JP3761320B2 - Water-based rectification equipment - Google Patents

Water-based rectification equipment Download PDF

Info

Publication number
JP3761320B2
JP3761320B2 JP08186798A JP8186798A JP3761320B2 JP 3761320 B2 JP3761320 B2 JP 3761320B2 JP 08186798 A JP08186798 A JP 08186798A JP 8186798 A JP8186798 A JP 8186798A JP 3761320 B2 JP3761320 B2 JP 3761320B2
Authority
JP
Japan
Prior art keywords
water
shelf
ammonia
rectification
reflux liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08186798A
Other languages
Japanese (ja)
Other versions
JPH11281206A (en
Inventor
定和 山田
森  幸雄
敦之 石塚
哲也 松上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Tokyo Gas Co Ltd
Original Assignee
Takuma KK
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK, Tokyo Gas Co Ltd filed Critical Takuma KK
Priority to JP08186798A priority Critical patent/JP3761320B2/en
Publication of JPH11281206A publication Critical patent/JPH11281206A/en
Application granted granted Critical
Publication of JP3761320B2 publication Critical patent/JP3761320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アンモニア吸収冷凍機、アルコール精留等に用いられる水系精留装置に関し、より詳細には、上方から還流液を流入させる流入部と、下方へ滞留する前記還流液を流下させる流出部とを有し、環流液を上方から下方へ案内流下させる棚段部を複数設けて上下多段に配設し、その棚段部に滞留する還流液へ下方から蒸気の流入を許容する孔部を多数設け、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させて低沸点成分水溶液から低沸点成分を精留する水系精留装置に関する。
【0002】
【従来の技術】
従来のアンモニア吸収冷凍サイクルとしては、図4に示すようなものが一般的である。即ち、所定圧力Pa下で蒸発器1内において蒸発したアンモニア蒸気は、吸収器2で蒸発圧力Pbに維持するようにアンモニア水溶液に吸収される。その際発生する吸収熱は外部へ冷却水等により放出する。アンモニア蒸気を吸収して強溶液(アンモニアを吸収してアンモニア濃度が高まった溶液)となった溶液は、ポンプPによって発生器3に送られる。ここで圧力Pc下で外部の熱源によって加熱され、冷媒のアンモニアと吸収剤の水との沸点差があまり大きくないので水分を含んだアンモニア蒸気を発生する。この蒸気は精留塔4ならびに分縮器5に入り、アンモニア濃度約99.8%以上に精製して濃度を高めてから、凝縮器6に入り冷却水等により冷却液化させて高純度のアンモニア液(冷媒液)にする。この冷媒液は膨張弁7を経て、蒸発器1に入り蒸発し外部の熱負荷を冷却する。
【0003】
冷媒液のアンモニア濃度を約99.8%以上にする必要性は、これが冷凍機の効率を大きく左右するからである。例えば濃度100%のアンモニアの場合、冷媒は蒸発器において等温、等圧で蒸発し、完全に蒸発を終えるが、水分が混在すると等圧蒸発は続くが、水を含んだアンモニアは沸点上昇を起こし、伝熱の温度差が小さくなり蒸発器の熱交換量が減少する。またアンモニアと水は完全に溶解しており有効に冷媒の蒸発潜熱を利用しないで、一部分は未蒸発のまま蒸発器より出てしまい、冷凍サイクル上の冷凍効果を損なうために、冷媒蒸気の精留は必要不可欠である。図5は、冷媒中の水分濃度による冷却動作係数への影響を具体的に示したものである。
【0004】
【発明が解決しようとする課題】
つまり、冷媒中の水分濃度をできる限り抑えることが究極の課題といえ、精留精度を高めるために種々の精留塔を採用することが検討されている。
一方、上記アンモニアは高圧ガス保安法で毒性ならびに可燃性ガスに指定されており、安全対策上、装置内の冷媒(アンモニア)充填量を最小限に抑え、かつ製作上の品質管理を高めるために、現地作業を極力やめて工場でのパッケージ製品化を必要としている。しかし、前記のように精留器のみによって製品の高さが制約されており、輸送上の理由等から完全なパッケージ化を困難としている。そのため、精留精度を高めるとしても、装置の大型化を招来しない手段が求められる。
また、精留塔のトレイ(棚段部)は、理論上、気液混合を良く混合するようにバブリングの気泡サイズを出来るだけ小さくし、かつ、トレイ上に保持される環流液の量を多くして気液接触効率を高めることによって、広範囲にわたる運転条件下で対応可能、かつ低コストのものを提供できるものと考えられている。精留塔の代表的なトレイは、多孔板型と泡鐘型の二種類があり、前者は安全操作範囲が狭いが構造が簡単であるという利点があるために、後者は構造が複雑でコスト高であるが広範囲にわたって安定した運転が得られるために長年利用されてきた。本発明では、装置の小型化をめざす意味で、前記多孔板型に着目し、その精留精度の改良をめざすものである。
前記多孔板型の精留塔の運転上の挙動は、原料供給量や還流比を変化すると精留塔内の液量、蒸気量も変化し、蒸気量を極端に減ずると、液漏れ(ウィーピング)現象が起こり、また蒸気量が極端に増加すると、棚段上の液が塔頂(フリーボード)部に押し上げられるフラッディング現象が見られる。図6にこの関係を示した。ウィーピング(チャネリング)は蒸気量の下限値(A点)をフラッディングはその上限値(B点)を示し、これらの間の領域が精留塔を安定した状態で運転できる範囲(安定操作範囲)を示している。しかしながらトレイ上に保持される環流液を多く設定するには、孔部を小さく設定せねばならず、環流させるべき蒸気を前記トレイに通過させる際の圧損が大きくなり精留塔の運転を困難にしてしまい、精留精度を下げるという欠点があり、また、圧損を小さくすべく孔部を大きく設定すると前記ウィーピングが起きやすくなりやはり精留精度を低下させる原因になっていた。
【0005】
なお、上記のような安定操作範囲の問題は、アンモニア吸収冷凍機に用いられる精留装置に限られる問題でなく、アルコール蒸留やアンモニア蒸留等に用いられる各種の精留装置に広く関係する問題である。
【0006】
従って、本発明の目的は、精留効率を高めて小型化が可能で、更に低負荷時で発生する液漏れ(ウィーピング)現象を抑制し広範囲にわたって安定した運転を可能にする水系精留装置を提供することにある。
【0007】
【課題を解決するための手段】
この目的を達成するための本発明の水系精留装置の特徴構成は、還流液を上方から流入させる流入部と、滞留する前記還流液を下方へ流下させる流出部とを有し、環流液を上方から下方へ案内流下させる棚段部を複数設けて上下多段に配設し、その棚段部に滞留する還流液へ下方から蒸気の流入を許容する孔部を多数設け、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させて低沸点成分水溶液から低沸点成分を精留する水系精留装置において、
前記棚段部の少なくとも孔部内壁面、好ましくは棚段部の孔部内壁面及び上・底面を撥水性に形成してある点にあり、
前記棚段部をフッ素樹脂コーティング加工した板状体から形成してあることが望ましい。
【0008】
また、前記フッ素樹脂が、ポリ(テトラフルオロエチレン)、ポリ(トリフルオロエチレン)、ポリ(クロロトリフルオロエチレン)、ポリエチレン、及びポリプロピレンからなる群より選ばれる1種以上よりなるものであることが、後述の作用効果より好ましい。
【0009】
更に、本発明の水系精留装置は、前記低沸点成分がアンモニアであり、アンモニア吸収冷凍機のアンモニア精留装置として用いられるものであることが、後述の作用効果より好ましい。
【0010】
〔作用効果〕
つまり、前記孔部を流下使用とする環流液は、まず前記孔部の内壁に接触しつつ下方に膨出し、球状の液滴に成長する。この液滴が、大きく成長し、環流液側に止まろうとする表面張力と、下方に落下しようとする自重との関係において自重の作用が勝るとウイービングが起きる訳である。このとき従来の通常の構成では、成長しようとする液滴は、前記孔部の内壁面に伝い、前記棚段部の底面側縁部から球状に成長し始める。そのため、この液滴は、前記孔部の径よりも大きな径を有するものにまで成長することが可能となり、前記環流液の厚さに対応する重力に容易に屈し、落下しやすいものといえる(図3参照)。それに対して、前記棚段部の表面を撥水性に形成しておくと、下方に膨出しようとする液滴は、前記孔部の内壁に接触しようとした場合に弾かれるために、その下方に膨出しようとする成長が抑制され、自重で落下するほどに成長するためには、従来の通常の構成に比べて大きな力が必要となる。従って、従来のものに比べると、前記液滴上方に存在する環流液から大きな重力がかかっても液滴が下方に落下しにくくなり、要するに環流液を深く保持できるのである(図2参照)。(つまり、図2bの状態から図2cの状態へは変移しにくいものといえるのである。)そのため、蒸気が下方から上方に通過しようとする蒸気量が少なくなったとしても、前記孔部からはウィーピングが起きにくくなり、そのため、気液接触が確実に行われ、精留精度を向上させることができるのである。
【0011】
尚、撥水性棚段部は、少なくとも孔部内壁面が撥水性に形成してあれば良いが、全体を撥水性に形成してあることがより好ましい。というのは、成長した液滴が連続的に落下する状態を想定した場合に、棚段部底面側が撥水性であった場合に、底面側に付着したミストが前記液滴と一体となってより落下しやすくなる状況が防止でき、かつ、上面が撥水性であった場合には、前記液滴を上方に押し上げる作用をより高くできるからである。
【0012】
前記棚段部を撥水性に形成するには、前記棚段部をフッ素樹脂等の撥水性に優れた材料から形成するあるいは、前記棚段部を撥水加工する等の手段を採用でき、中でも撥水加工を行う方法を採用すれば、種々汎用の材料を撥水性に形成することができ、簡単安価に棚段部を構成できるので有効である。中でもポリ(テトラフルオロエチレン)、ポリ(トリフルオロエチレン)、ポリ(クロロトリフルオロエチレン)、ポリエチレン、及びポリプロピレンからなる群より選ばれる1種以上よりなるもので構成する場合、これらは室温における水との接触角が90°以上と大きく、前記液滴が前記孔部を通過しようとするのを抑制する能力が特に高いため、本発明の上記の作用効果がより顕著に得られる。
【0013】
なお、本発明の水系精留装置をアンモニア吸収冷凍機に用いる場合、前述のような高純度化の要請や小型化の要請に応えることができ、特に好ましい実施形態となる。
【0014】
【発明の実施の形態】
本発明の水系精留装置は、滞留する還流液へ下方から蒸気の流入を許容する孔部12を多数設け、上方から還流液を流入させる流入部13と、下方へ滞留する前記還流液を流下させる流出部14とを有し、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させる棚段部11を、精留塔4内に多段に設けて低沸点成分水溶液から低沸点成分を精留するものである。
かかる精留装置は、棚段部11で滞留する還流液から、還流液組成より高い低沸点成分濃度の蒸気を発生させて、上段の棚段部11で滞留する還流液に前記底面11aから上方に通過させながら気液接触を図り、溶解(吸収)させることにより、上段ほど高い低沸点成分濃度の還流液組成にして、塔頂部より高純度の低沸点成分蒸気を留出させるものであり、還流液と上昇蒸気との間でこのような物質移動と熱移動を繰り返しながら、低沸点成分水溶液から低沸点成分を精留する機能を有する。従って、このような機能を有する多段式の精留塔4を具備するものであれば、いずれの構造のものにも本発明は適用可能であり、段数や塔の形状などは特に限定されない。
【0015】
精留塔4の塔頂部には、分縮器5で凝縮した低沸点成分の一部が還流されるが、この液量(還流比)を調整することにより、低沸点成分の純度、分離効率等が調整できる。
【0016】
精留塔4の底部には蒸発手段が設けられるが、通常は外部にリボイラーが設けられて、蒸発させた蒸気を精留塔4内に供給すると共に、未蒸発成分を缶出液として排出する構造等となっている。アンモニア吸収冷凍機に用いられる場合、精留塔の底部には蒸発缶が設けられて、蒸気が精留塔内に上昇すると共に、未蒸発成分を吸収器2に供給する構造等となっている(図4参照)。このとき、缶出液により原液を予熱する熱交換器8を設けてもよい。
【0017】
本発明の水系精留装置は、上記において、多段に設けられた前記棚段部11を全面撥水加工してあるものである。つまり、棚段部11の底面11a、上面11c及び孔部12の内壁面11bの全てが撥水加工されている。
【0018】
撥水加工には、その溌水性を考慮して、ポリ(テトラフルオロエチレン)、ポリ(トリフルオロエチレン)、ポリ(クロロトリフルオロエチレン)、ポリエチレン、及びポリプロピレンからなる群より選ばれる1種以上よりなるものを用いることが好ましい。このような撥水加工には特に、室温における水との接触角が60°以上の材質(樹脂等)を用いることが好ましい。
【0019】
また、棚段部11に設ける孔部12の孔径は、蒸気をある程度以上透過させ、ウィーピングを生じない程度であればよく、具体的にはその溌水性にもよるが、1mm〜4.5mm程度である。また、個の孔部12のピッチは、15mm程度で開口率が7〜10%程度に調整してあることが好ましい。
このような撥水加工により、従来は精留塔の停止状態でに、環流液をほとんど保持できなかったものを2mm程度にまで保持させることができ、低負荷でも極めて高い気液接触効率を実現できることが分かった。
本発明の水系精留装置は、アンモニア吸収冷凍機に用いられる精留装置に限られる問題でなく、アルコール等の低沸点成分の蒸留やアンモニア蒸留等に用いられる各種の精留装置に広く用いることができる。
〔別実施の形態〕
先の実施の形態では、棚段部を撥水加工して孔部内壁面を撥水性に形成したが、棚段部を構成する材料自体が撥水性のものであっても良く、さらには、表面撥水性の繊維材等を成形加工して棚段部を構成しても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す精留塔の縦断面図
【図2】本発明でのウィーピングの発生状況を示す説明図
【図3】従来のウィーピングの発生状況を示す説明図
【図4】アンモニア吸収冷凍サイクルを示す説明図
【図5】冷媒中の水分濃度による冷却成績係数への影響を示したグラフ
【図6】精留塔の運転挙動を示す説明図
【符号の説明】
11 棚段部
11a 底面
12 孔部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aqueous rectification apparatus used for an ammonia absorption refrigeration machine, alcohol rectification, and the like, and more specifically, an inflow part for introducing a reflux liquid from above and an outflow part for flowing down the reflux liquid staying downward. Provided with a plurality of shelf steps for guiding and flowing the reflux liquid downward from above, and arranged in multiple upper and lower stages, and a hole for allowing the inflow of steam from below into the reflux liquid retained in the shelf steps. The present invention relates to a water-based rectification apparatus that generates a large number of vapors having a low low-boiling component concentration from the recirculated liquid that is provided and stays to rectify low-boiling components from a low-boiling component aqueous solution.
[0002]
[Prior art]
As a conventional ammonia absorption refrigerating cycle, the one shown in FIG. 4 is common. That is, the ammonia vapor evaporated in the evaporator 1 under the predetermined pressure Pa is absorbed by the aqueous ammonia solution so as to be maintained at the evaporation pressure Pb by the absorber 2. The absorbed heat generated at that time is released to the outside by cooling water or the like. The solution that has become a strong solution (a solution in which ammonia concentration is increased by absorbing ammonia) by absorbing ammonia vapor is sent to the generator 3 by the pump P. Here, it is heated by an external heat source under pressure Pc, and since the boiling point difference between the refrigerant ammonia and the water of the absorbent is not so large, ammonia vapor containing moisture is generated. This steam enters the rectifying column 4 and the partial condenser 5 and is refined to an ammonia concentration of about 99.8% or more to increase the concentration. Then, the vapor enters the condenser 6 and is cooled and liquefied with cooling water or the like to produce high purity ammonia. Use liquid (refrigerant liquid). This refrigerant liquid enters the evaporator 1 via the expansion valve 7 and evaporates to cool the external heat load.
[0003]
The necessity of setting the ammonia concentration of the refrigerant liquid to about 99.8% or more is because this greatly affects the efficiency of the refrigerator. For example, in the case of 100% concentration of ammonia, the refrigerant evaporates at isothermal and isobaric pressure in the evaporator and completely evaporates. However, when water is mixed, isobaric evaporation continues, but water-containing ammonia raises the boiling point. The temperature difference of heat transfer becomes smaller and the heat exchange amount of the evaporator is reduced. In addition, ammonia and water are completely dissolved and do not effectively use the latent heat of vaporization of the refrigerant. Some of the ammonia and water leave the evaporator without being evaporated, impairing the refrigeration effect on the refrigeration cycle. A stay is essential. FIG. 5 specifically shows the influence of the moisture concentration in the refrigerant on the cooling operation coefficient.
[0004]
[Problems to be solved by the invention]
That is, it can be said that limiting the water concentration in the refrigerant as much as possible is the ultimate problem, and adopting various rectification towers to improve the rectification accuracy has been studied.
On the other hand, the above-mentioned ammonia is designated as a toxic and flammable gas by the High Pressure Gas Safety Law. For safety measures, to minimize the refrigerant (ammonia) filling amount in the equipment and to improve the quality control in production. Therefore, it is necessary to stop the field work as much as possible and to make a package product at the factory. However, as described above, the height of the product is limited only by the rectifier, and complete packaging is difficult for reasons of transportation. Therefore, even if the precision of rectification is increased, a means that does not cause an increase in the size of the apparatus is required.
Also, the tray (shelf) of the rectification column theoretically reduces the bubble size of the bubbling as much as possible so that gas-liquid mixing is well mixed, and increases the amount of the reflux liquid retained on the tray. Thus, it is considered that by increasing the gas-liquid contact efficiency, it is possible to provide a low-cost one that can be handled under a wide range of operating conditions. There are two types of trays in the rectification column: perforated plate type and bubble bell type. The former has the advantage that the safe operation range is narrow but the structure is simple. It has been used for many years in order to obtain high but stable operation over a wide range. In the present invention, in order to reduce the size of the apparatus, the perforated plate mold is focused on and the rectification accuracy is improved.
The operation behavior of the perforated plate type rectification column is that when the feed rate and the reflux ratio are changed, the amount of liquid and the amount of steam in the rectification column are also changed. When the ping) phenomenon occurs and the amount of steam increases extremely, a flooding phenomenon is observed in which the liquid on the shelf is pushed up to the top (freeboard) part. FIG. 6 shows this relationship. Weeping (channeling) indicates the lower limit of steam volume (point A), and flooding indicates the upper limit (point B). The range between these ranges allows the rectification column to operate stably (stable operating range). Is shown. However, in order to set a large amount of the reflux liquid held on the tray, the holes must be set small, and the pressure loss when passing the steam to be refluxed through the tray becomes large, making it difficult to operate the rectification column. Therefore, there is a drawback that the rectification accuracy is lowered, and if the hole is set to be large so as to reduce the pressure loss, the weeping is likely to occur, and this also causes a decrease in the rectification accuracy.
[0005]
The problem of the stable operation range as described above is not limited to the rectification apparatus used for the ammonia absorption refrigerator, but is widely related to various rectification apparatuses used for alcohol distillation, ammonia distillation, and the like. is there.
[0006]
Accordingly, an object of the present invention is to improve the rectification efficiency and reduce the size, and further suppress the liquid leakage (weeping) phenomenon that occurs at a low load and enable a stable operation over a wide range. Is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the characteristic configuration of the aqueous rectification apparatus according to the present invention has an inflow part for allowing the reflux liquid to flow in from above and an outflow part for causing the staying reflux liquid to flow downward. A plurality of shelf steps that guide and flow downward from above are arranged in multiple upper and lower stages, and a number of holes that allow the inflow of steam from below are provided in the reflux liquid that stays in the shelf steps, and the reflux liquid that remains In a water-based rectification device that generates higher-boiling-point steam from a low-boiling component aqueous solution and rectifies the low-boiling component from
At least the hole inner wall surface of the shelf step portion, preferably the hole inner wall surface and the upper / bottom surface of the shelf step portion are formed to be water repellent,
It is desirable that the shelf step portion is formed from a plate-like body processed by fluororesin coating.
[0008]
Further, the fluororesin is made of at least one selected from the group consisting of poly (tetrafluoroethylene), poly (trifluoroethylene), poly (chlorotrifluoroethylene), polyethylene, and polypropylene, It is more preferable than the following effects.
[0009]
Furthermore, in the aqueous rectification apparatus of the present invention, the low boiling point component is ammonia, and it is preferable to be used as an ammonia rectification apparatus of an ammonia absorption refrigerating machine from the following effects.
[0010]
[Function and effect]
In other words, the circulating liquid that uses the hole as a flow-down swells downward while contacting the inner wall of the hole and grows into a spherical droplet. This droplet grows greatly, and weaving occurs when the action of its own weight wins in the relationship between the surface tension that tries to stop on the reflux liquid side and its own weight that tries to drop downward. At this time, in the conventional normal configuration, the droplet to be grown propagates to the inner wall surface of the hole and starts to grow in a spherical shape from the bottom side edge of the shelf step portion. Therefore, this droplet can grow up to a diameter larger than the diameter of the hole, and can easily be bent to gravity corresponding to the thickness of the reflux liquid and easily fall down ( (See FIG. 3). On the other hand, if the surface of the shelf step portion is formed to be water repellent, the droplets that swell downward are repelled when trying to contact the inner wall of the hole, In order to suppress the growth to swell and to grow to the extent that it falls by its own weight, a greater force is required than in the conventional normal configuration. Therefore, compared with the conventional one, even if a large amount of gravity is applied from the reflux liquid existing above the droplet, the droplet is less likely to fall downward, and in short, the reflux liquid can be held deeply (see FIG. 2). (That is, it can be said that the transition from the state of FIG. 2b to the state of FIG. 2c is difficult.) Therefore, even if the amount of steam that the steam tries to pass from the lower side to the upper side decreases, Weeping is less likely to occur, so that gas-liquid contact is reliably performed and rectification accuracy can be improved.
[0011]
In addition, the water-repellent shelf portion only needs to have at least the inner wall surface of the hole formed to be water-repellent, but it is more preferable that the whole is formed to be water-repellent. This is because, assuming that the grown droplets are continuously dropped, the mist adhering to the bottom side is integrated with the droplets when the bottom of the shelf is water-repellent. This is because the situation in which the liquid drops easily can be prevented, and when the upper surface is water-repellent, the action of pushing the droplets upward can be made higher.
[0012]
In order to form the shelf step portion with water repellency, means such as forming the shelf step portion from a material having excellent water repellency such as fluororesin or water repellency processing of the shelf step portion can be adopted. Employing the water repellent processing method is effective because various general-purpose materials can be formed with water repellency and the shelf can be configured easily and inexpensively. Among these, when it is composed of one or more selected from the group consisting of poly (tetrafluoroethylene), poly (trifluoroethylene), poly (chlorotrifluoroethylene), polyethylene, and polypropylene, these are water at room temperature. The contact angle is as large as 90 ° or more, and the ability to suppress the droplet from trying to pass through the hole is particularly high. Therefore, the above-described effects of the present invention can be obtained more remarkably.
[0013]
In addition, when using the aqueous | water-based rectification apparatus of this invention for an ammonia absorption refrigerator, it can respond to the request | requirement of high purity as mentioned above, and the request | requirement of size reduction, and becomes an especially preferable embodiment.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The water-based rectification apparatus of the present invention is provided with a large number of holes 12 that allow the inflow of steam from below into the recirculating liquid that remains, and the inflow part 13 through which the recirculating liquid flows from above, and the recirculating liquid that remains below flows down. The rectifying column 4 is provided with a shelf 11 for generating steam having a higher concentration of low-boiling components from the recirculating liquid that is retained, and is provided in multiple stages in the rectifying column 4 to lower the low-boiling components from the low-boiling component aqueous solution. Rectified.
Such a rectification apparatus generates steam having a lower boiling point component concentration higher than the reflux liquid composition from the reflux liquid retained in the shelf section 11, and moves upward from the bottom surface 11 a to the reflux liquid retained in the upper shelf section 11. By making gas-liquid contact and dissolving (absorbing) while passing through, the reflux liquid composition having a higher low-boiling component concentration as the upper stage is formed, and high-purity low-boiling-component vapor is distilled from the top of the tower. It has the function of rectifying the low boiling point component from the low boiling point component aqueous solution while repeating such mass transfer and heat transfer between the reflux liquid and the rising vapor. Therefore, the present invention can be applied to any structure as long as the multi-stage rectification column 4 having such a function is provided, and the number of stages and the shape of the tower are not particularly limited.
[0015]
A part of the low boiling point component condensed in the fractionator 5 is refluxed at the top of the rectifying column 4. By adjusting the amount of the liquid (reflux ratio), the purity and separation efficiency of the low boiling point component are adjusted. Etc. can be adjusted.
[0016]
An evaporation means is provided at the bottom of the rectifying column 4, but usually a reboiler is provided outside to supply the evaporated vapor into the rectifying column 4 and discharge the unevaporated components as bottoms. It has a structure. When used in an ammonia absorption refrigerator, an evaporating can is provided at the bottom of the rectifying tower so that the vapor rises into the rectifying tower and supplies unevaporated components to the absorber 2. (See FIG. 4). At this time, you may provide the heat exchanger 8 which preheats undiluted | stock solution with a bottoms.
[0017]
The water-based rectification apparatus of the present invention is such that the shelf step portion 11 provided in multiple stages is subjected to water repellent finishing on the entire surface. That is, the bottom surface 11a, the top surface 11c of the shelf step portion 11 and the inner wall surface 11b of the hole portion 12 are all water-repellent.
[0018]
In consideration of water repellency, the water repellent finish is made of at least one selected from the group consisting of poly (tetrafluoroethylene), poly (trifluoroethylene), poly (chlorotrifluoroethylene), polyethylene, and polypropylene. It is preferable to use In particular, it is preferable to use a material (resin or the like) having a contact angle with water at room temperature of 60 ° or more for such a water repellent process.
[0019]
Moreover, the hole diameter of the hole 12 provided in the shelf step part 11 should just be a grade which does not permeate | transmit a vapor | steam more than a certain amount and does not produce a weeping. Degree. Moreover, it is preferable that the pitch of the individual hole portions 12 is about 15 mm and the aperture ratio is adjusted to about 7 to 10%.
This water-repellent finish can hold up to about 2 mm of the reflux liquid that was hardly held in the rectifying column in the past, achieving extremely high gas-liquid contact efficiency even at low loads. I understood that I could do it.
The aqueous rectification apparatus of the present invention is not a problem limited to the rectification apparatus used in the ammonia absorption refrigerator, but widely used in various rectification apparatuses used for distillation of low-boiling components such as alcohol or ammonia distillation. Can do.
[Another embodiment]
In the previous embodiment, the shelf step was water-repellent and the inner wall surface of the hole was formed to be water-repellent. However, the material constituting the shelf step itself may be water-repellent, The shelf step portion may be formed by molding a water-repellent fiber material or the like.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a rectifying column showing an embodiment of the present invention. FIG. 2 is an explanatory view showing the state of occurrence of weeping in the present invention. FIG. 3 is an explanatory view showing the state of occurrence of conventional weeping. Fig. 4 is an explanatory diagram showing the ammonia absorption refrigeration cycle. Fig. 5 is a graph showing the effect of the moisture concentration in the refrigerant on the cooling performance coefficient. Fig. 6 is an explanatory diagram showing the operation behavior of the rectification column. Explanation】
11 Shelf Step 11a Bottom 12 Hole

Claims (4)

還流液を上方から流入させる流入部と、滞留する前記還流液を下方へ流下させる流出部とを有し、環流液を上方から下方へ案内流下させる棚段部を複数設けて上下多段に配設し、その棚段部に滞留する還流液へ下方から蒸気の流入を許容する孔部を多数設け、滞留する前記還流液から低沸点成分濃度のより高い蒸気を発生させて低沸点成分水溶液から低沸点成分を精留する水系精留装置であって、
前記棚段部の少なくとも孔部内壁面を撥水性に形成してある水系精留装置。
It has an inflow part that allows the reflux liquid to flow in from above, and an outflow part that causes the staying reflux liquid to flow down, and is provided in multiple upper and lower stages by providing a plurality of shelf steps that guide and flow the reflux liquid downward. In addition, a large number of holes that allow the inflow of steam from below to the reflux liquid staying on the shelf portion are provided, and steam having a higher low boiling point component concentration is generated from the staying reflux liquid to reduce the low boiling point aqueous solution. An aqueous rectification device for rectifying boiling components,
An aqueous rectification apparatus in which at least the inner wall surface of the hole of the shelf step portion is water-repellent.
前記棚段部の孔部内壁面及び上・底面を撥水性に形成してある水系精留装置。An aqueous rectification apparatus in which the inner wall surface and the upper / bottom surface of the hole of the shelf step portion are formed to be water repellent. 前記棚段部をフッ素樹脂コーティング加工した板状体から形成してある請求項1に記載の水系精留装置。The water-based rectification apparatus according to claim 1, wherein the shelf step portion is formed from a plate-like body that is coated with a fluororesin. 前記低沸点成分がアンモニアであり、アンモニア吸収冷凍機のアンモニア精留装置として用いられるものである請求項1〜3いずれか記載の水系精留装置。The water-based rectification apparatus according to any one of claims 1 to 3, wherein the low-boiling component is ammonia and is used as an ammonia rectification apparatus for an ammonia absorption refrigerator.
JP08186798A 1998-03-27 1998-03-27 Water-based rectification equipment Expired - Fee Related JP3761320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08186798A JP3761320B2 (en) 1998-03-27 1998-03-27 Water-based rectification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08186798A JP3761320B2 (en) 1998-03-27 1998-03-27 Water-based rectification equipment

Publications (2)

Publication Number Publication Date
JPH11281206A JPH11281206A (en) 1999-10-15
JP3761320B2 true JP3761320B2 (en) 2006-03-29

Family

ID=13758431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08186798A Expired - Fee Related JP3761320B2 (en) 1998-03-27 1998-03-27 Water-based rectification equipment

Country Status (1)

Country Link
JP (1) JP3761320B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736378B2 (en) * 2001-06-18 2004-05-18 Koch-Glitsch, Lp Contact tray having tray supported downcomers
CN103629846A (en) * 2012-08-21 2014-03-12 成都掌握移动信息技术有限公司 Generating device for afterheat type ammonia-solution-absorption refrigerating machine

Also Published As

Publication number Publication date
JPH11281206A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US7849710B2 (en) Falling film evaporator
JPH0579775A (en) Evaporation method for liquid by heat exchange, and heat exchanger by said mechanism, and method to separate air into its constituents
CN102192621A (en) Distributor, and evaporator and refrigerating machine with the same
WO1998041798A1 (en) Liquid distributor, falling film heat exchanger and absorption refrigerator
JP2010043819A (en) Gas-liquid separator, high temperature regenerator, absorption type refrigerator, and absorption type heat pump
JP7174927B2 (en) shell and tube heat exchanger
EP0256123B1 (en) Fluid flow control system
US5795446A (en) Method and equipment for heat-of-vaporization transfer
JP3761320B2 (en) Water-based rectification equipment
JP2000227262A (en) Absorption refrigerating machine and manufacture of same
JP3683054B2 (en) Water-based rectification equipment
US20150114017A1 (en) Refrigeration-cycle equipment
KR100277373B1 (en) Stop of absorption chiller
EP3408596A2 (en) Absorption refrigeration and air conditioning devices
US5934086A (en) Absorption refrigerator
KR890004392B1 (en) Air cooled absorption refrigeration system
JP2003075013A (en) Absorption refrigerating machine
KR20000076283A (en) Liquid distributor, falling film heat exchanger and absorption refrigerator
JP2016061519A (en) Absorption heat pump
EP4269906A1 (en) Absorber for absorption chiller, heat exchange unit for absorption chiller, and absorption chiller
US1994080A (en) Refrigeration
JP4986666B2 (en) Absorption refrigerator
KR20040084489A (en) apparatus for separating differential pressure in two stage abosrption chiller
JP5036360B2 (en) Absorption refrigerator
CN116829893A (en) Evaporator unit for absorption refrigerator, heat exchange unit and absorption refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees