JP3679809B2 - 受信した通信信号のエラーを軽減する方法および装置 - Google Patents

受信した通信信号のエラーを軽減する方法および装置 Download PDF

Info

Publication number
JP3679809B2
JP3679809B2 JP51087096A JP51087096A JP3679809B2 JP 3679809 B2 JP3679809 B2 JP 3679809B2 JP 51087096 A JP51087096 A JP 51087096A JP 51087096 A JP51087096 A JP 51087096A JP 3679809 B2 JP3679809 B2 JP 3679809B2
Authority
JP
Japan
Prior art keywords
error
signal
indication
adpcm
mitigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51087096A
Other languages
English (en)
Other versions
JPH09505970A (ja
Inventor
レイヤード,ケビン・ミカエル
スミス,シブレン
マーコ,ポール・ディー
ウェイディン,クレイグ・ピー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/308,185 external-priority patent/US5687189A/en
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of JPH09505970A publication Critical patent/JPH09505970A/ja
Application granted granted Critical
Publication of JP3679809B2 publication Critical patent/JP3679809B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/06Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
    • H04B14/066Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using differential modulation with several bits [NDPCM]
    • H04B14/068Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using differential modulation with several bits [NDPCM] with adaptive feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

発明の分野
本発明は、一般的に通信システムに関し、更に特定すれば、受信した通信信号のエラー軽減システムに関するものである。
発明の背景
全ての通信システムにおいて鍵となる問題は、通信チャネルにおける信号の劣化またはエラーをいかにして最少に抑えるかということである。この問題は、セルラ無線機やPCS(個人通信サービス)システム等のように、マルチパス・フェーディング、シャドウイング効果(shadowing effect)、他の加入者や環境による妨害等が信号劣化に影響を及ぼし得る、無線通信システムにおいて特に重要である。その結果、受信機においてエラーの可能性を減少させたり(例えば、変調方式の改良)、エラーの検出または補正(例えば、CRC(巡回冗長検査),FEC(フォーワード・エラー補正符号化))するための多数の解決策が講じられてきた。
コストおよびシステムの複雑性を最少とするために、現行の(例えば、CT−2、第2世代コードレス電話機)、および提案されている(例えば、PCS)システムは、CCIT(International Telephone and Telegraph Consultative Committee)標準G.721適応予測符号化(ADPCM:Adaptive Differential Pulse Code Modulation)音声符号化法のような、エラー許容度(error tolerant)の低い手法を採用している。ADPCM標準は、元来、有線通信では適度なレートである、10-3までのランダム・ビット・エラー・レート(BER:bit error rate)に対してロバスト性を有するように設計されたものである。しかしながら、無線通信では、これよりも大幅に高いBERが発生するので、更なるエラー軽減方式(mitigation scheme)が必要となる。エラーを軽減するための最も一般的な手法は、指示されている信頼できない(corrupt)シーケンス内の入力ビットを全て0(ADCPMでは16進数の「F」またはH15)にセットすることである。この手法は、かかるシーケンスの持続期間の間、信号全体をミュート(mute)することにより、通常、軽減されない(non-mitigated)信号に対する音声出力の品質を改善するものである。しかしながら、この手法は、用いられるエラー検出方法による制限を受け、しばしばミューティング・プロセスによって更に劣化を招くことがある。例えば、あるフレームにCRCエラー指示が与えられた場合、軽度の(即ち、単一ビットまたはニブル)エラーと、より重度の(即ち、バースト)エラーとの区別がない。したがって、1ビットのみがエラーであってにも拘わらず、フレーム全体をミュートしてしまうという可能性がある。更に、ADPCMデコーダの出力は、現入力サンプルと以前の入力サンプルとの双方に基づいているので、入力を0にセットすると、ミューティングを解除した後ある時間にわたってADPCM出力に遷移(tran sient)が生じることになる。この遷移は、うるさい「クリック音」または「ポップ音」の形で音声出力に現れる可能性があり、時として、これらクリック音またはポップ音は、エラー軽減を行わない場合よりも不快なことがある。
望ましくないクリック音やポップ音を更に減少させるために、いくつかの復号後処理方式(post-decoding scheme)が提案されている。例えば、S.Kubota et al.は“Improved ADPCM Voice Transmission Employing Click Noise Detection Scheme for TDMA-TDD Systems”(Fourth International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC),September 11,1993)において、復号化されたPCM(パルス・コード変調)信号を、大きな信号レベル差またはダイナミック・レンジ・オーバーフローのような、クリック・ノイズをよりよく示す特性について測定するシステムを提案している。クリック特性の検出時に、現在のバーストが抑制される。これに関連した.Nakamura et al.の“Improved ADPCM Voice Transmission for TDMA-TDD Systems”(Proceedings of the 43rd Vehicular Technology Conference,1993)と題する論文では、バッファを用いてエラーなく復号化された最後のPCMフレーム/バーストを保持することを除いて、同様のシステムが提案されている。クリック特性の検出時に、現バーストはバッファされているバーストと置換される。これらの論文では単純なミューティングに対してはある程度の改善が報告されているが、各々に欠点がある。第1のシステムは、両方のミューティングの問題、即ち、潜在的に不快な無音期間と後続の遷移ノイズをかかえている。第2のシステムは、バースト全体の置換が必要であり、ADPCMチャネル・メモリが影響を受けないままとなり(即ち、PCMクリック音の抑制を中止した後に、転化されたニブル(corrupted nibble)がADPCM出力に影響を与え続ける)、復号後処理の複雑性の増大や遅延の延長という犠牲の下に達成される。更に、多くのシステムは、物理的にADPCM復号前処理および後処理の回路を分離させており(ADPCMと復号後処理段階が、チャネル情報が決定される所から物理的に離れている、無線ポート制御部(RPCU)の無線ポート(RP)配置されている、ある種のPCSシステムのように)、ADPCM段においてチャネル情報が要求される場合はいつも、異なる回路素子間で情報を通信するという、望ましくない必要性が増大することになる。
したがって、システムの複雑性およびコスト、ならびに復号化による遅延を最少に抑えつつ、受信した復号化信号におけるエラーを軽減するための改善されたシステムが、引き続き必要とされている。
【図面の簡単な説明】
第1図は、本発明を用いることができる通信システム全体を描いた図である。
第2図は、第1図の通信システムの一部を示す図である。
第3図は、本発明による通信受信機の一実施例を示すブロック図である。
第4図は、第3図の受信機のエラー予測器を示すブロック図である。
第5図は、第3図の受信機によって受信される信号のエラーを軽減する段階を示すフロー・チャートである。
第6図は、第4図のビット・エラー予測器と共に用いることができる、ADPCM適応量子化速度調節にADPCMニブル値を関連付けた、好適なFコード表を示す表である。
第7図は、本発明にしたがって用いられる、好適実施例の軽減値表を示す表である。
実施例の詳細な説明
従来技術では満足されなかった、エラー軽減手法の改善に対する必要性は、本発明によるエラー軽減システムによって満たされる。従来技術とは異なり、本発明は、信号品質およびエラー指示に基づいて、ワード/ニブル長の信号部分のエラーを軽減する手法を提供し、バースト状エラーおよびそれよりも分離されたエラーの双方に対処する適応型構造を含む。この新規なエラー軽減手法は、実質的に信号の復号化に先だって処理され、多くのシステムにおいて、既に使用可能なエラー/品質規準を利用して、容易に実施することができる。
第1図は、本発明を使用可能な通信システムのかかる一実施例を示す。このシステムでは、複数の加入者装置(ここでは無線機と呼ぶ)10をシステム内で通信を行うために利用することができる。このシステムでは、32Kbit/s(キロビット/秒)のADPCMデータ送信が、無線機10と多数の基地局即ち無線ポート(RP)11のいずれかとの間で行われる。RP11は各々基地サイト制御部(BSC)または無線ポート制御部(RPCU)、この場合12,13,14に接続されており、一方無線ポート制御部は、公衆電話交換網(PSTN)15と通信可能となっている。アクセス/移動度管理部16(例えば、移動交換センタ(MSC))を用いて、無線ポート12,13,14の各々を制御し、更に、無線ポート12,13,14は、典型的に、T1または同様の高速通信経路をその間に有する。
次に第2図を参照する。より詳細な図が、典型的な無線ポート制御部(この場合14)とアクセス/移動度管理部16とに接続されている、2台の無線ポート11を示している。アクセス/移動度管理部16は、無線アクセス・システム制御部とも呼ぶことができる。無線ポート11は双方共、無線送受信機21、ADPCM軽減部22、および基本レート・インターフェース23(ISDN(統合サービス・デジタル・ネットワーク)サービス用)を含む。無線ポート制御部14内では、個々の無線ポート線が、スイッチ25(制御器27によって制御される)によって、種々のADPCM符号変換器26に切り替え可能となっており、更に、公衆電話交換網15へのT1インターフェイス28を通じて、T1線に接続可能となっている。図示のように、例えば、ISDNサービス用の64Kbit/sのPCMのような公衆電話交換網に接続されているADPCM情報の符号変換、この場合は復号を行えばよい。ある無線ポート11において受信されたADPCMを他の無線ポート11にある無線機10に送信する場合、ADPCMデータは、無線ポート制御部14に接続されている他の無線ポート11、またはT1スパン線(T1 span line)を通じて第1図の他の無線ポート制御部12,13の一方に、ADPCMデータとして転送することができる。かかる方式では、ADPCM音声軽減即ちノイズ制御は、好ましくは既に行われていることが必要である。その理由は、PSTN15への接続の前に無線ポート制御部において復号化されるまでは、かかる情報は通常PCMとして存在せず、品質および/またはCRC情報を付加して転送することにより、データのオーバーヘッドが増大するからである。
無線ポート11の受信機の基本的なブロック図を第3図に示す。受信機11は、rf(無線周波数)復調器31に接続するアンテナ30を含む。復調器31はクロック復元およびデータ・フォーマット回路を含む。受信データも、チャネルまたは信号品質指示(QI)検出器32によって分析される。検出器32は、その最も簡単な形式では、位相誤差または異常データの存在(16進数「0」ニブルのような)について監視するものである。エラー検出方法の追加が望ましくない、コストに敏感な用途または複雑性を低減する用途(例えば、多数のCT−2システムのような)に特に有用である第1実施例では、フォーマットされたADPCMデータがADPCM軽減回路35(この実施例では、これのみでADPCM軽減部22を形成する)に印加される。ADPCM軽減回路35は、単純なデジタル回路とすることができるが、望ましければ、この実施例の音声軽減を行うプロセッサとすることも可能である。QI検出器32からの信号品質指示がノイズまたはその他の信号品質における劣化を指示する場合、ADPCMフォーマット・データを、以下に挙げる好適な手法の1つにしたがって修正する。信号品質が十分であれば、この実施例ではフォーマットADPCMニブルにADPCMエラー軽減器35を単に通過させるのみである。第2実施例では、受信機はCRC(巡回冗長検査)検出器33およびエラー予測器34(エラー軽減器35と共に第2図の軽減部22を形成する)による、付加的な信号品質の測定を含む。この動作については、以下でより詳しく論じる。
第1実施例に対する好適な手法では、全ての0でない予測差分値を所定値に調節する。先に注記したように、16進数「F」は大きさが0の差分に対応する(16進数「0」は不当なADPCM符号化値である)。16進数「1」〜「7」は、予測値からの正差分を表わし、16進数「8」〜「E」は予測値からの負差分を表わす。この好適な場合は、「1」から「7」までの受信した全ての16進数を16進数「3」で置換し、「8」から「E」までの受信した16進数を16進数「C」で置換するので、受信シーケンス0010 0001 1111 1110(即ち、21FE(16進数))は、数列0011 0011 1111 1100(即ち、33FC(16進数))に変更される。このニブルの置換は、従来技術のミューティング手法よりもかなり高い出力品質を生成することが見出されている。
第1実施例の第2手法では、同一のADPCMデータ21FEに対して、正値および負値双方の大きさを1だけ小さくすることによる修正を行う。これは、16進数「1」から16進数「7」までの値である正の16進数から1を減算し、16進数「8」から16進数「E」までの値である負の16進数に1を加えることによって達成される。最少の正差分を表わす16進数「1」がある場合、16進数「1」は、ゼロ変動に対応する16進数に変換される。それは16進数「F」である。結果的に得られる軽減音声は、16進数1FFFとなる。この手法は、同様に、全ての転化データを0にする(即ち、16進数の「F」に変換する)従来の手法に比べて、大幅なノイズ・バーストの低減を図ることもできる。受信ADPCMデータの大きさを、所定の一定の大きさ、または受信したノイズを含む信号のそれに比較して小さい大きさに変更することにより、改善された音声出力品質が得られる。これらの手法は、ノイズ抑制を直接ADPCMデータに適用可能であるので、システム構成が簡素化し、システムの問題点が減少し、コストも低減する。
第2実施例は、特にセルラおよびPCSシステムに応用され(全ての通信システムにも有用であることに変わりないが)、追加的なエラー検出手法を利用することができる。本発明を使用可能なかかるPCSシステムの1つが、提案されている個人アクセス通信システム(PACS:Personal Access Communication System)に基づくマイクロセルラ・システムである。PACSシステムは、ADPCM音声符号化およびCRCに基づくエラー検出を備えた、π/4DQPSK(差分直角位相シフト・キー:differential quaternary phse shift keyed)変調を用いた、時分割多重アクセス(TDMA)システムである。差分符号化π/4DQPSK変調方式では、情報は連続シンボル間の位相遷移で送信され、4回の有効な位相遷移を用いて、送信システム当たり2ビットを表わす。PACS受信機の変調器は、差分位相ストリームからのπ/4ラディアンを除去し、π/4DQPSKを効果的にDQPSKにマッピングする。各遷移からπ/4ラディアンを減算した後、信号空間内の有効な信号点配置(constellation)は、0,π/2,π,3π/2ラディアンであり、ビット対00,01,11,10を表わす。復調器は入来信号の絶対位相を抽出し、連続シンボルの位相値を減算して、送信されたビット対を判定する。
しかしながら、チャネル・フェーディングや干渉のために、入来信号の受信差分位相値は、必ずしも有効な位相遷移/コンステレーション点の1つに該当するとは限らない。ビット対を各遷移に割り当てるために、変調器は受信した差分位相値に対して、最も近い有効遷移を選択し、この遷移をビット対にマッピングする。受信位相遷移が送信位相遷移からπ/4以上ずれている場合、復調器は間違った有効位相遷移を割り当て、その結果ビット・エラーが発生する。また、PACSシステムの中にはビット対のグレイ・コーディング(Gray coding)を用いるものもあるので、隣接する有効位相遷移は、1箇所の位置においてのみ異なるビット対を表わすことも注記しておく。
更にまた、PACS TDMAシステムは8タイム・スロットを含む2.5ms(ミリ秒)構造を用いていることも指摘する価値があるであろう。各タイム・スロットは120ビットで構成され、その内の90ビットは(105,90)CRCコードによって保護されている。更に、これら90ビットの内、80ビット(保持ビット(bearer bits)と呼ぶ)を用いて、20個の2.5msの音声を表わす4ビット(a3−a0)G.721ADPCMニブルを搬送する。これらのニブルは、80個の保持ビット中最初のビットが最初のADPCMニブルのMSB(最上位ビット)となるように整列される。更に、これらのニブルは、1つのADPCMニブルの最初の2ビットが単一シンボルで表されるように配列される。G.721標準は、4ビット・ニブルを使用し、予測エラーを符号と大きさという形式で表わすことを要求する。1つのニブルは、8kHz(キロヘルツ)のサンプリング・レートで、各音声サンプルに対して符号化される。各ニブルのMSBは符号ビットであり、残りの3ビットが予測エラーの大きさを表わすために用いられる。
第3図を参照すると、この第2実施例(例示のためにPACS方式を用いる)において、受信符号化音声信号(例えば、PACSではπ/4DQPSK変調された、適応予測符号化信号)が、アンテナ30を通じて受信される。この信号は復調器31において復調され、復調符号化音声信号(例えば、各々20個のADPCMニブルを有するフレームを含む復調ADPCM信号であり、各ニブルは2ビット・シンボル2個からなる群である)を出力する。復調ADPCM信号に加えて、復調器は、エラー検出器33、QI検出器32、およびエラー予測器34への出力も有する。エラー検出器33、好ましくはCRCエラー検出器は、CRC符号化フレームのチェック・サム・ビット中のエラー指示を探し、例えば、20シンボル/ニブル・フレームの中にエラーが検出されたか否かを示すエラー指示信号を出力する。品質指示検出器32は、典型的に(この第2実施例では)、チャネル品質の単調関数に基づいて、品質指示(QI)を判定する。かかる規準の1つは、フレーム/タイム・スロットの全情報保持シンボルの、最も近いコンステレーション点までの平均距離の逆数である(例えば、全てが00コンステレーション点300に近接するように調節される場合、全てのシンボル値のベクトル和の位置)。このQIを所定スレシホルド値と比較し、平均がスレシホルドより大きいか否かを示すQI信号を出力する。別のQIの規準として、キャリア対干渉およびノイズ(C/I+N)比をあげることができよう。(逆数を用いるか否かは、スレシホルドよりも小さいQIを規準とするソフト補正動作(soft correction operation)を引用する際に、一貫性を持たせるための慣習上のことである。動作がスレシホルドより小さいことまたは大きいことのどちらを規準とするかは、用いられるQIの規準によって異なり、非単調関数に基づくものを含めて、記載されたものとは異なる規準も、いずれのQIにも使用可能であることを当業者は認めよう。)
復調された受信ADPCM信号、即ち、20ニブル・ストリームは、ADPCMエラー軽減器35に出力される。エラー軽減器35は、エラーが検出されないとき、例えばCRCエラー指示信号がないとき(あるいは、第1実施例におけるように、不当ニブルまたは位相遷移の指示がない場合)には、ニブルを変化させることなくADPCM復号器(例えば、第2図のトランスコーダ26)に送出するように動作することが好ましい。エラーが検出された場合、エラー軽減器35はエラー予測器34によって判定された軽減の種類を適用する。一旦適切な種類/レベルの軽減が適用されたなら、エラー軽減器35のエラー軽減信号出力は送出され、ADPCM復号器によって更に処理されて、例えば、PCMビット・ストリームが得られ、PSTN15を通じて通信される。
エラー予測器34およびADPCMエラー軽減器35の動作は、ここで更に第4図ないし第7図を参照することによって、よりよく理解することができよう。まず第4図を見ると、エラー予測器34の好適実施例が示されている。ここでは、エラー予測器34は、ニブル・カウンタ36、n−ビン・ヒストグラム差分器(n-bin histogram differencer)37、および、各々復号器31からのデータ(ニブルI(k))入力を受信し(ステップ50)、転化レベル予測器39に出力が結合されている、F表加算器38を含む。転化レベル予測器39も、エラー指示(CRC)やチャネル品質指示(QI)情報を受信するために、入力がCRC検出器34およびQI検出器32に結合されていることが好ましい。この実施例では、フレーム(CRC)エラー指示、そして使われていればQI値は全て、同一タイム・スロットから得られる。実際には、フレーム当たり1つのタイム・スロットを用いてこのデータを供給する。これが意味するのは、CRCおよびQI情報は(PACSでは)2.5ms毎に得られるということである。CRCエラー指示をエラー予測器34に供給する主な目的は、有効なCRCエラー指示が受信されたときに、処理/電力の消費を回避することである。上述のように、CRCが有効なときは、フレームの全ニブルは変更されることなく、ADPCMエラー軽減器35によってADPCM復号器に渡される(第5図のステップ58)。QI情報は、ADPCMニブルの転化レベルを判定するための付加入力として用いられる。
CRC検出器33がフレーム内のエラーを指示する場合、ADPCMエラー軽減器35は、エラー予測器34からの転化レベル指示(例えば、軽度、中度、重度)に基づいて、数個の可能な軽減技法の内の1つを適用する。エラー予測器34では、ニブル・カウンタ36が現フレームの各ニブルを受信し(ステップ50)、受信したハイ値(high value)のニブルの数を計数する(例えば、7および8の数(即ち、+/−7))。+/−7は最も高い値なので、これら受信したハイ値が余りに多い場合は、信号転化の指示となる。好ましくは、越えると転化の可能性があるレベルを表わす所定のスレシホルド値を用いて、記憶した計数値と比較する。あるいは、一連のスレシホールド値、およびその他の値(例えば、+/−6)を用いてもよい。各フレームの端部において、計数値を転化レベル予測器39に出力する(ステップ51)。N−ビン・ヒストグラム部37も同様にADPCMニブルを受信し、複数の部類のニブルの計数値をビンに記憶する。簡単で好適な手法では、2つのビンを用いて、絶対値0〜3および4〜7の発生度数(occurrence)を記憶する。次に、双方のビンに記憶された数値間の差を取る。この差を更に所定のスレシホルドと比較すれば、(この場合も、1組または適応値のいずれか)、転化の指示が得られる。7ビン・ヒストグラムを設けて全ての値の発生を連続的に監視可能とすることを含め、カウンタ36および差分器37双方に対する修正が可能であることを、当業者は認めよう。しかしながら、妥協点があり、全7ビン・ヒストグラムの実施には追加処理等を必要とするので、CT−2および殆どのPCSにように、用途によっては望ましくない場合もある。差分値も同様に転化レベル予測器39に送出される(ステップ51)。
加算器38は、「F」表を利用することによって機能することが好ましい。この「F」表は、ニブル値に基づいてADPCM量子化器に対してなされた速度調節に関連付けられたものである。かかる表の1つを第6図に示す。ニブルの受信時に、加算器38はF表から対応するFコードを調べ、20ニブル・フレーム内の全コードを加算する。この合計も転化レベル予測器39に送出され(ステップ51)、双方とも転化の指示として、そして転化レベルの決定の際に用いられる。
ハイ・ニブル計数値、差分値、およびFコードの和の受信時に、そして好ましくはフレーム・エラー(CRC障害)指示(ステップ52,53)およびチャネルQI(ステップ54)の受信時に、衝突レベル予測器39は、指示された最も可能性のある複数の転化レベルの中から最適な1つを決定し(ステップ55)、転化レベル指示をADPCMエラー軽減器35に供給する。転化レベル指示は、5つの入力全てに基づいて決定されるのが好ましいが、特定の設計ファクタに応じて、これらのまたは付加的なファクタをも含めた組み合わせを考慮してもよい。
多量の付加処理を必要とせずに軽減を最適化するために、転化レベル指示を決定する現好適実施例は、上述の5つの入力に対して以下にあげる具体的な規則を採用することを含む。まず、指示された転化信号の持続期間に関するチェックを行う。転化レベル予測器は、いくつかの以前の入力値を記憶するように動作し、この場合はCRCフレーム・エラー指示を記憶するように動作する。したがって、転化フレーム・スレシホルドを越えた場合(例えば、以前の10フレーム中6フレームで、CRCチェック・サムにエラーがあった場合)、転化レベル指示は自動的にハイにセットされる。
第2に、好ましくは信号QIをチェックする。現フレームに対するQI値が、転化フレームに対して高品質の信号受信を指示している場合、現好適プロセスは、以下の手順を採用することができる。まず、0〜3ビンから4〜7ビンを引いた差分が、軽度スレシホルド値10に等しいかあるいはこれを超過する場合、これは軽度の転化を示す良好な指示であるので、軽度転化レベル指示が出力される。
第3に、現n−ビン・ヒストグラムの分析を行う。絶対値0〜3および4〜7に対するビンを用いた2−ビン・ヒストグラムでは、ビン当たりのニブル数はフレーム毎に異なるので、この差分値をいくつかのスレシホルドと比較する。
例えば、4つのスレシホルド0,2,6,10の場合、これは軽度の転化の指示であり、軽度転化レベル指示を出力する。第2に、この差分が重度スレシホルド値0未満である場合、これは重度転化の指示であり、重度転化レベル指示を出力する。
次に、差分値が第1中間スレシホルド6より大きく、軽度スレシホルド10より小さい場合、Fコード加算パラメータ(即ち、Fコード加算器38による現フレームの全Fコードの和)を、以前の6個の非転化フレームの最大Fコードの和と比較することが好ましい(これらの和は、同様に転化レベル予測器39に記憶される)。ハイ・ニブル計数値(即ち、ニブル・カウンタ36からの現フレーム内の’+/−7’ニブルの数)を用いることも好ましい。これらのパラメータに基づいて、転化レベル指示を以下のように決定することが好ましい。(1)Fコードの和が30と等しいかあるいはこれを超過する場合、または(2)Fコードの和が19より大きく30より小さく、かつこの和が以前のフレームの最大Fコード和よりも5以上の値だけ超過している場合、重度転化レベル指示を選択する。(1)Fコードの和が10に等しいかあるいはこれを超過する場合、または(2)Fコードの和が10より大きく20より小さい場合で、かつ、(i)以前のフレームの最大Fコードの和とFコードの和との差が5以上である場合、または(ii)転化フレーム内の’+/−7’ニブルの数が1を超過する場合、軽度転化レベル指示を選択する。(1)Fコードの和が30に等しいかあるいはこれを超過する場合、(2)Fコードの和が19より大きく30未満であり、かつこの和が以前のフレームの最大Fコードの和よりも5以上の値だけ超過しない場合、および(3)Fコードの和が10より大きく20未満であり、かつ(i)以前のフレームの最大Fコードの和とFコードの和との差が5未満であるか、または(ii)転化フレーム内の’+/−7’ニブルの数が1以下である場合、中度転化レベルを選択する。
次に、この差分が第2中間スレシホールド2以上であり、第1中間スレシホルド6より小さい場合、転化レベル指示を以下のように決定することが好ましい。(1)Fコードの和が30に等しいかあるいはこれを超過する場合、または(2)Fコードの和が19より大きく30未満であり、かつこの和が以前のフレームの最大Fコードの和よりも5以上の値だけ大きい場合、重度転化レベル指示を選択する。(1)Fコードの和が20未満で、転化フレーム内の’+/−7’ニブルの数が1より大きい場合、軽度転化レベル指示を選択する。その他の場合、中度転化レベル指示を選択する。
最後に、差分が重度スレシホルド0以上で、第2中間スレシホルド2未満である場合、転化レベル指示を以下のようにして決定することが好ましい。(1)Fコードの和が30に等しいかあるいはそれを超過する場合、(2)Fコードの和が19より大きく30未満であり、かつこの和が以前のフレームの最大Fコードの和より5の値以上超過する場合、または(3)Fコードの和が20未満であり、この和が以前のフレームの最大Fコードの和よりも大きい場合、重度転化レベル指示を選択する。その他の場合、中度転化レベル指示を選択する。
上述の例は、PACS型フォーマッティング、即ち、1フレーム当たり20ニブルを有する2.5msec(ミリ秒)フレームに対する、現好適実施例の例示に過ぎないことは認められよう。これより大きいフレームまたは異なる設計パラメータについては、スレシホルドの数や値等を変更する可能性がある。しかしながら、選択したシステム設計に基づいてそれらをいかに調節するかについて、当業者は容易に理解するであろう。更に、第3図および第4図の実施例の回路は論理的に分離されているが、これらの機能を実際に実施する際には、デジタル信号プロセッサ(DSP)を適正にプログラムすること、個別素子を互いに結合すること、および1つ以上の特定用途集積回路(ASIC)の組み合わせを用いることを含む、種々の異なる態様で達成可能であることを当業者は認めよう。かかる態様はここにあげたものに限定される訳ではない。また、これら実施例の記載は例示を意図したものであって、本発明の範囲を限定する訳ではない。
一旦エラー軽減器35が転化レベル指示を受信したなら、指示された転化レベル(ステップ56,57)に対する適切な値の組に基づいて、複数の所定の軽減レベル、例えば、ニブル置換値の組の1つを、受信したADPCMニブルに選択する(ステップ50)。かかる置換値の表を第7図の表に示す。言い換えれば、データ値I(k)が参照値と異なる場合、それを表からの参照値で置換し、適切な軽減レベルとする。中間転化レベル指示置換値は、上述の第1実施例の第1手法に関連して用いたものと同一であることは認められよう。即ち、非ゼロ値を+/−3値で置換する訳である。また、全ての値を置換するのではなく、1組の所定値を用いて置換を必要とする所定部類のADPCMシンボルのみを置換したり、あるいは、例えば第1実施例におけるように、かかるニブルの値を1だけ減少させるように動作させてもよい。エラー軽減されたADPCMニブルは、次に復号化処理に送られ、次のフレームに対してプロセスが繰り返される(ステップ59)。
以上のように、第2実施例は、フレームのミューティングや復号後処理回路を必要とすることなく、軽減の改善を図ることができる。「ミューティング」がエラー軽減器35によって行われる範囲では、ニブル毎の置換を基本にミューティングが行われるので、フレームのミュートによって生じる相当な大きさの遷移が回避される。また、これは適応型であり、転化のレベルに基づいて、種々のレベル/形式の「ミューティング」または置換の実行を可能とし、更に、種々の異なるシステムや使用可能なパラメータに容易に適応可能である。結果的に、回路または処理に追加するコストを最少に抑えて、信号の改善が達成される。
上述の実施例では、無線通信システムにおけるエラー軽減のための2つの好適な実施形態を示したが、本発明は、エラー軽減が有用な他の形式の通信システムにも適用可能であることは理解されよう。したがって、ADPCM符号化を用いたPCSおよびCT−2システム(加入者ユニットならびにインフラストラクチャ基地局および制御装置の双方を含む)に特定の用途を有するが、異なる形式の符号化を用いるシステム、ワイヤ(例えば、撚線対、同軸ケーブル、および光ファイバ)上を通信するシステムを含む多数のシステムにも使用可能であり、本発明の精神および範囲から逸脱することなく種々の修正や変更が可能であることは、当業者には明白であろう。したがって、本発明の範囲は、以下の請求の範囲に鑑みて理解されるべきである。

Claims (6)

  1. 複数のフレームを有する適応型予測符号化(ADPCM)受信信号の品質を改善する方法であって:
    (a)前記ADPCM信号のフレームにエラーが存在する場合に所定数のフレームに対してエラー指示を判定する段階;
    (b)前記所定数のフレームに対して発生したエラー指示の回数に基づいて、複数の転化レベルの指示内容の1つを決定する段階;および
    (c)前記エラー指示が前記信号のエラーを指示する場合、前記転化レベルの指示内容の1つに基づいて、前記信号を複数の軽減レベルのうちの対応の1つでエラー軽減を行う段階;
    から成ることを特徴とする方法。
  2. 段階(b)は、更に、エラー指示の発生回数が所定の転化フレーム・スレシホルドを越えた場合、重度の転化レベル指示を選択する段階を含むことを特徴とする請求項1記載の方法。
  3. 段階(b)は更に:
    少なくとも第1グループのADPCMニブルと第2グループのADPCMニブルとを加算し、前記少なくとも第1および第2グループのヒストグラムを形成する段階;および
    前記ヒストグラムから転化レベルの指示内容を決定する段階;
    を含むことを特徴とする請求項1記載の方法。
  4. 予測符号化(PCM)受信信号の品質を改善する方法であって:
    (a)前記信号にエラーがあるか否かを示すエラー指示を判定する段階;
    (a’)転化レベルを予測する段階;および
    (b)前記エラー指示により前記信号内のエラーが指示される場合、予測符号化シンボルの所定のカテゴリの各予測符号化シンボルを、段階(a’)において予測された転化レベルに基づいて、大きさが0よりも大きい複数組の所定値の内の1つに置換することによって、前記信号のエラーを軽減する段階;
    から成ることを特徴とする方法。
  5. 適応型予測符号化(ADPCM)受信信号の品質を改善した通信装置であって:
    (a)前記信号を受信し、該信号にエラーがあるか否かのエラー指示を判定するように動作可能なエラー指示器;
    (b)前記エラー指示器に結合され、前記信号を受信し、該信号から複数の転化レベルの指示内容の1つを判定し、前記エラー指示により前記信号内のエラーを指示する場合、前記1つの転化レベルの指示内容に基づいて複数の軽減レベルの対応の1つによって前記信号のエラーを軽減し、エラー軽減信号を出力するエラー軽減器;および
    (c)前記エラー検出器に結合され、前記エラー軽減信号を復号するように動作可能なADPCM復号器;
    から成ることを特徴とする通信装置。
  6. 前記エラー軽減器は、軽減部と、前記エラー検出器および前記軽減部に結合されたエラー予測器とから成り、前記エラー予測器は前記信号から前記複数の転化レベルの指示内容の1つを判定するように動作可能であり、前記軽減部は前記エラー指示により前記信号内のエラーが示される場合に前記1つの転化レベルの指示内容に基づいて前記複数の軽減レベルのうちの対応の1つによって前記信号のエラーを軽減し、該エラー軽減信号を出力するように動作可能であり;
    更に、前記エラー軽減器は前記エラー予測器に結合されたチャンネル品質指示検出器を含み、前記エラー予測器はヒストグラム・ユニットと該ヒストグラム・ユニットに結合された転化レベル予測器とから成ることを特徴とする請求項5に記載の通信装置。
JP51087096A 1994-09-19 1995-08-03 受信した通信信号のエラーを軽減する方法および装置 Expired - Fee Related JP3679809B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/308,185 1994-09-19
US08/308,185 US5687189A (en) 1994-09-19 1994-09-19 Method of noise reduction for an ADPCM signal
US08/450,454 1995-05-25
US08/450,454 US5799039A (en) 1994-09-19 1995-05-25 Method and apparatus for error mitigating a received communication signal
PCT/US1995/009814 WO1996009700A1 (en) 1994-09-19 1995-08-03 Method and apparatus for error mitigating a received communication signal

Publications (2)

Publication Number Publication Date
JPH09505970A JPH09505970A (ja) 1997-06-10
JP3679809B2 true JP3679809B2 (ja) 2005-08-03

Family

ID=26976133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51087096A Expired - Fee Related JP3679809B2 (ja) 1994-09-19 1995-08-03 受信した通信信号のエラーを軽減する方法および装置

Country Status (5)

Country Link
US (1) US5799039A (ja)
EP (1) EP0729676A4 (ja)
JP (1) JP3679809B2 (ja)
FI (1) FI962101A (ja)
WO (1) WO1996009700A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927242B2 (ja) * 1996-06-28 1999-07-28 日本電気株式会社 音声符号データの誤り処理装置及び誤り処理方法
IT1284784B1 (it) * 1996-09-09 1998-05-21 Olivetti Telemedia Spa Sistema e dispositivo multiprotocollo per lo scambio di informazioni.
US6047036A (en) * 1997-05-02 2000-04-04 Advanced Micro Devices, Inc. System and method for implementing a mute voice signal upon reception of a ADPCM zero nibble in wireless communications
AU7655298A (en) * 1997-07-02 1999-01-25 Alcatel Alsthom Compagnie Generale D'electricite Device for transmitting a coded adpcm voice signal
US6078620A (en) * 1997-07-31 2000-06-20 Lucent Technologies, Inc. Method and apparatus for performing adaptive differential pulse code modulation
US6622275B2 (en) * 1998-09-12 2003-09-16 Qualcomm, Incorporated Method and apparatus supporting TDD/TTY modulation over vocoded channels
US6148206A (en) * 1998-12-16 2000-11-14 Motorola, Inc. Method for concealing a handover mute
US6578162B1 (en) * 1999-01-20 2003-06-10 Skyworks Solutions, Inc. Error recovery method and apparatus for ADPCM encoded speech
JP2002006890A (ja) * 2000-06-23 2002-01-11 Uniden Corp 音声信号品質改善装置
JP2002006891A (ja) * 2000-06-23 2002-01-11 Uniden Corp 音声信号品質改善装置
JP3539490B2 (ja) * 2001-02-09 2004-07-07 日本電気株式会社 音声符号データの誤り処理装置
US7236545B2 (en) * 2001-06-08 2007-06-26 Broadcom Corporation Chip blanking and processing in SCDMA to mitigate impulse and burst noise and/or distortion
JP4398323B2 (ja) * 2004-08-09 2010-01-13 ユニデン株式会社 デジタル無線通信装置
US20060083322A1 (en) * 2004-10-15 2006-04-20 Desjardins Philip Method and apparatus for detecting transmission errors for digital subscriber lines
US7397821B2 (en) * 2004-12-20 2008-07-08 Motorola, Inc. Data error detection and mitigation systems and supporting method and apparatus
JP5256756B2 (ja) 2008-02-05 2013-08-07 パナソニック株式会社 Adpcm音声伝送システムの音声処理装置およびその音声処理方法
US20100185441A1 (en) * 2009-01-21 2010-07-22 Cambridge Silicon Radio Limited Error Concealment
US8676573B2 (en) * 2009-03-30 2014-03-18 Cambridge Silicon Radio Limited Error concealment
US8316267B2 (en) 2009-05-01 2012-11-20 Cambridge Silicon Radio Limited Error concealment
JP5599487B2 (ja) * 2013-04-24 2014-10-01 パナソニック株式会社 Adpcm音声伝送システムの音声処理装置およびその音声処理方法
US9161272B2 (en) 2013-10-24 2015-10-13 Motorola Solutions, Inc. Method and apparatus to achieve lossless call in view of a temporary reception issue
US10424311B2 (en) * 2017-01-30 2019-09-24 Cirrus Logic, Inc. Auto-mute audio processing
EP4318468A1 (en) * 2022-08-05 2024-02-07 Oticon A/s Hearing aid and method of performing bit error concealment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513426A (en) * 1982-12-20 1985-04-23 At&T Bell Laboratories Adaptive differential pulse code modulation
US4907248A (en) * 1987-09-22 1990-03-06 Zenith Electronics Corporation Error correction for digital signal transmission
US4955037A (en) * 1989-01-19 1990-09-04 Bell Communications Research Inc. Apparatus and methods for recovering alignment from a non-ideally encoded multi-bit digital signal
GB9024515D0 (en) * 1990-11-12 1991-01-02 Texas Instruments Ltd Improvements in or relating to digital communications
US5319573A (en) * 1992-01-15 1994-06-07 Motorola, Inc. Method and apparatus for noise burst detection in a signal processor
US5247544A (en) * 1992-03-26 1993-09-21 Motorola, Inc. Phase adjustment method and apparatus for use in a clock recovery circuit
US5511095A (en) * 1992-04-15 1996-04-23 Sanyo Electric Co., Ltd. Audio signal coding and decoding device
US5309443A (en) * 1992-06-04 1994-05-03 Motorola, Inc. Dynamic muting method for ADPCM coded speech
JP2845705B2 (ja) * 1993-01-14 1999-01-13 日本電気株式会社 多レベル符号化変調通信装置
US5526398A (en) * 1993-05-04 1996-06-11 Motorola, Inc. Method of operating a combination radiotelephone and paging device

Also Published As

Publication number Publication date
FI962101A0 (fi) 1996-05-17
US5799039A (en) 1998-08-25
EP0729676A1 (en) 1996-09-04
JPH09505970A (ja) 1997-06-10
WO1996009700A1 (en) 1996-03-28
EP0729676A4 (en) 2004-12-08
FI962101A (fi) 1996-05-17

Similar Documents

Publication Publication Date Title
JP3679809B2 (ja) 受信した通信信号のエラーを軽減する方法および装置
EP0669026B1 (en) Method and apparatus for erasing bad frames of information in a communication system
US6182264B1 (en) Smart dynamic selection of error correction methods for DECT based data services
US5537410A (en) Subsequent frame variable data rate indication method
KR100437851B1 (ko) 추론적 지식을 이용한 코덱 모드 디코딩
RU2231227C2 (ru) Способ и система поочередной передачи информации о режиме кодека
US5768291A (en) Method and apparatus for error mitigating a received communication signal
US5862178A (en) Method and apparatus for speech transmission in a mobile communications system
EP1190560A1 (en) Low-rate speech coder for non-speech data transmission
US7403892B2 (en) AMR multimode codec for coding speech signals having different degrees for robustness
Bruhn et al. Concepts and solutions for link adaptation and inband signaling for the GSM AMR speech coding standard
US6347124B1 (en) System and method of soft decision decoding
JP5195402B2 (ja) 無線通信装置及び無線通信システム
US5727031A (en) Adaptive gain controller
JP4255913B2 (ja) Cdmaシステムにおける不連続送信チャネルの送信電力を制御する方法および装置
US6460156B1 (en) Data transmission method and system
US20050078615A1 (en) Method and device for duplex communication
US5687189A (en) Method of noise reduction for an ADPCM signal
US20020198708A1 (en) Vocoder for a mobile terminal using discontinuous transmission
JP2002517128A (ja) 適応型チャンネルエンコーダ及びデコーダを備える伝送システム
JPH0697846A (ja) 無線通信装置
US20030016080A1 (en) Apparatus for decoding receiving signal
JP2000196568A (ja) Adpcm補正方式
MXPA01002141A (en) Codec mode decoding using a priori knowledge
MXPA01002701A (es) Metodo y sistema para transmision alterna de informacion de modo codec

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees