyimide amic acid copolymer resin solution having a solid content of 51 parts by weight. The logarithmic viscosity (temperature 30 ° C., concentration 0.5 g / 100 ml) of the obtained siloxane polyimide amic acid copolymer resin was 0.23.
[0036]
Production Example 3
A reactor equipped with a stirrer and a nitrogen introduction tube was charged with 39.6 g (0.110 mol) of bis (3,4-dicarboxyphenyl) sulfone dianhydride and 118 g of triglyme, and ω, ω'- Bis (3-aminopropyl) polydimethylsiloxane (71.4 g, p = 8,0.093 mol) was added dropwise using a dropping funnel and stirred at room temperature for about 5 hours. Next, 7.1 g (0.017 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane was added to the reaction solution, and the reaction solution was stirred at room temperature under a nitrogen atmosphere at room temperature. The mixture was stirred for a time to obtain a siloxane polyamic acid copolymer resin solution having a solid content concentration of 50 parts by weight. The logarithmic viscosity (temperature 30 ° C., concentration 0.5 g / 100 ml) of the obtained siloxane polyamic acid copolymer resin was 0.27.
[0037]
Example 1
Into a 500 ml reactor, 100 g of the siloxane polyimide amic acid copolymer resin solution obtained in Production Example 1 and 4.1 g of bisphenol A type epoxy resin (manufactured by Toto Kasei Co., Ltd., YD-011, epoxy equivalent = 476) were charged. Stir and mix until uniform at room temperature to obtain a resin solution composition. Using this resin solution composition, a storage stability test, elastic modulus measurement, solder heat resistance test, chemical resistance test and dielectric constant measurement were performed. Even when this resin solution composition was allowed to stand at room temperature for 1 week, it maintained a uniform solution state and viscosity. Moreover, even if it was allowed to stand for 3 months at 5 ° C. or less, almost no change in viscosity was observed.
[0038]
Example 2
Into a 500 ml reactor, 100 g of the siloxane polyimide amic acid copolymer resin solution obtained in Production Example 1 and 8.2 g of bisphenol A type epoxy resin (manufactured by Tohto Kasei Co., Ltd., YD-014, epoxy equivalent = 956) were charged. Stir and mix until uniform at room temperature to obtain a resin solution composition. Using this resin solution composition, a storage stability test, elastic modulus measurement, solder heat resistance test, chemical resistance test and dielectric constant measurement were performed. Even when this resin solution composition was allowed to stand at room temperature for 1 week, it maintained a uniform solution state and viscosity. Moreover, even if it was allowed to stand for 3 months at 5 ° C. or less, almost no change in viscosity was observed.
[0039]
Example 3
A 500 ml reactor was charged with 100 g of the siloxane polyimide amic acid copolymer resin solution obtained in Production Example 2 and 4.1 g of bisphenol A type epoxy resin (YD-011, epoxy equivalent = 476, manufactured by Tohto Kasei Co., Ltd.) Stir and mix until uniform at room temperature to obtain a resin solution composition. Using this resin solution composition, a storage stability test, elastic modulus measurement, solder heat resistance test, chemical resistance test and dielectric constant measurement were performed. Even when this resin solution composition was allowed to stand at room temperature for 1 week, it maintained a uniform solution state and viscosity. Moreover, even if it was allowed to stand for 3 months at 5 ° C. or less, almost no change in viscosity was observed.
[0040]
Comparative Example 1
Except that no epoxy resin was used, the same procedure as in Example 1 was performed, and a storage stability test, an elastic modulus measurement, a solder heat resistance test, a chemical resistance test, and a dielectric constant measurement were performed. As a result, this resin solution composition was extremely poor in chemical resistance and was almost completely dissolved in acetone.
[0041]
Comparative Example 2
A 500 ml reactor was charged with 100 g of the siloxane polyamic acid copolymer resin solution obtained in Production Example 3 and 4.1 g of bisphenol A type epoxy resin (YD-011, epoxy equivalent = 476, manufactured by Tohto Kasei Co., Ltd.) at room temperature. The mixture was stirred and mixed until uniform to obtain a resin solution composition. Using this resin solution composition, a storage stability test, elastic modulus measurement, solder heat resistance test, chemical resistance test and dielectric constant measurement were performed. When this resin solution composition was allowed to stand at room temperature for 1 week, it showed a marked decrease in viscosity. In addition, a significant decrease in viscosity was observed even at a temperature of 5 ° C. or lower.
[0042]
Table 1 shows the composition of the resin solution compositions of the above Examples and Comparative Examples and the results of storage stability test, elastic modulus measurement, solder heat resistance test, chemical resistance test, and dielectric constant measurement. Here, the elastic modulus measurement, chemical resistance test and dielectric constant measurement are performed on the day [0day] when the resin solution composition is manufactured, and the solution viscosity measurement and solder heat resistance are measured on the day [0day] when the resin solution composition is manufactured. After 90 days of storage at 5 ° C., measurement was performed [90 days].
[0043]
[Table 1]
Figure 0003689518
[0044]
【The invention's effect】
The resin solution composition for electronic materials of the present invention is excellent in storage stability and can be cured at a low temperature of 180 ° C. or lower, and when cured, it has excellent heat resistance, high frequency characteristics, chemical resistance, stress relaxation characteristics, and the like. A cured product is obtained. Therefore, the resin solution composition for an electronic material of the present invention is, for example, an interlayer insulating film or a surface protective film for wiring components such as a printed circuit board, a die bonding agent for a semiconductor package, a liquid sealant, and a heat resistant adhesive for other electronic materials. Can be suitably used.

Claims (4)

芳香族テトラカルボン酸二無水物とシロキサンジアミンを重縮合させてなるイミド部位及び芳香族テトラカルボン酸二無水物とシロキサンジアミン以外の芳香族ジアミン成分を重付加させてなるアミック酸部位を有する下記一般式(1)で表わされるシロキサンポリイミドアミック酸共重合樹脂100重量部とエポキシ樹脂1〜50重量部とを有機溶媒に溶解してなる電子材料用樹脂溶液組成物。
Figure 0003689518
(式中、Xは芳香族テトラカルボン酸二無水物残基を、Yはシロキサンジアミン残基を、Zは芳香族ジアミン残基を、l及びmはそれぞれ独立に整数を、nは1以上の数を示す)
An imide moiety formed by polycondensation of an aromatic tetracarboxylic dianhydride and a siloxane diamine and an amic acid moiety formed by polyaddition of an aromatic tetracarboxylic dianhydride and an aromatic diamine component other than a siloxane diamine A resin solution composition for electronic materials obtained by dissolving 100 parts by weight of a siloxane polyimide amic acid copolymer resin represented by the formula (1) and 1 to 50 parts by weight of an epoxy resin in an organic solvent.
Figure 0003689518
Wherein X is an aromatic tetracarboxylic dianhydride residue, Y is a siloxane diamine residue, Z is an aromatic diamine residue, l and m are each independently an integer, and n is 1 or more. Number)
シロキサンジアミンが、下記一般式(2)で表わされ、シロキサンジアミンと芳香族ジアミンのモル比が、30/70〜99/1である請求項1記載の電子材料用樹脂溶液組成物。
Figure 0003689518
(式中、R1 及びR2 は二価の炭化水素基を、R3 〜R6 はそれぞれ炭素数1〜6の炭化水素基を、pは1〜30の整数を示す)
The resin solution composition for electronic materials according to claim 1, wherein the siloxane diamine is represented by the following general formula (2), and the molar ratio of the siloxane diamine and the aromatic diamine is 30/70 to 99/1.
Figure 0003689518
(In the formula, R 1 and R 2 represent a divalent hydrocarbon group, R 3 to R 6 each represent a hydrocarbon group having 1 to 6 carbon atoms, and p represents an integer of 1 to 30)
一般式(2)で表わされるシロキサンジアミンの平均繰り返し単位(p)が、1〜12であり、かつシロキサンジアミンと芳香族ジアミンのモル比が、50/50〜99/1である請求項2記載の電子材料用樹脂溶液組成物。The average repeating unit (p) of the siloxane diamine represented by the general formula (2) is 1 to 12, and the molar ratio of the siloxane diamine to the aromatic diamine is 50/50 to 99/1. A resin solution composition for electronic materials. シロキサンポリイミドアミック酸共重合樹脂の対数粘度が、0.08〜1.2である請求項1乃至3のいずれかに記載の電子材料用樹脂溶液組成物。The resin solution composition for electronic materials according to any one of claims 1 to 3, wherein the logarithmic viscosity of the siloxane polyimide amic acid copolymer resin is 0.08 to 1.2.
JP03371497A 1997-02-18 1997-02-18 Resin solution composition for electronic materials Expired - Fee Related JP3689518B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03371497A JP3689518B2 (en) 1997-02-18 1997-02-18 Resin solution composition for electronic materials
TW087102185A TW593543B (en) 1997-02-18 1998-02-17 Resin solution composition for electronic materials and use thereof
KR10-1998-0004987A KR100494349B1 (en) 1997-02-18 1998-02-18 Resin solution compositions for electronic materials and protective membrane prepared therefrom for circuits in printed wiring boards
US09/025,629 US5916688A (en) 1997-02-18 1998-02-18 Resin solution compositions for electronic materials and protective membranes prepared therefrom for circuits in printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03371497A JP3689518B2 (en) 1997-02-18 1997-02-18 Resin solution composition for electronic materials

Publications (2)

Publication Number Publication Date
JPH10231424A JPH10231424A (en) 1998-09-02
JP3689518B2 true JP3689518B2 (en) 2005-08-31

Family

ID=12394086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03371497A Expired - Fee Related JP3689518B2 (en) 1997-02-18 1997-02-18 Resin solution composition for electronic materials

Country Status (4)

Country Link
US (1) US5916688A (en)
JP (1) JP3689518B2 (en)
KR (1) KR100494349B1 (en)
TW (1) TW593543B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950560B2 (en) * 1998-08-14 2007-08-01 株式会社巴川製紙所 Adhesive for electronic parts and adhesive tape for electronic parts
KR100332948B1 (en) * 1999-05-18 2002-04-18 김충섭 Novel tetracarboxylic dianhydrides, tetracarboxylic acid, tetracarboxylic acid dialkyl ester and methods for preparing them
JP3441412B2 (en) * 1999-10-29 2003-09-02 シャープ株式会社 Resin-sealed semiconductor device and liquid crystal display module using the same
EP1481796B1 (en) 2002-03-05 2015-08-19 Hitachi Chemical Co., Ltd. Metal foil with resin and metal-clad laminate, and printed wiring board using the same and method for production thereof
JP4067869B2 (en) * 2002-05-13 2008-03-26 新日鐵化学株式会社 Siloxane-modified polyimide resin
US7220490B2 (en) * 2003-12-30 2007-05-22 E. I. Du Pont De Nemours And Company Polyimide based adhesive compositions useful in flexible circuit applications, and compositions and methods relating thereto
CN100569857C (en) 2004-02-20 2009-12-16 宇部兴产株式会社 Polyimidesiloxane solution composition
KR100646248B1 (en) * 2004-05-04 2006-11-23 주식회사 엘지화학 The Preparation Method of 2-Layer Copper Clad Laminate
TWI306874B (en) * 2005-08-24 2009-03-01 Thinflex Corp Polyimide for producing cast-on-copper laminate and method for producing thereof
JP4872335B2 (en) * 2005-12-19 2012-02-08 宇部興産株式会社 Wiring board mounting method
JP4961972B2 (en) * 2006-03-09 2012-06-27 Jnc株式会社 Insulating layer forming composition and insulating film
KR101064816B1 (en) * 2009-04-03 2011-09-14 주식회사 두산 Polyamic acid solution, polyimide resin and flexible metal clad laminate using the same
TWI415878B (en) * 2011-02-10 2013-11-21 Chin Yee Chemical Industres Co Ltd Transparent polyimide siloxane, a method for producing the same, and a film thereof
JP6278817B2 (en) * 2014-04-24 2018-02-14 Jfeケミカル株式会社 Polyamic acid composition and polyimide composition
TWI814694B (en) * 2015-06-22 2023-09-11 日商味之素股份有限公司 Resin composition for mold sealing bottom filling
WO2020243834A1 (en) * 2019-06-04 2020-12-10 Mcmaster University Catalyst free silicone cure
CN113717525A (en) * 2021-09-01 2021-11-30 大同共聚(西安)科技有限公司 Preparation method of silicon-containing polyimide resin solution composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813088B2 (en) * 1981-02-27 1983-03-11 日東電工株式会社 Method for producing siloxane-modified polyimide precursor
JPS5813631A (en) * 1981-07-16 1983-01-26 Hitachi Chem Co Ltd Preparation of siloxane-bond-containing polyhydrazide acid-amide acid and polyhydradiimide-siloxane-type copolymer resin
JPS62242393A (en) * 1986-04-14 1987-10-22 旭化成株式会社 Flexible printed wiring board and manufacture of the same
US5252703A (en) * 1990-06-01 1993-10-12 Ube Industries, Ltd. Polyimidosiloxane resin and composition thereof and method of applying same
US5677383A (en) * 1991-10-15 1997-10-14 The Dow Chemical Company Fabricated articles made from ethylene polymer blends
EP0553612B1 (en) * 1992-01-07 1996-08-21 Hitachi Chemical Co., Ltd. Polyimides, thermosetting resin compositions containing the polyimides, formed articles of the resin compositions, and production process of the polyimides
US5643986A (en) * 1995-03-17 1997-07-01 Ube Industries, Ltd. Polyimidosiloxane compositions

Also Published As

Publication number Publication date
KR19980071471A (en) 1998-10-26
US5916688A (en) 1999-06-29
JPH10231424A (en) 1998-09-02
TW593543B (en) 2004-06-21
KR100494349B1 (en) 2005-10-24

Similar Documents

Publication Publication Date Title
JP3689518B2 (en) Resin solution composition for electronic materials
JP3136942B2 (en) Polyimide siloxane composition
JP3063935B2 (en) Polyimide siloxane composition having adhesiveness, heat resistance and curl resistance
JP3243963B2 (en) Polyimide siloxane composition
JP3961670B2 (en) Siloxane-modified polyimide resin composition and cured product thereof
JP2998858B2 (en) Heat resistant resin adhesive
JP2943953B2 (en) Heat resistant adhesive
JP2805741B2 (en) Heat resistant adhesive composition
JP2952868B2 (en) Heat resistant adhesive
JP2001262116A (en) Adhesive polyimide resin for electronic component
JP3039818B2 (en) Heat resistant adhesive
JP4067869B2 (en) Siloxane-modified polyimide resin
JP3031322B2 (en) Heat resistant resin adhesive sheet and substrate
JP3275723B2 (en) Polyimide siloxane composition
JP3356096B2 (en) Polyimide siloxane used as an essential component of adhesives
JP3872355B2 (en) Method for producing polyimide resin solution, cured product thereof and flexible carrier package
JP3031064B2 (en) Heat resistant adhesive
JP3031020B2 (en) Heat resistant resin adhesive
JPH11228825A (en) Siloxane-modified polyimide-based resin solution composition and its cured product
JP3050456B2 (en) Heat resistant resin adhesive
JP4749606B2 (en) Epoxy group-containing polyimide copolymer and cured product thereof
JP3275722B2 (en) Polyimide siloxane composition
JP3111441B2 (en) Substrate for printed wiring board
JPH07258410A (en) Polyimide-siloxane
JP2998865B2 (en) Heat resistant adhesive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees