JP3683054B2 - Water-based rectification equipment - Google Patents

Water-based rectification equipment Download PDF

Info

Publication number
JP3683054B2
JP3683054B2 JP30884396A JP30884396A JP3683054B2 JP 3683054 B2 JP3683054 B2 JP 3683054B2 JP 30884396 A JP30884396 A JP 30884396A JP 30884396 A JP30884396 A JP 30884396A JP 3683054 B2 JP3683054 B2 JP 3683054B2
Authority
JP
Japan
Prior art keywords
rectification
shelf
low
porous membrane
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30884396A
Other languages
Japanese (ja)
Other versions
JPH10148417A (en
Inventor
邦夫 野畑
定和 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Tokyo Gas Co Ltd
Original Assignee
Takuma KK
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK, Tokyo Gas Co Ltd filed Critical Takuma KK
Priority to JP30884396A priority Critical patent/JP3683054B2/en
Publication of JPH10148417A publication Critical patent/JPH10148417A/en
Application granted granted Critical
Publication of JP3683054B2 publication Critical patent/JP3683054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アンモニア吸収冷凍機、アルコール精留等に用いられる水系精留装置に関し、より詳細には、滞留する還流液へ下方から蒸気の流入を許容する底面部と、上方から還流液を流入させる流入部と、下方へ滞留する前記還流液を流下させる流出部とを有し、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させる棚段部を、精留塔内に多段に設けて低沸点成分水溶液から低沸点成分を精留する水系精留装置に関する。
【0002】
【従来の技術】
従来のアンモニア吸収冷凍サイクルとしては、図1に示すようなものが一般的である。即ち、圧力Pe下で蒸発器1内において蒸発したアンモニア蒸気は、吸収器2で蒸発圧力Peに維持するようにアンモニア水溶液に吸収される。その際発生する吸収熱は外部へ冷却水等により放出する。アンモニア蒸気を吸収して強溶液(アンモニアを吸収してアンモニア濃度が高まった溶液)となった溶液は、ポンプPによって発生器3に送られる。ここで圧力Pc下で外部の熱源によって加熱され、冷媒のアンモニアと吸収剤の水との沸点差があまり大きくないので水分を含んだアンモニア蒸気を発生する。この蒸気は精留塔4ならびに分縮器5に入り、アンモニア濃度約99.8%以上に精製して濃度を高めてから、凝縮器6に入り冷却水等により冷却液化させて高純度のアンモニア液(冷媒液)にする。この冷媒液は膨張弁7を経て、蒸発器1に入り蒸発し外部の熱負荷を冷却する。
【0003】
冷媒液のアンモニア濃度を約99.8%以上にする必要性は、これが冷凍機の効率を大きく左右するからである。例えば濃度100%のアンモニアの場合、冷媒は蒸発器において等温、等圧で蒸発し、完全に蒸発を終えるが、水分が混在すると等圧蒸発は続くが、水を含んだアンモニアは沸点上昇を起こし、伝熱の温度差が小さくなり蒸発器の熱交換量が減少する。またアンモニアと水は完全に溶解しており有効に冷媒の蒸発潜熱を利用しないで、一部分は未蒸発のまま蒸発器より出てしまい、冷凍サイクル上の冷凍効果を損なうために、冷媒蒸気の精留は必要不可欠である。図2は、冷媒中の水分濃度による冷却動作係数への影響を具体的に示したものである。
【0004】
【発明が解決しようとする課題】
上記のサイクルにおいて、精留塔内で蒸発が生じる際、加熱により液体内部に蒸発泡や蒸気塊が発生し、液面上ならびにその液面の近傍部で蒸気の気泡が破裂する。その際、発生する液滴は、図3で示すような微小粒径(約20μm)の液滴と比較的粒径(約480μm)の大きい液滴のピークを有する粒径分布になる。
【0005】
未蒸発分の不純物を含んだ液滴(ミスト)が高純度成分の蒸気中に同伴すると、その蒸気を凝縮して得られる液体の純度は低下するため、このミストの飛沫同伴は蒸発面上部の空間(以下「フリーボード部」という)を上昇する蒸気速度を次式で求める粒子の終末速度(Vt:m/sec)以下に押さえる必要がある。
Vt=(4×g×Dp×(ρp−ρ)/(3×ρ×C)0.5
ただし、Dp:ミストの粒径(m),g:重力加速度(m/sec2),
ρp:ミストの密度(kg/m3),ρ:蒸気の密度(kg/m3),
C :抵抗係数
【0006】
また、粒子ミストの蒸気中に同伴する以外に、液面上での気泡破裂の際にミストが飛び跳ね現象を生じて、上段に不純物が搬送されることがある。これを防止すべく、フリーボード部の口径ならびに高さ、精留塔の段数を多くして対応しているが、装置の小型化を計る目的で反転分離やワイヤメッシュ等によるデミスターを採用する。しかし、このようなデミスターでは、大きなミストは容易に分離可能であるが、微細なミストは質量が小さく慣性力が小さいために、ガスの気流中に乗り衝突の確率が少なく分離が非常に困難であり、フリーボード部の高さ、精留塔の段数をある程度大きくしなければならず、装置の小型化を阻んでおり、特に背の高い精留塔とならざるをえない。
【0007】
一方、アンモニアは高圧ガス取締法で毒性ならびに可燃性ガスに指定されており、安全対策上、装置内の冷媒(アンモニア)充填量を最小限に抑え、かつ製作上の品質管理を高めるために、現地作業を極力やめて工場でのパッケージ製品化を必要としている。しかし、前記のように精留器のみによって製品の高さが制約されており、輸送上の理由から完全なパッケージ化を困難としている。
【0008】
また、図4のように精留塔の代表的なトレイ(棚段部)は、多孔板型と泡鐘型の二種類がある。前者は構造が簡単であるが安全操作範囲が狭く、後者は構造が複雑でコスト高であるが広範囲にわたって安定した運転が得られるために長年利用されてきた。これらの欠点を補うような各種のトレイが考案されているものの一長一短である。
精留塔の運転上の挙動は、原料供給量や還流比を変化すると精留塔内の液量、蒸気量も変化し、蒸気量を極端に減ずると、多孔板型では液漏れ(ウィーピング)現象が起こり、また蒸気量が極端に増加すると、棚段上の液が塔頂(フリーボード)部に押し上げられるフラッディング現象が見られる。図5にこの関係を示した。ウィーピング(チャネリング)は蒸気量の下限値(A点)をフラッディングはその上限値(B点)を示し、これらの間の領域が精留塔を安定した状態で運転できる範囲(安定操作範囲)を示している。
また、精留塔のトレイは、気液混合を良く混合するようにバブリングの気泡サイズを出来るだけ小さくして気液接触効率を高め、飛沫同伴を最小にして、広範囲にわたる運転条件下で対応可能、かつ低コストのものが望まれている。
【0009】
なお、上記のようなミスト飛沫同伴による精留効率の低下、安定操作範囲の問題は、アンモニア吸収冷凍機に用いられる精留装置に限られる問題でなく、アルコール蒸留やアンモニア蒸留等に用いられる各種の精留装置に広く関係する問題である。
【0010】
従って、本発明の目的は、ミスト飛沫同伴防止し、精留効率を高めて小型化が可能で、更に低負荷時で発生する液漏れ(ウィーピング)現象を抑制し広範囲にわたって安定した運転を可能にする水系精留装置を提供することにある。
【0011】
【課題を解決するための手段】
この目的を達成するための本発明の特徴構成は、滞留する還流液へ下方から蒸気の流入を許容する底面部と、上方から還流液を流入させる流入部と、下方へ滞留する前記還流液を流下させる流出部とを有し、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させる棚段部を、精留塔内に多段に設けて低沸点成分水溶液から低沸点成分を精留する水系精留装置において、
多段に設けられた前記棚段部の間の空間を上下に仕切る位置に疎水性多孔膜を配設してある点、又は
多段に設けられた前記棚段部の底面部に疎水性多孔膜を配設してある点にある。
後者の場合、前記棚段部の底面部が、支持体上に支持された疎水性多孔膜で構成されていることが、後述の作用効果より好ましい。
【0012】
また、前記疎水性多孔膜が、ポリ(テトラフルオロエチレン)、ポリ(トリフルオロエチレン)、ポリ(クロロトリフルオロエチレン)、ポリエチレン、及びポリプロピレンからなる群より選ばれる1種以上よりなるものであることが、後述の作用効果より好ましい。
【0013】
更に、本発明の水系精留装置は、前記低沸点成分がアンモニアであり、アンモニア吸収冷凍機のアンモニア精留装置として用いられるものであることが、後述の作用効果より好ましい。
【0014】
〔作用効果〕
つまり、多段に設けられた前記棚段部の間の空間を上下に仕切る位置に疎水性多孔膜を配設することにより、あるいは多段に設けられた前記棚段部の底面部に疎水性多孔膜を配設することにより、疎水性多孔膜が純度の低いミスト(液滴)の透過を妨げる一方で、純度の高い蒸気成分のみを透過させるため、その蒸気を凝縮して得られる液体の純度も高くなるため、精留装置全体の精留効率を高めることができる。また、疎水性多孔膜そのものは、厚みが小さいため設置スペースをとることもなく、従来問題であった液滴の飛び跳ねによる純度低下も防止でき、また蒸気速度を大きくして能力を高めることができるため、フリーボード部の高さや段数を大きくする必要もなく、精留塔の高さを低くして小型化することができる。また、フラッディングについては疎水性多孔膜が、上側の棚段に滞留液が押し上がるのを防止することにより、フラッディングを起こりにくくすることができる。
【0015】
前記棚段部の底面部を、支持体上に支持された疎水性多孔膜で構成する場合、疎水性多孔膜が還流液を透過させない性質を有するため、棚段部に滞留する還流液が疎水性多孔膜を透過して下方へ落下する事がなく、蒸気量を極端に減じても液漏れ(ウィーピング)現象が起こらない。また、蒸気は疎水性多孔膜を透過することにより比較的均一に分散し非常に小さな気泡を発生して、高い気液接触効率が得られ、滞留液への未溶解の蒸気の通過による純度の低下を防止することができる。
【0016】
前記疎水性多孔膜を、ポリ(テトラフルオロエチレン)、ポリ(トリフルオロエチレン)、ポリ(クロロトリフルオロエチレン)、ポリエチレン、及びポリプロピレンからなる群より選ばれる1種以上よりなるもので構成する場合、これらは室温における水との接触角が90°以上と大きく、ミスト(液滴)の透過を妨げつつ蒸気成分のみを透過させる能力が特に高いため、本発明の上記の作用効果がより顕著に得られる。
【0017】
なお、本発明の水系精留装置をアンモニア吸収冷凍機に用いる場合、前述のような高純度化の要請や小型化の要請に応えることができ、特に好ましい実施形態となる。
【0018】
【発明の実施の形態】
本発明の水系精留装置は、滞留する還流液へ下方から蒸気の流入を許容する底面部と、上方から還流液を流入させる流入部と、下方へ滞留する前記還流液を流下させる流出部とを有し、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させる棚段部を、精留塔内に多段に設けて低沸点成分水溶液から低沸点成分を精留するものである。
かかる精留装置は、棚段部で滞留する還流液から、還流液組成より高い低沸点成分濃度の蒸気を発生させて、上段の棚段部で滞留する還流液に前記底面部を介して溶解(吸収)させることにより、上段ほど高い低沸点成分濃度の還流液組成にして、塔頂部より高純度の低沸点成分蒸気を留出させるものであり、還流液と上昇蒸気との間でこのような物質移動と熱移動を繰り返しながら、低沸点成分水溶液から低沸点成分を精留する機能を有する。従って、このような機能を有する多段式の精留塔を具備するものであれば、いずれの構造のものにも本発明は適用可能であり、段数や塔の形状などは特に限定されない。
【0019】
棚段部は、多孔板式や泡鐘式などが挙げられるが、コストを考慮すると多孔板式が好ましく、特に好ましいのは、前述のように棚段部の底面部が支持体上に支持された疎水性多孔膜で構成されているものである。
【0020】
精留塔の塔頂部には、分縮器で凝縮した低沸点成分の一部が還流されるが、この液量(還流比)を調整することにより、低沸点成分の純度、分離効率等が調整できる。
【0021】
精留塔の底部には蒸発手段が設けられるが、通常は外部にリボイラーが設けられて、蒸発させた蒸気を精留塔内に供給すると共に、未蒸発成分を缶出液として排出する構造等となっている。アンモニア吸収冷凍機に用いられる場合、精留塔の底部には蒸発缶が設けられて、蒸気が精留塔内に上昇すると共に、未蒸発成分を吸収器に供給する構造等となっている(図1参照)。このとき、缶出液により原液を予熱する熱交換器を設けてもよい。
【0022】
本発明の水系精留装置は、上記において、多段に設けられた前記棚段部の間の空間を上下に仕切る位置に疎水性多孔膜を配設してあるか、あるいは多段に設けられた前記棚段部の底面部に疎水性多孔膜を配設してあるものである。
【0023】
用いられる疎水性多孔膜としては、前述のようにポリ(テトラフルオロエチレン)、ポリ(トリフルオロエチレン)、ポリ(クロロトリフルオロエチレン)、ポリエチレン、及びポリプロピレンからなる群より選ばれる1種以上よりなるものが、その溌水性のため好ましいが、室温における水との接触角が60°以上の材質(樹脂等)のものであれば使用可能である。
【0024】
また、疎水性多孔膜の孔径は、蒸気をある程度以上透過させ、ミスト成分を透過させない程度であればよく、具体的にはその溌水性にもよるが、0.001〜数百μm程度である。
上記のように、高い撥水性と同時に気体の通過性を有している疎水性多孔膜は、各種市販されているが、ポリテトラフロロエチレンのパウダーを押し固めたのち特定の条件下で急速に延伸し、孔径0.02〜15μm、気孔率25〜95%からなる疎水性多孔膜(商品名ゴアテック、)は、特に高い撥水性と同時に気体の通過性を有しているため、本発明に好適に用いられる。
【0025】
この疎水性多孔膜の配置の仕方を具体的に示したのが、図6及び図7であり、以下、図面を参照しつつ各実施形態について説明する。
【0026】
図6に示す精留塔は、多段に設けられた棚段部11の間の空間を上下に仕切る位置に疎水性多孔膜12を配設してあるものである。棚段部11は、滞留する還流液へ下方から蒸気の流入を許容する底面部11aと、上方から還流液を流入させる流入部11bと、下方へ滞留する前記還流液を流下させる流出部11cとを有し、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させる。本実施形態では疎水性多孔膜12を傾斜させて配置しているが、これは付着した液滴を一方側に効率よく流下させるためである。また、疎水性多孔膜12は必要に応じて支持体で支持すればよい。
このように、精留塔の蒸発液面上部のフリーボード部に配置することにより、流体をこの膜を通過させることにより、流体に含まれているミストならびに跳ね上がりによる液滴を阻止し蒸気のみ上段部へ流れ、背の低いフリーボードで高い精留効率が得られる。
【0027】
図7に示す精留塔は、多段に設けられた棚段部11の底面部に疎水性多孔膜12を配設してあるものであり、前記底面部11aが、支持体上(例えば金網等)に支持された疎水性多孔膜12で構成されている。棚段部11は、上記と同様に滞留する還流液へ下方から蒸気の流入を許容する底面部11aと、上方から還流液を流入させる流入部11bと、下方へ滞留する前記還流液を流下させる流出部11cとを有し、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させる。
このように疎水性多孔膜を配置することにより、下段から不純物を含んだミストならびに液滴の混入を防止できるほか、蒸気は膜を透過することにより比較的均一に分散し非常に小さな気泡を発生して、高い気液接触効率が得られる。かつ蒸気流量が極度に低下した際、従来の多孔板では孔から液が下へ流下する現象(ウィーピング)は、この膜は固有の撥水性機能を持っており、この様なウィーピング現象を生ずることなく、広範囲にわたって安定した運転が可能となる。
【0028】
本発明の水系精留装置は、アンモニア吸収冷凍機に用いられる精留装置に限られる問題でなく、アルコール等の低沸点成分の蒸留やアンモニア蒸留等に用いられる各種の精留装置に広く用いることができる。
【図面の簡単な説明】
【図1】アンモニア吸収冷凍サイクルを示す説明図
【図2】冷媒中の水分濃度による冷却成績係数への影響を示したグラフ
【図3】精留塔内で蒸発が生じる際、発生する液滴の粒径分布を示す図
【図4】精留塔の代表的な棚段部を示す模式図
【図5】精留塔の運転挙動を示す説明図
【図6】本発明の一実施形態を示す精留塔の縦断面図
【図7】本発明の一実施形態を示す精留塔の縦断面図
【符号の説明】
11 棚段部
11a 底面部
12 疎水性多孔膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aqueous rectification apparatus used for ammonia absorption refrigerators, alcohol rectification, and the like, and more specifically, a bottom surface portion that allows inflow of steam from below into a recirculating liquid that stays, and a recirculating liquid from above. An inflow part to be flowed and an outflow part to flow down the reflux liquid staying downward, and a stage part for generating steam having a higher low boiling point component concentration from the staying reflux liquid in a rectification column. The present invention relates to an aqueous rectification apparatus for rectifying a low boiling point component from a low boiling point component aqueous solution.
[0002]
[Prior art]
As a conventional ammonia absorption refrigeration cycle, the one shown in FIG. 1 is common. That is, the ammonia vapor evaporated in the evaporator 1 under the pressure Pe is absorbed by the aqueous ammonia solution so as to be maintained at the evaporation pressure Pe by the absorber 2. The absorbed heat generated at that time is released to the outside by cooling water or the like. The solution that has become a strong solution (a solution in which ammonia concentration is increased by absorbing ammonia) by absorbing ammonia vapor is sent to the generator 3 by the pump P. Here, it is heated by an external heat source under pressure Pc, and since the boiling point difference between the refrigerant ammonia and the water of the absorbent is not so large, ammonia vapor containing moisture is generated. This steam enters the rectifying column 4 and the partial condenser 5 and is refined to an ammonia concentration of about 99.8% or more to increase the concentration. Then, the vapor enters the condenser 6 and is cooled and liquefied with cooling water or the like to produce high purity ammonia. Use liquid (refrigerant liquid). This refrigerant liquid enters the evaporator 1 via the expansion valve 7 and evaporates to cool the external heat load.
[0003]
The necessity of setting the ammonia concentration of the refrigerant liquid to about 99.8% or more is because this greatly affects the efficiency of the refrigerator. For example, in the case of 100% concentration of ammonia, the refrigerant evaporates at isothermal and isobaric pressure in the evaporator and completely evaporates. However, when water is mixed, isobaric evaporation continues, but water-containing ammonia raises the boiling point. The temperature difference of heat transfer becomes smaller and the heat exchange amount of the evaporator is reduced. In addition, ammonia and water are completely dissolved and do not effectively use the latent heat of vaporization of the refrigerant. Some of the ammonia and water leave the evaporator without being evaporated, impairing the refrigeration effect on the refrigeration cycle. A stay is essential. FIG. 2 specifically shows the influence of the moisture concentration in the refrigerant on the cooling operation coefficient.
[0004]
[Problems to be solved by the invention]
In the above cycle, when evaporation occurs in the rectification tower, evaporation bubbles and vapor lumps are generated inside the liquid by heating, and vapor bubbles burst on the liquid surface and in the vicinity of the liquid surface. At that time, the generated droplets have a particle size distribution having peaks of a droplet having a small particle size (about 20 μm) and a droplet having a relatively large particle size (about 480 μm) as shown in FIG.
[0005]
If droplets (mist) containing impurities that have not evaporated yet are entrained in the vapor of high purity components, the purity of the liquid obtained by condensing the vapor will decrease, so the entrainment of this mist will occur on the top of the evaporation surface. It is necessary to keep the vapor velocity rising in the space (hereinafter referred to as “free board part”) below the final particle velocity (Vt: m / sec) obtained by the following equation.
Vt = (4 × g × Dp × (ρp−ρ) / (3 × ρ × C) 0.5
Where Dp: particle diameter of mist (m), g: acceleration of gravity (m / sec 2 ),
ρp: density of mist (kg / m 3 ), ρ: density of steam (kg / m 3 ),
C: resistance coefficient
In addition to entraining in the vapor of the particle mist, the mist may jump when the bubbles burst on the liquid surface, and the impurities may be transported to the upper stage. In order to prevent this, the caliber and height of the free board and the number of stages of the rectifying column are increased to cope with this problem. However, in order to reduce the size of the apparatus, a demister such as reverse separation or wire mesh is adopted. However, in such a demister, a large mist can be easily separated, but a fine mist has a small mass and a small inertial force. In addition, the height of the free board section and the number of stages of the rectifying tower must be increased to some extent, which prevents the downsizing of the apparatus, and must be a tall rectifying tower.
[0007]
On the other hand, ammonia is designated as a toxic and flammable gas by the High Pressure Gas Control Law, and for safety measures, to minimize the amount of refrigerant (ammonia) charged in the device, and to improve production quality control, It is necessary to stop the field work as much as possible and make a package product at the factory. However, as described above, the height of the product is limited only by the rectifier, and complete packaging is difficult for transportation reasons.
[0008]
Further, as shown in FIG. 4, there are two types of trays (shelf steps) of the rectification tower: a perforated plate type and a bubble bell type. The former has a simple structure but a narrow safe operating range, and the latter has been used for many years because of its complicated structure and high cost but stable operation over a wide range. There are merits and demerits of various trays designed to compensate for these drawbacks.
The operation behavior of the rectification column is that if the feed rate and the reflux ratio are changed, the amount of liquid and vapor in the rectification column will also be changed. ) When the phenomenon occurs and the amount of steam increases extremely, a flooding phenomenon is observed in which the liquid on the shelf is pushed up to the top (freeboard) part. FIG. 5 shows this relationship. Weeping (channeling) indicates the lower limit of steam volume (point A), and flooding indicates the upper limit (point B). The range between these ranges allows the rectification column to operate stably (stable operating range). Is shown.
In addition, the rectifying column tray can be used under a wide range of operating conditions by minimizing the bubble size of the bubbling to improve gas-liquid mixing to improve gas-liquid contact efficiency and minimize entrainment. In addition, a low cost is desired.
[0009]
In addition, the problem of the rectification efficiency fall by the mist droplet entrainment as mentioned above and the stable operation range is not limited to the rectification apparatus used for the ammonia absorption refrigerator, but various kinds used for alcohol distillation, ammonia distillation, etc. This is a problem widely related to the rectification apparatus.
[0010]
Therefore, the object of the present invention is to prevent entrainment of mist, increase the rectification efficiency and reduce the size, and further suppress the liquid leaking (weeping) phenomenon that occurs at low loads, enabling stable operation over a wide range. It is to provide an aqueous rectification apparatus.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the characteristic configuration of the present invention includes a bottom surface portion that allows inflow of steam from below into the staying reflux liquid, an inflow section through which reflux liquid flows from above, and the reflux liquid staying down. The rectifying column is provided with a multi-stage shelf section for generating steam having a higher low-boiling component concentration from the reflux liquid that has flowed down, and the low-boiling component is purified from the low-boiling component aqueous solution. In the aqueous rectification device
A hydrophobic porous membrane is provided at a position where the space between the shelf steps provided in multiple stages is vertically divided, or a hydrophobic porous membrane is provided on the bottom surface of the shelf steps provided in multiple stages. It is in the point which is arranged.
In the case of the latter, it is more preferable than the effect mentioned later that the bottom face part of the said shelf step part is comprised with the hydrophobic porous membrane supported on the support body.
[0012]
The hydrophobic porous membrane is made of at least one selected from the group consisting of poly (tetrafluoroethylene), poly (trifluoroethylene), poly (chlorotrifluoroethylene), polyethylene, and polypropylene. Is more preferable than the following effects.
[0013]
Furthermore, in the aqueous rectification apparatus of the present invention, the low boiling point component is ammonia, and it is preferable to be used as an ammonia rectification apparatus of an ammonia absorption refrigerating machine from the following effects.
[0014]
[Function and effect]
That is, the hydrophobic porous membrane is disposed at a position that vertically partitions the space between the shelf steps provided in multiple stages, or on the bottom surface of the shelf steps provided in multiple stages. While the hydrophobic porous membrane prevents the transmission of low-purity mists (droplets) while allowing only high-purity vapor components to pass through, the purity of the liquid obtained by condensing the vapor is also low. Since it becomes high, the rectification efficiency of the whole rectification apparatus can be improved. In addition, the hydrophobic porous membrane itself does not take up installation space due to its small thickness, can prevent the drop in purity due to splashing of the droplets, which has been a problem in the past, and can increase the capacity by increasing the vapor velocity. Therefore, it is not necessary to increase the height and the number of stages of the free board section, and the rectification tower can be reduced in height by reducing the height. Further, with respect to flooding, the hydrophobic porous membrane can prevent flooding from being pushed up to the upper shelf, thereby preventing flooding.
[0015]
In the case where the bottom portion of the shelf step is formed of a hydrophobic porous membrane supported on a support, since the hydrophobic porous membrane does not allow permeation of the reflux liquid, the reflux liquid staying on the shelf step is hydrophobic. The liquid does not fall through the porous porous membrane, and even if the amount of vapor is extremely reduced, no liquid leakage (weeping) phenomenon occurs. In addition, vapor permeates through the hydrophobic porous membrane to disperse relatively uniformly and generate very small bubbles, resulting in high gas-liquid contact efficiency and purity due to passage of undissolved vapor into the staying liquid. A decrease can be prevented.
[0016]
When the hydrophobic porous membrane is composed of one or more selected from the group consisting of poly (tetrafluoroethylene), poly (trifluoroethylene), poly (chlorotrifluoroethylene), polyethylene, and polypropylene, Since the contact angle with water at room temperature is as large as 90 ° or more, and the ability to transmit only the vapor component while preventing the transmission of mist (droplets) is particularly high, the above-described effects of the present invention can be obtained more remarkably. It is done.
[0017]
In addition, when using the aqueous | water-based rectification apparatus of this invention for an ammonia absorption refrigerator, it can respond to the request | requirement of high purity as mentioned above, and the request | requirement of size reduction, and becomes an especially preferable embodiment.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The water-based rectification apparatus of the present invention includes a bottom surface portion that allows inflow of steam from below into a staying reflux solution, an inflow portion that allows reflux solution to flow from above, and an outflow portion that causes the reflux solution staying downward to flow down. The shelf part for generating higher vapor having a low boiling point component concentration from the refluxing liquid that is retained is provided in multiple stages in the rectification column to rectify the low boiling point component from the low boiling point component aqueous solution. .
Such a rectifying device generates a low-boiling component concentration vapor higher than the reflux liquid composition from the reflux liquid retained in the shelf, and dissolves the reflux liquid retained in the upper shelf through the bottom surface. (Absorption) is used to make a low-boiling component concentration higher in the reflux liquid composition in the upper stage, and to distill high-purity low-boiling-component vapor from the top of the column. It has a function of rectifying a low boiling point component from a low boiling point component aqueous solution while repeating mass transfer and heat transfer. Therefore, the present invention can be applied to any structure as long as it has a multi-stage rectification tower having such a function, and the number of stages and the shape of the tower are not particularly limited.
[0019]
Examples of the shelf step include a perforated plate type and a bubble bell type, but in consideration of cost, a perforated plate type is preferable, and a hydrophobic portion in which the bottom portion of the shelf step portion is supported on a support as described above is particularly preferable. It is comprised with a porous film.
[0020]
A part of the low boiling point component condensed by the partial condenser is refluxed at the top of the rectifying column. By adjusting the amount of liquid (reflux ratio), the purity of the low boiling point component, the separation efficiency, etc. can be improved. Can be adjusted.
[0021]
Evaporation means is provided at the bottom of the rectification column. Usually, a reboiler is provided outside, and the evaporated vapor is supplied into the rectification column and unvaporized components are discharged as bottoms. It has become. When used in an ammonia absorption refrigerator, an evaporator is provided at the bottom of the rectifying tower, and the vapor rises into the rectifying tower and supplies the unevaporated components to the absorber. (See FIG. 1). At this time, a heat exchanger for preheating the stock solution with the bottoms may be provided.
[0022]
In the water-based rectification apparatus of the present invention, in the above, a hydrophobic porous membrane is disposed at a position where the space between the shelf steps provided in multiple stages is vertically divided, or the multiple stages are provided. A hydrophobic porous film is disposed on the bottom surface of the shelf step.
[0023]
As described above, the hydrophobic porous membrane used is composed of one or more selected from the group consisting of poly (tetrafluoroethylene), poly (trifluoroethylene), poly (chlorotrifluoroethylene), polyethylene, and polypropylene. Those having a contact angle with water at room temperature of 60 ° or more can be used as long as they are water repellent.
[0024]
Further, the pore diameter of the hydrophobic porous membrane is not limited so long as it allows vapor to pass through to some extent and does not allow mist components to permeate. Specifically, although it depends on the hydrophobicity, it is about 0.001 to several hundred μm. .
As described above, various types of hydrophobic porous membranes having high water repellency and gas permeability are commercially available, but after pressing the polytetrafluoroethylene powder, it is rapidly A hydrophobic porous membrane (trade name Goretec), which is stretched and has a pore diameter of 0.02 to 15 μm and a porosity of 25 to 95%, has particularly high water repellency and gas permeability. Preferably used.
[0025]
FIG. 6 and FIG. 7 specifically show how the hydrophobic porous membrane is arranged. Hereinafter, each embodiment will be described with reference to the drawings.
[0026]
The rectifying column shown in FIG. 6 has a hydrophobic porous membrane 12 arranged at a position where the space between the shelf steps 11 provided in multiple stages is vertically divided. The shelf portion 11 includes a bottom surface portion 11a that allows inflow of steam from below into the recirculating liquid that stays, an inflow portion 11b that allows the recirculating liquid to flow in from above, and an outflow portion 11c that causes the recirculating liquid that stays down to flow down. And a higher vapor having a low boiling point component concentration is generated from the staying reflux liquid. In the present embodiment, the hydrophobic porous membrane 12 is disposed so as to be inclined, but this is for the purpose of efficiently flowing the attached droplets to one side. Moreover, what is necessary is just to support the hydrophobic porous membrane 12 with a support body as needed.
In this way, by disposing the fluid in the free board section above the evaporation liquid surface of the rectification tower, the fluid is allowed to pass through this membrane, so that mist contained in the fluid and droplets caused by splashing are prevented, and only the vapor is in the upper stage. High rectification efficiency is obtained with a short freeboard.
[0027]
The rectifying column shown in FIG. 7 has a hydrophobic porous membrane 12 arranged on the bottom surface of a multi-stage shelf 11, and the bottom 11 a is on a support (for example, a wire mesh or the like). ) Is supported by the hydrophobic porous membrane 12. In the same manner as described above, the shelf portion 11 causes the bottom surface portion 11a that allows the inflow of steam from below to the staying reflux liquid, the inflow portion 11b that allows the reflux liquid to flow from above, and the reflux liquid that stays downward. An outflow part 11c is generated and steam having a higher low boiling point component concentration is generated from the staying reflux liquid.
By arranging the hydrophobic porous membrane in this way, it is possible to prevent mist containing impurities and droplets from entering from the lower stage, and vapor penetrates the membrane relatively uniformly and generates very small bubbles. Thus, high gas-liquid contact efficiency can be obtained. In addition, when the flow rate of the steam is extremely reduced, the conventional perforated plate causes the liquid to flow down from the hole (weeping). This membrane has an inherent water-repellent function. Without occurring, stable operation over a wide range is possible.
[0028]
The aqueous rectification apparatus of the present invention is not a problem limited to the rectification apparatus used in the ammonia absorption refrigerator, but widely used in various rectification apparatuses used for distillation of low-boiling components such as alcohol or ammonia distillation. Can do.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an ammonia absorption refrigeration cycle. FIG. 2 is a graph showing the effect of the moisture concentration in the refrigerant on the cooling performance coefficient. FIG. 3 is a droplet generated when evaporation occurs in the rectification column. FIG. 4 is a schematic view showing a typical shelf portion of the rectification column. FIG. 5 is an explanatory view showing the operation behavior of the rectification column. FIG. 6 is an embodiment of the present invention. FIG. 7 is a longitudinal sectional view of a rectifying column showing an embodiment of the present invention.
11 shelf step part 11a bottom part 12 hydrophobic porous membrane

Claims (5)

滞留する還流液へ下方から蒸気の流入を許容する底面部と、上方から還流液を流入させる流入部と、下方へ滞留する前記還流液を流下させる流出部とを有し、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させる棚段部を、
精留塔内に多段に設けて低沸点成分水溶液から低沸点成分を精留する水系精留装置であって、
多段に設けられた前記棚段部の間の空間を上下に仕切る位置に疎水性多孔膜を配設してある水系精留装置。
The bottom of the recirculating liquid that allows the inflow of steam from below, the inflow part that allows the recirculating liquid to flow from above, and the outflow part that causes the recirculating liquid that stays downward to flow down. A shelf that generates higher steam with a low boiling point component concentration from
A water-based rectification apparatus for rectifying low-boiling components from a low-boiling component aqueous solution in multiple stages in a rectification tower,
An aqueous rectification apparatus in which a hydrophobic porous membrane is disposed at a position where a space between the shelf steps provided in multiple stages is vertically divided.
滞留する還流液へ下方から蒸気の流入を許容する底面部と、上方から還流液を流入させる流入部と、下方へ滞留する前記還流液を流下させる流出部とを有し、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させる棚段部を、
精留塔内に多段に設けて低沸点成分水溶液から低沸点成分を精留する水系精留装置であって、
多段に設けられた前記棚段部の底面部に疎水性多孔膜を配設してある水系精留装置。
The bottom of the recirculating liquid that allows the inflow of steam from below, the inflow part that allows the recirculating liquid to flow from above, and the outflow part that causes the recirculating liquid that stays downward to flow down. A shelf that generates higher steam with a low boiling point component concentration from
A water-based rectification apparatus for rectifying low-boiling components from a low-boiling component aqueous solution in multiple stages in a rectification tower,
An aqueous rectification apparatus in which a hydrophobic porous membrane is disposed on the bottom surface of the shelf step provided in multiple stages.
前記棚段部の底面部が、支持体上に支持された疎水性多孔膜で構成されている請求項2記載の水系精留装置。The water-based rectification apparatus according to claim 2, wherein a bottom surface portion of the shelf step portion is composed of a hydrophobic porous membrane supported on a support. 前記疎水性多孔膜が、ポリ(テトラフルオロエチレン)、ポリ(トリフルオロエチレン)、ポリ(クロロトリフルオロエチレン)、ポリエチレン、及びポリプロピレンからなる群より選ばれる1種以上よりなるものである請求項1〜3いずれか記載の水系精留装置。2. The hydrophobic porous membrane is made of one or more selected from the group consisting of poly (tetrafluoroethylene), poly (trifluoroethylene), poly (chlorotrifluoroethylene), polyethylene, and polypropylene. The aqueous rectification apparatus according to any one of -3. 前記低沸点成分がアンモニアであり、アンモニア吸収冷凍機のアンモニア精留装置として用いられるものである請求項1〜4いずれか記載の水系精留装置。The aqueous rectification apparatus according to any one of claims 1 to 4, wherein the low-boiling component is ammonia, and is used as an ammonia rectification apparatus for an ammonia absorption refrigerator.
JP30884396A 1996-11-20 1996-11-20 Water-based rectification equipment Expired - Fee Related JP3683054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30884396A JP3683054B2 (en) 1996-11-20 1996-11-20 Water-based rectification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30884396A JP3683054B2 (en) 1996-11-20 1996-11-20 Water-based rectification equipment

Publications (2)

Publication Number Publication Date
JPH10148417A JPH10148417A (en) 1998-06-02
JP3683054B2 true JP3683054B2 (en) 2005-08-17

Family

ID=17985955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30884396A Expired - Fee Related JP3683054B2 (en) 1996-11-20 1996-11-20 Water-based rectification equipment

Country Status (1)

Country Link
JP (1) JP3683054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037554A1 (en) * 2011-09-14 2013-03-21 Aaa Water Technologies Ag C/O 4S Treuhand Ag Distillation station

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736378B2 (en) * 2001-06-18 2004-05-18 Koch-Glitsch, Lp Contact tray having tray supported downcomers
CN100445671C (en) * 2007-02-12 2008-12-24 庞启东 Rectifier used in ammonia water absorption refrigeration device using exhaust gas waste heat
CN103418154B (en) * 2013-07-23 2015-03-18 魏治中 Tower plate gas-liquid mass transfer improvement structure of float valve tower
CN103418151B (en) * 2013-08-19 2016-08-24 中广核研究院有限公司 A kind of distilling apparatus
US20160166992A1 (en) * 2014-12-12 2016-06-16 General Electric Company Distillation system and a method of operating the same
CN112827338B (en) * 2020-12-30 2021-11-12 安徽泽升科技有限公司 Green and environment-friendly laboratory waste gas treatment method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037554A1 (en) * 2011-09-14 2013-03-21 Aaa Water Technologies Ag C/O 4S Treuhand Ag Distillation station
US9849401B2 (en) 2011-09-14 2017-12-26 Major Bravo Limited Distillation station

Also Published As

Publication number Publication date
JPH10148417A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
US20230415068A1 (en) Systems including a condensing apparatus such as a bubble column condenser
JP5250340B2 (en) Absorption heat pump
JP5261073B2 (en) Gas-liquid separator, high-temperature regenerator, absorption refrigerator, and absorption heat pump
WO2019004910A1 (en) Condensation device and method comprising a rain condenser
JP3683054B2 (en) Water-based rectification equipment
US11236931B2 (en) Absorption refrigeration and air conditioning devices
US3154930A (en) Refrigeration apparatus
JP3761320B2 (en) Water-based rectification equipment
CN105879587B (en) Gas capture device
JP6429550B2 (en) Absorption heat pump
JP6084485B2 (en) Absorption heat pump and operation method of absorption heat pump
JP2015025610A (en) Three-stage temperature rising type absorption heat pump
WO2023095589A1 (en) Absorber unit, heat exchange unit, and absorption refrigerator
JP6570965B2 (en) Absorption heat pump
JP6521793B2 (en) Absorption heat pump
JP6463954B2 (en) Absorption refrigerator
JP2016150337A (en) Gas condensing device equipped with reflux separator
KR0147749B1 (en) Regenerator for absorptive airconditioner
WO2018164085A1 (en) Cooling device and gas-liquid separation tank
JP3241498B2 (en) Absorption refrigerator
CN118302640A (en) Absorber unit, heat exchange unit and absorption refrigerator
JP2000337733A (en) Evaporator for ammonia absorption type refrigerating device
JPH0417336B2 (en)
JPH0735436A (en) Refining device of absorption type freezer
JPH04236078A (en) Absorption type refrigerating machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees