JP3681212B2 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
JP3681212B2
JP3681212B2 JP04662896A JP4662896A JP3681212B2 JP 3681212 B2 JP3681212 B2 JP 3681212B2 JP 04662896 A JP04662896 A JP 04662896A JP 4662896 A JP4662896 A JP 4662896A JP 3681212 B2 JP3681212 B2 JP 3681212B2
Authority
JP
Japan
Prior art keywords
target
film forming
plasma
film
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04662896A
Other languages
English (en)
Other versions
JPH09209143A (ja
Inventor
雅規 畠山
康 當間
克則 一木
洋太郎 畑村
政之 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP04662896A priority Critical patent/JP3681212B2/ja
Publication of JPH09209143A publication Critical patent/JPH09209143A/ja
Application granted granted Critical
Publication of JP3681212B2 publication Critical patent/JP3681212B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、種々の試料の表面の微小領域に特定パターン形状の成膜を行うための成膜装置に関するものである。
【0002】
【従来の技術】
従来、電子部品・精密機械部品・医療部品などの微小部品に成膜を行なうには、真空蒸着やスパッタ成膜で行われることが一般的である。スパッタ成膜は、図13に示すごとく、真空容器51中で、ビーム源52からのイオンビームなどの高エネルギービームを成膜材料からなるターゲットTに照射し、そのターゲットTから二次的に放出されるスパッタ粒子を被加工物Aの表面に衝突させて付着、堆積を行う。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の真空蒸着又はスパッタ成膜による成膜方法では、いずれも被加工物の特定の表面のみを全体的に均一に成膜を行うものであって、被加工物の任意の面あるいは位置に、任意のパターン形状の成膜を行うことはできない。このため、複数の微小部品を組み合わせて高機能部品を作製したり、複雑な形状の部品に成膜を行うことはきわめて困難であった。
【0004】
従って、本発明の目的は、微小部品の任意の表面や場所に任意のパターン形状の成膜を行うこと及び複数の微小物の境界部に成膜を行い接着・接合を行うことができる装置を提供することにある。
【0005】
【課題を解決するための手段】
発明は、エネルギー粒子を生成するエネルギー粒子源と、該エネルギー粒子の照射によってスパッタ粒子を生成するターゲットが一体となっていることを特徴とする成膜装置である。これにより、装置全体を移動しても粒子源とターゲットの位置ずれがなく、これらの取り合いの調整が不要であり、狭い空間での微小な試料への成膜作業に好適である。このような小型の成膜装置をマニュピレーターや並進・回転移動ステージにとりつけて、試料・ターゲットとの相対位置を制御しながら、もしくは、移動しながらの成膜加工や成膜による接着・接合を行うことができる。
【0006】
また、本発明の他の態様は、内部にプラズマを保持するプラズマ保持室に、該プラズマを受けてスパッタ粒子を放出するターゲットを取り付けるターゲット取付部が開口して設けられ、該保持室の上記ターゲット取付部に対向する位置にはターゲットから発生するスパッタ粒子を放出するスパッタ粒子放出孔が設けられていることを特徴とする成膜装置である。
【0007】
この装置では、ターゲットと電極を有する微小管等を用いて、微小領域にプラズマを形成し、ターゲットのスパッタ粒子を試料の微小領域に到達させ、成膜を行う。細管などを用いて微小領域にプラズマを形成することにより、試料の成膜対象部付近までスパッタ粒子発生源を近付けることができる。また、細管の先端にターゲットが設置されているが、ターゲット付近に微小穴が開けられており、その穴よりスパッタ粒子が放出され、試料の微小領域に成膜ができる。
【0008】
また、本発明の他の態様は、上記保持室にはプラズマを生成するプラズマ発生室が付設されていることを特徴とする成膜装置である。細管部においてプラズマが発生しにくい様な場合では、ターゲットの他に電極を2つ以上使用し、それらの電極に、高周波電界や直流電圧を印加して、プラズマを形成し、その影響によって、下流部の細管部にも、プラズマの形成や荷電粒子が存在し、ターゲットの衝撃を行いスパッタ粒子の発生を行うことを容易にすることができる。また、このとき、上述以外の方法、例えば、マイクロ波の導入によりプラズマ発生が可能である。
【0009】
また、本発明の他の態様は、エネルギービーム源のビーム出口の先端に、ターゲットが表面を該エネルギービームのビームラインに交差するように取り付けられ、ビーム照射により該ターゲットから生成するスパッタ粒子を試料の微小領域に導くようにした成膜装置である。
【0010】
この装置では、エネルギービーム源を用いてターゲットに照射し、スパッタ粒子による成膜を行う。エネルギービーム源としては、例えば、特願平7−53231号に記載のエネルギービーム源などを用いる。エネルギービーム放出口下流部に、ターゲット保持部を細管状に形成すれば、試料の成膜部付近までターゲットを近ずけることができ、ターゲットからのスパッタ粒子を試料の特定の位置の微小領域に成膜することができ、また、微小物相互の境界部に成膜して接着・接合ができる。
【0011】
さらに、ターゲット接続用の細管等に、上流側に穴を開ければ、エネルギーの低いガス粒子を真空容器中に拡散することができる。これにより、ビームがターゲットに照射される間に、低エネルギーのガス粒子と衝突する確率が減少し、ターゲットを効率よく衝撃できて、スパッタ粒子の放出も効率的に行える。
【0012】
また、本発明の他の態様は、エネルギービーム源のビーム出口部に成膜・接着材料を付着させる材料付着部が形成され、該エネルギービーム源内部で発生するエネルギー粒子を上記付着材料に照射してスパッタ放出又は加熱蒸発し、該出口部より放出して試料の微小領域に導くことを特徴とする成膜装置である。
【0013】
エネルギービーム源のビーム放出用電極の内面に、接着用材料や成膜用材料を塗布もしくは付着させておき、プラズマを発生させると、それらの接着性材料や成膜用材料が加熱・スパッタ等により蒸気が発生し、その蒸気が、ビーム放出孔より放出され、試料の任意の場所の微小領域に成膜を行うことができる。
【0014】
プラズマの発生をより効率よくするため、また、より高密度のプラズマを生成するため、高周波電界の印加をおこなったり、収束用の陰極・陽極以外に高周波用電界を印可するための別の電極を用いることができる。また、高周波ではなく、マイクロ波の導入を行って、プラズマの発生を容易にすることもできる。
【0015】
また、本発明の他の態様は、上記ビーム出口部が狭隘部を有するノズル状であることを特徴とする成膜装置である。
また、本発明の他の態様は、上記エネルギービーム源が収束性ビームを発生することを特徴とする成膜装置である。
また、本発明の他の態様は、上記エネルギービーム源の、陽極及び陰極の少なくとも一方が、曲面形状もしくは円錐形状を有することを特徴とする成膜装置である。
【0016】
また、本発明の他の態様は、上記エネルギービーム源は、高周波電界を陽極もしくは陰極のどちらかに印加することを特徴とする成膜装置である。
また、本発明の他の態様は、上記エネルギービーム源は、陽極及び陰極の間に、高周波電界を印加するための中間電極を有することを特徴とする成膜装置である。
【0017】
また、本発明の他の態様は、ターゲットに相対的に負の電圧を印加することを特徴とする成膜装置である。エネルギービーム放出電極の電位に比べ、相対的に負の電圧をターゲットに印加し、ビームの中のイオン成分をさらに加速し、ターゲットからのスパッタ流試料を増やすことができる。
また、本発明の他の態様は、上記スパッタ粒子を放出する放出孔が所定のパターンを有して形成されていることを特徴とする成膜装置である。
【0018】
また、本発明の他の態様は、エネルギービームをターゲットに導き、ターゲットから放出されたスパッタ粒子を被成膜基材に当てて成膜を行う成膜方法において、上記ターゲットを被成膜基材の近傍に該ターゲットの表面が基材の被成膜箇所に向くように配置し、スパッタ粒子を該基材に局所的に曝して成膜を行なうことを特徴とする成膜方法である。これにより、スパッタ粒子を不要箇所に発散させることなく、微小な基材に対して必要箇所のみに成膜を施すことができる。
【0019】
また、本発明の他の態様は、上記のいずれかに記載の成膜装置を用いることを特徴とする成膜方法である。ビーム源とターゲットが一体となっており、ビームとターゲットの取り合い調整が不要であるとともに、必要箇所への迅速な移動が可能である。
【0020】
また、本発明の他の態様は、エネルギービーム源とターゲットを別体として用いることを特徴とする成膜方法である。この場合は、ターゲットとビーム源を別々に保持して位置調整することにより、必要箇所のみに成膜を行なうことができる。
また、本発明の他の態様は、上記エネルギービーム源は収束性エネルギービームを生成するものであることを特徴とする成膜方法である。小型のエネルギービーム源では、プラズマの発生機構を大きくできないので、発生するビームを収束させ、ターゲットに照射されるビーム量の効率を上げると、スパッタ粒子の量も多くなり、効率の良いビームスパッタ成膜ができる。
【0021】
また、本発明の他の態様は、エネルギービーム源をターゲット及び/又は被成膜試料に対して移動させつつ成膜を行なうことを特徴とする成膜方法である。
また、本発明の他の態様は、上記移動を並進・回転移動ステージにより行なうことを特徴とする成膜方法である。
また、本発明の他の態様は、上記移動をマニピュレータにより行なうことを特徴とする成膜方法である。
【0022】
また、本発明の他の態様は、エネルギービーム源が複数であることを特徴とする成膜方法である。
また、本発明の他の態様は、ターゲットとエネルギービーム源と複数の微小試料の相対位置移動を行い、該試料相互の境界部に成膜して接合・接着を行うことを特徴とする成膜方法である。
【0023】
また、本発明の他の態様は、ターゲットと試料との間に遮蔽物を設置することを特徴とする成膜方法である。これにより、ターゲットから発生したスパッタ粒子がパターン形状を転写し、試料表面上にパターン形状の成膜ができる。また、より微小な領域の成膜を行うため、放射されるエネルギービームの径を制限して、ターゲットに照射する流域を微小とすることもできる。
【0024】
また、本発明の他の態様は、ターゲットが金属材料・樹脂材料・セラミック・半導体材料等、あらゆる材料をターゲットとして用いることができることを特徴とする成膜方法である。特に、エネルギービーム源として高速原子発生源が用いられるとき、ターゲットが金属・半導体・絶縁物・それらの複合物のどんな材料であっても、チャージアップがあっても、電気的に中性なビームなので、ターゲットへの照射ができ従って、成膜が可能となる。
【0025】
【実施例】
この発明の第1の実施例の成膜装置を図1に示す。この図に示すように、この装置は、微小領域にプラズマPを発生するためのもので、大径管1の先端に、内部にプラズマを保持する細管(プラズマ保持室)2が設けられている。その基端に電極3が設置され、先端にはターゲットTを保持するターゲット保持部4が開口して形成されている。ターゲットTは、細管2の軸線に対して所定の角度傾斜して保持され、保持部4に対向する側にはスパッタ粒子を放出する微小な放出孔5が形成されている。このように、細管2の先端を斜面にしてターゲットTを設置すると、スパッタ粒子の、飛散方向と微小穴位置を一致させやすいので、より効率的である。この放出孔5は円形穴に限らず長穴やスリットでもよい。円形穴の直径やスリットの幅は、1μmから100μmとする。
【0026】
この構成の成膜装置において、成膜を行なうには、電極3に電源6により誘導結合型高周波電界や容量結合型高周波電界を印加し、ターゲットTに電源7により相対的に負の500V〜約5kV程度の高電圧を印加する。すると、プラズマP中の荷電粒子の内、正のイオンが電界によって加速され、ターゲットTに衝撃し、ターゲットTからターゲット材料を構成する原子や分子のスパッタ粒子が放出される。これにより、試料Aにはおおよそスリットや円形穴と同様の寸法のパターンの成膜が成される。
【0027】
このとき、試料AとターゲットTとの位置関係は、固定である必要はなく、マニュピレータや回転・並進ステージにビーム源もしくは試料Aを設置して、試料Aの任意の面や場所に成膜を行うこともできる。
【0028】
図2は、細管2にプラズマPを発生させにくい場合に好適な実施例である。すなわち、上流側の大径管1内に他の電極8を設け、細管2よりも大きい体積領域でプラズマPを発生させる。これによって荷電粒子が大量に発生するため、細管2内にもプラズマPが発生しやすくするものである。図の例では、上流電極8に電源9により高周波電圧を印加し、下流電極3をアースし、ターゲットTに負の高電圧を印加する。
【0029】
図3は、この発明の他の実施例の成膜装置を示す。筒状ビーム源10の先端にターゲットTが、ビーム源10のビーム放出電極側に一体にして設置されている。図3の例では、(b)に示すように、ビーム放出電極11に細管12が取り付けられており、その細管12の先端に微小なターゲットTが設置されている。ビーム源10は周知のものでよく、また、発明者らの発明した特願平7−53231号に記載のビーム源と同様であっても良い。
【0030】
このとき、細管12が絶縁物の場合と導電物である場合が考えられる。導電物である場合は、細管12及びターゲットTがビーム放出電極11と同電位になる。このときは、ビーム放出電極11によって加速され、エネルギーを増したビームがターゲットTを衝撃し、ターゲット構成粒子がスパッタされる。
【0031】
一方、細管12が絶縁物の場合は、ターゲットTは、ビーム放出電極11と同電位である必要はないので、例えば、ビーム放出電極11よりも相対的に負の電位を印加することができる。このときは、ビームの内、正のイオンビームはさらにエネルギーの高い状態でターゲットTを衝撃することができ、それにより、効率的にスパッタ粒子を大量に放出することができる。
【0032】
細管12の先端部には、(b)に示すように、ターゲットT付近にスリットや円形穴の放出孔13が開いており、スパッタ粒子を試料Aの局所領域に到達させて成膜する。この様に、スパッタ粒子を放出する先端部が微小であるので、微小な試料Aのごく近傍までスパッタ粒子源が接近することができ、より精度の高い成膜や成膜接着ができる。
【0033】
ターゲットTの材料としては、アルミ、銅、クロム、タングステン、ニッケルなどの導電物、樹脂、接着剤、セラミック、テフロンなどの絶縁物、若しくはSi、GaAs、SiO2などの半導体材料やMoS2などの潤滑材料、又はそれらの複合材料などを用いることができる。
【0034】
図4は、図3の場合と、おおよそ同様であるが、ターゲットT自体をビーム放出電極として用いている場合である。例えば、銅やアルミなどの導電性材料を先端が細くなるように形成し、ビーム源10の下流部に設置してある。この装置において放電を行なうと、ビームがターゲット電極14を衝撃し、先端部の放出孔15からスパッタされた粒子が放出され、試料Aの微小領域に成膜や接着を行う。
【0035】
穴径やスリット幅は、1μm〜100μm程度である。従って、試料Aに成膜される幅や径が1μm〜100μmのパターンの成膜が達成される。図3及び図4に共通のことであるが、細管12やターゲット電極14にガス抜き用の穴を設けておくと、先端部の圧力を下げることができ、ビームが失活される度合いを減少することができる。
【0036】
図5は、この発明のさらに他の実施例である。この例では、ビーム源10の下流側電極20に、入口と出口の間が狭隘部21となったジェットノズルの形状をした放出孔22が設けられている。そして、(b)に示すように、放出孔22の狭隘部21の手前側のビームが衝撃する部分21aに、成膜や接着用の材料23を付着させておく。このような構成においては、ビームによってスパッタされた粒子や、衝撃加熱によって蒸気となったガス粒子が、アルゴンなどの導入気体と混合されて下流に放出される。そして、試料Aの微小領域に成膜や接着を行なうことができる。
【0037】
この場合は、ガス状態の噴流となって試料Aに照射されるので、スパッタ粒子による成膜よりも低エネルギー粒子の成膜となる。また、図には示していないが、成膜領域をさらに小さくするため、下流電極と試料Aの間にパターン穴の開いたマスクを設置してもよい。例えば、穴径が0.5mmのノズルで、穴径が10μmのマスクを用いると、径が約10μm程度の成膜ができる。
【0038】
上記の実施例は、いずれもビーム発生源とターゲットTを一体としたものであるが、以下に示すのは、ビーム発生源とターゲットTを別体とした実施例である。すなわち、ターゲットTを被成膜試料Aの近傍にその表面が試料Aの被成膜箇所に向くように配置し、このターゲットTから離れた位置にビーム発生源30を配置してエネルギービームを照射し、生成するスパッタ粒子を試料Aに局所的に当てて成膜を行なうものである。このようにすると、ビーム発生源30がスパッタにより汚染することがなく、長期に安定な稼動が行われる。
【0039】
図6ないし図9は、ビーム発生源30がターゲットTの上に焦点を結ぶように収束ビームを発生するものである。これらの例では、上流側の電極31及びビーム放出電極32の形状を工夫しているものである。例えば、図6では、収束点を中心とする球面状に電極表面の形状を加工し、その表面にビーム放出孔33を設けてある。このような構成においては、荷電粒子が平行に加速されてビームとして取り出される場合に比べて、ターゲットT上に照射されるビームの密度を高くすることができる。従って、スパッタ粒子密度も高くできるため、局所的な成膜や接着を効率的に行なうことが可能となる。
【0040】
また、収束性ビームであることの他の作用効果として、ビーム放出電極32とターゲットTとの間隔を調整することにより、ビームがターゲットTに照射される領域や密度を制御することができる。従って、スパッタ率の異なる材料や成膜領域を制御したい場合には有効である。実際には、例えば、石英やパイレックスの放電管に、ステンレスやグラファイト製の電極を設置する。このとき、放電管内径が、0.1mm〜10mmのものを用いることができる。
【0041】
図6において、ビーム放出電極32の球面状表面の作製が困難である場合は、図7に示すように、ビーム放出電極32aを先鋭化することもできる。これによっても、電界が集中しやすくなって、イオンの加速方向が、先鋭化した部分に集中し、ビームが収束する。
【0042】
図8は、上流側電極に電源34により高周波電界を印加する場合である。これは、前述の収束性小型ビーム源30の放電が起こりにくい場合に、高周波電圧を上流側電極に印加することによって、放電を起こし易くするものである。そのとき、ビーム放出電極には、プラズマP電位に比べ相対的に負の高電圧を印加すると、プラズマP中の正イオンは、ビーム放出電極方向に加速され、収束性ビーム発生することができる。
【0043】
図9も、同様に放電が起こりにくい場合に、新たに中間電極35を設け、電源36により誘導結合型高周波電圧や容量結合型高周波電圧を印加して放電が起こり易くするものである。なお、これら高周波電圧の代わりに、マイクロ波を導入することにより、放電を起こしやすくすることもできる。
【0044】
図10は、図6ないし図9で説明したような小型のビーム源30を用いてターゲットTや試料Aに対して相対移動を容易にしたもので、試料A、ターゲットT及びビーム発生源をそれぞれ適当な手段で回転、並進等を行ないながらビームを照射して成膜を行なう。従って、微小ターゲットTを試料Aの近傍に設置して、試料Aの任意の場所や面に任意のパターンの成膜を容易に行うことができる。また、図に示すように、複数のマイクロ部品の接合部や境界部に成膜を行って、固着や接着を行うことができる。例えば、径が10nm〜1mm程度のタングステンやステンレスやチタンなどのマイクロ円柱部品A1をポリイミドやシリコン基板A2に密着させて、その境界部に、成膜接着を行うことができる。
【0045】
このとき、基板A2に、組立用の穴を予め開けておき、組立を行ってから成膜接着を行うこともある。また、この様な作業を効率的に行うために、ターゲットT・ビーム源30・試料Aの相対位置関係を、マニュピレータや回転・並進ステージによって位置制御してもよい。また、光学顕微鏡・操作型電子顕微鏡・レーザー顕微鏡等によって、相対位置関係や成膜状況を観察できるようなシステムを用いることによってより効率的に作業が行える。
【0046】
図11は、小型のビーム源40の下流に微小ターゲットTを設置して、スパッタ成膜を行うとき、試料AとターゲットTの間に、パターン穴のあいたマスク41を設置することにより、微小パターン形状の成膜を達成するものである。例えば、ビーム径を10nm〜1mmとして、クロムの微小ターゲットTを用い、SiO2の微小試料Aの多面にパターン成膜を行うとき、あるいは複数の微小部品の成膜接着を行うときには、ターゲットTと試料Aとの間にパターン穴の開いたマスクを設置してパターン成膜を行う。また、例えば複数のマイクロ半導体デアイス部品の表面に金のパターン成膜を行い、これらの部品どうしを密着させ、加熱して、拡散接合を行ったり、デバイス間の回路接合を行うことができる。
【0047】
図12は、3次元微小構造物の局所にマイクロパターン形状の配線成膜を行う実施例である。これには、図3、図4及び図5に示す小型ビーム源10を用いた方式を利用する。ターゲットTからのスパッタ粒子を放出孔13,15が配線パターンとなっており、そのパターン穴を通過したスパッタ粒子が、微小平行平板構造の試料A3に成膜される。この素子は微小力歪みセンサ機能を持つ。この場合、試料A3は、ワイヤカットで作製された微小構造体で、幅100μm,長さ400μm,厚さ10μmである。
【0048】
このような平行平板構造の試料A3においては、微小力によって微小歪みが生じると、成膜された銅やアルミなどの導電性成膜配線が歪み抵抗線として作用し、微小歪みによる抵抗変化を示す。その出力をとり、平行平板構造に加えられた微小力と歪み抵抗変化の関係を予め校正しておくと、微小力センサとして用いることができるのである。
【0049】
【発明の効果】
以上、説明したように、本発明によると、小型のエネルギービーム源と微小試料を一体にして、もしくはターゲットのみを試料近傍に設置して、試料の近傍において、スパッタ粒子を微小領域に供給して、微小領域の成膜を実現できるため、上述したような、試料の任意の面や場所における微小パターン成膜や複数の微小部品の接合部や密着境界部に成膜を行い、効率的に成膜接着を行うことができる。
【0050】
従って、従来のスパッタ成膜装置では、困難であった微小試料の任意の面や場所の3次元・多面におけるパターン状の成膜や、微小試料の接着や固着、接合等の加工を実現することができ、半導体の補修や回路素子の配線修復・接合やマイクロマシニング技術・産業分野において大変有意義である。
【図面の簡単な説明】
【図1】この発明の、第1実施例の成膜装置を部分的に示す断面図である。
【図2】この発明の、第2実施例の成膜装置を部分的に示す断面図である。
【図3】この発明の、第3実施例の成膜装置を示す断面図である。
【図4】この発明の、第4実施例の成膜装置を示す断面図である。
【図5】この発明の、第5実施例の成膜装置を示す断面図である。
【図6】この発明の、第6実施例の成膜装置を示す断面図である。
【図7】この発明の、第7実施例の成膜装置を示す断面図である。
【図8】この発明の、第8実施例の成膜装置を示す断面図である。
【図9】この発明の、第9実施例の成膜装置を示す断面図である。
【図10】この発明の成膜方法の実施例を示す斜視図である。
【図11】この発明の成膜方法の他の実施例を示す断面図である。
【図12】この発明の成膜方法のさらに他の実施例を示す斜視図である。
【図13】従来のスパッタ成膜の方法を示す図である。
【符号の説明】
1 大径管
2,12 細管(プラズマ保持室)
3,8,20,31 電極
4 保持部
5,13,15,22 放出孔
6,7,9,34,36 電源
10,30,40 ビーム源
11,32,32a ビーム放出電極
14 ターゲット電極
21 狭隘部
21a 材料付着部
23 接着材料
33 ビーム放出孔
35 中間電極
41 マスク
A 試料
T ターゲット
P プラズマ

Claims (6)

  1. 内部にプラズマを保持するプラズマ保持室と、前記プラズマ中の荷電粒子を加速する手段と、前記プラズマ保持室の軸線に対して所定の角度に傾斜して保持されたターゲットと、前記荷電粒子がターゲットを衝撃することにより放出されるスパッタ粒子の飛散方向に配置されたスパッタ粒子放出孔とを備え、
    前記スパッタ粒子放出孔は、微小穴でターゲット付近に配置され、該微小穴からスパッタ粒子が放出され、試料の微小領域に成膜することを特徴とする成膜装置。
  2. 内部にプラズマを保持するプラズマ保持室と、前記プラズマ中の荷電粒子を加速する手段と、加速された荷電粒子の下流側電極に保持された成膜材料と、前記荷電粒子が成膜材料を衝撃することにより放出されるスパッタ粒子やガス粒子を含めて下流に放出するビーム出口部とを備え、
    前記ビーム出口部が狭隘部を有するノズル状であることを特徴とする成膜装置。
  3. エネルギービーム源のビーム出口の先端に、ターゲットが表面を該エネルギービームのビームラインに交差するように取り付けられ、ビーム照射により該ターゲットから生成するスパッタ粒子を試料の微小領域に導く導出部は、穴径やスリット幅が1μm〜100μmの放出孔が設けられていることを特徴とする成膜装置。
  4. エネルギービーム源のビーム出口部に成膜・接着材料を付着させる材料付着部が形成され、該エネルギービーム源内部で発生するエネルギー粒子を上記付着材料に照射してスパッタ放出又は加熱蒸発し、微小なビーム放出孔より放出して試料の微小領域に導くことを特徴とする成膜装置。
  5. 前記微小なビーム放出孔の穴径やスリット幅が1μm〜100μmであることを特徴とする請求項4に記載の成膜装置
  6. 前記微小なビーム放出孔はジェットノズルの形状であることを特徴とする請求項に記載の成膜装置
JP04662896A 1996-02-08 1996-02-08 成膜装置 Expired - Fee Related JP3681212B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04662896A JP3681212B2 (ja) 1996-02-08 1996-02-08 成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04662896A JP3681212B2 (ja) 1996-02-08 1996-02-08 成膜装置

Publications (2)

Publication Number Publication Date
JPH09209143A JPH09209143A (ja) 1997-08-12
JP3681212B2 true JP3681212B2 (ja) 2005-08-10

Family

ID=12752568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04662896A Expired - Fee Related JP3681212B2 (ja) 1996-02-08 1996-02-08 成膜装置

Country Status (1)

Country Link
JP (1) JP3681212B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020092616A1 (en) * 1999-06-23 2002-07-18 Seong I. Kim Apparatus for plasma treatment using capillary electrode discharge plasma shower
US20020122896A1 (en) * 2001-03-02 2002-09-05 Skion Corporation Capillary discharge plasma apparatus and method for surface treatment using the same
JP6489998B2 (ja) * 2015-11-13 2019-03-27 株式会社日本製鋼所 プラズマ発生部およびプラズマスパッタ装置

Also Published As

Publication number Publication date
JPH09209143A (ja) 1997-08-12

Similar Documents

Publication Publication Date Title
EP1455379B1 (en) Apparatus and method for examining specimen with a charged particle beam
US5998097A (en) Fabrication method employing energy beam source
Pratontep et al. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation
JP5259035B2 (ja) 成形され、低密度な集束イオンビーム
EP2405463A1 (en) Laser-ablation ion source with ion funnel
JP3681212B2 (ja) 成膜装置
WO2007125726A1 (ja) イメージングが可能なクラスタイオン衝撃によるイオン化方法および装置ならびにエッチング方法および装置
JP3624990B2 (ja) 微小物の接合方法
JP3035884B2 (ja) 微細加工装置
WO2001003145A1 (en) Apparatus and method for examining specimen with a charged particle beam
EP0969494A1 (en) Apparatus and method for examining specimen with a charged particle beam
KR101890634B1 (ko) 이온빔 처리 장치, 전극 어셈블리 및 전극 어셈블리의 세정 방법
JP3426062B2 (ja) 成膜方法
US20240105421A1 (en) Enhanced deposition rate by applying a negative voltage to a gas injection nozzle in fib systems
EP4376047A2 (en) Particle beam system
CN111886360B (zh) 离子束溅射设备和方法
US20020074317A1 (en) NanoEDM: an apparatus for machining and building atomic sized structures
JPH05283369A (ja) 微細加工装置
JPH09223594A (ja) ビーム源及び微細加工方法
JP3064201B2 (ja) 高速原子線源及びこれを用いた加工装置
JP2975899B2 (ja) イオン銃を用いた試料表面処理装置
JPH10106798A (ja) 高速原子線源
JP3639850B2 (ja) 電子ビーム励起プラズマスパッタリング装置
KR20200007313A (ko) 나노 코팅 효율 향상을 위한 아크 이온 발생장치
JP3618643B2 (ja) 成膜装置及び方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees