JP3677330B2 - Electrolysis method of saline solution - Google Patents

Electrolysis method of saline solution Download PDF

Info

Publication number
JP3677330B2
JP3677330B2 JP27434995A JP27434995A JP3677330B2 JP 3677330 B2 JP3677330 B2 JP 3677330B2 JP 27434995 A JP27434995 A JP 27434995A JP 27434995 A JP27434995 A JP 27434995A JP 3677330 B2 JP3677330 B2 JP 3677330B2
Authority
JP
Japan
Prior art keywords
electrolysis
electrodes
chamber
electrode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27434995A
Other languages
Japanese (ja)
Other versions
JPH09108673A (en
Inventor
和義 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP27434995A priority Critical patent/JP3677330B2/en
Publication of JPH09108673A publication Critical patent/JPH09108673A/en
Application granted granted Critical
Publication of JP3677330B2 publication Critical patent/JP3677330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は食塩水の電解方法に関する。
【0002】
【従来の技術】
食塩水の電解方法の一例として、特開平4−330987号公報、および特開平6−315685号公報に示されているように、隔膜にて区画された各電極室に電極を配設して陽極室と陰極室とを構成して、これら両電極室にて食塩水を電解することにより陽極室にて酸性水を生成するとともに、陰極室にてアルカリ性水を生成する食塩水の電解方法がある。これらの生成水のうち、酸性水は殺菌作用を有し、またアルカリ性水は魚介類に対する色合いの悪変防止作用およびドリップの発生防止作用、野菜類の色合いの悪変防止作用を有することから、これらの各生成水は例えば生鮮食物用処理液として使用される。
【0003】
しかして、一般に食塩水の電解を連続して行うと、食塩水中に存在する微量のカルシウム等が塩または水酸化物等の形でスケールとして析出し、電解中に電流値を漸次低下させるとともに隔膜の透過性を損ない、電解効率を低下させるとともに、電極および隔膜を劣化させるという問題がある。
【0004】
これに対処する手段として、上記した各公報に示された電解方法においては、各電極室にそれぞれ配設した両電極に所定時間ごとに直流電圧を正逆交互に切替えて印加して前記各電極室にて食塩水を電解し、酸性水とアルカリ性水を各電極室にて交互に生成することにより、各電極、隔膜に析出したスケールを除去する方法が採られている。
【0005】
しかしながら、直流電圧を正逆交互に切替えて印加して前記各電極室にて食塩水を電解する電解方法においては、印加電圧の正逆切替え時、陽極室に残存している酸性水中の水素イオンが陰極に切替った電極に吸収される現象がある。このため、各電極は電解時に還元されて劣化しまたは損傷するおそれがある。
【0006】
このため、上記した後者の公報に示された電解方法では、印加電圧の正逆切替えの際に、陽極室側の電極に電解時の電解電圧に比較して低い正電圧を印加する方法が取られている。かかる方法によれば、陽極室内の水素イオンは同室内の電極とは反発して同電極に侵入することがなく、この間に陽極室内に残存する水素イオンは順次供給される食塩水とともに外部へ流出する。
【0007】
【発明が解決しようとする課題】
ところで、食塩水の電解方法も漸次改良され、被電解水として高濃度の食塩水を使用する方法、電気抵抗の低い隔膜を使用する方法、電極間の間隔を短距離に設定する方法等が採用されるようになった。これらの方法を採用する場合には、食塩水の電解電圧が下がって低電圧でも十分に食塩水の電解が可能である。このため、印加電圧の正逆切替えの際に、陽極室側の電極に電解時の電解電圧に比較して低い正電圧を印加する方法では、印加電圧によっては食塩水の電解が生じて、水素イオンの電極への侵入を阻止することができないことがある。従って、本発明はかかる問題に対処するとにある。
【0008】
【課題を解決するための手段】
本発明は、隔膜にて区画された各電極室にそれぞれ配設した両電極に印加する電圧を所定時間毎に正逆交互に切替えて食塩水を所定の電解電流にて電解し、前記各電極室のうち陽極室側にて酸性水を生成するとともに陰極室側にてアルカリ性水を生成する食塩水の電解方法において、前記両電極に対する印加電圧の正逆切替えに際して、印加電圧の切替え直前の短時間、または、印加電圧の切替え直前および直後の短時間、前記両電極に電解時に付与する電解電流に比較して低い一定電流を付与することを特徴とするものである。
【0009】
本発明の電解方法においては、内部を一対の隔膜にて中間室と両側室に区画形成された電解槽を採用して各側室を電極室に構成し、中間室に高濃度の食塩水を供給して電解すること、前記両電極がチタン基材の表面に白金イリジウム被膜を有する電極であり、かつ前記低電流を0.1A〜0.3Aの範囲に設定すること、前記電解を前記両電極に所定の電解電流を付与して行うことが好ましい。
【0010】
【発明の作用・効果】
本発明の電解方法によれば、印加電圧の正逆切替えによる電解により電解中に各電極、隔膜に析出するスケールを除去することができるとともに、印加電圧の正逆切替え時、陽極室に残存している酸性水中の水素イオンを同室内の電極とは反発させて同電極に侵入するのを阻止して、電極の劣化および損傷を防止することができる。
【0011】
また、本発明の電解方法によれば、印加電圧を正逆切替えの際、電極に電解電流よりも低電流を付与するようにしているため、この間の電解を確実に阻止することができて、酸性水中の水素イオンに起因する電極の劣化、損傷を確実に防止することができる。さらにまた、本発明の電解方法によれば、高濃度の食塩水を使用する方法、電気抵抗の低い隔膜を使用する方法、電極間の間隔を短距離に設定する方法等、電解効率のよい方法を採用することができ、食塩水の電解にとって極めて有利である。
【0012】
【発明の実施の形態】
以下、本発明の電解方法を図面に基づいて説明するに、図1には本発明の電解方法を実施するために好適な電解装置の一例が示されている。当該電解装置10は、電解槽11、一対の隔膜12a,12b、一対の電極13a,13bを備えている。隔膜12a,12bは電解槽11内を中間室14aと、左右の電極室14b,14cに区画しており、各電極室14b,14cに各電極13a,13bが配設されている。
【0013】
電解槽11においては、中間室14aに食塩水の供給管路15aと流出管路16aが接続され、第1電極室14bには水道水の供給管路15bと流出管路16bが接続され、かつ第2電極室14cには水道水の供給管路15cと流出管路16cが接続されている。これにより、中間室14aには食塩水の貯溜タンク20から飽和食塩水(高濃度食塩水)が供給されるとともに、両電極室14b,14cへは水道水が供給され、電解後の生成水は各流出管路16a〜16cを通して流出される。
【0014】
両流出管路16b,16cは、図示しない酸性水の貯溜タンクとアルカリ性水の貯溜タンクに切替バルブを介して接続されていて、切替バブルの動作により、両電極室14b,14cにて生成される電解水をそれらの性質に応じて、いずれかの貯溜タンクへ選択的に流出し得るように構成されている。また、両電極13a,13bは、チタン基材の表面に白金イリジウムの被膜を施してなる電解効率の高い電極であり、図示しない直流電源に切替スイッチを介して接続されていて、切替スイッチの動作により、両電極13a,13bに対する印加電圧を正逆交互に切替えることができる。
【0015】
食塩水の貯溜タンク20は高濃度の飽和食塩水を調製する機能を有するもので、調製槽21、貯溜槽22、循環系路23を備えている。調製槽21には過剰量の食塩と水道水が供給され、循環ポンプ23aの駆動により調製槽21内の食塩水を循環させて飽和食塩水を調製する。調製された飽和食塩水はオーバフローして貯溜槽22に流出し、貯溜槽22にはフロートスイッチ24により一定量の飽和食塩水が貯溜される。貯溜された飽和食塩水は、電解装置10の運転時に供給管路15aを通して電解槽11の中間室14aへ供給される。
【0016】
本発明の電解方法は、このような電解装置10を使用して実施される。運転に際しては、両電極室14b,14cに水道水が供給されるとともに、中間室14aに高濃度の食塩水(飽和食塩水)が供給され、両電極13a,13b間で所定時間毎に印加電圧を正逆交互に切替えて電解する。電解は両電極13a,13bに付与する電解電流にて制御する。両電極13,13bに付与する電流は例えば、所定時間(2〜6時間)の電解時には10A(電解電流:2.5A/dm2)、印加電圧の切替え直前の所定時間には0.1A(低電流:0.03A/dm2)、印加電圧の切替え直後の所定時間には0.1A(低電流:0.03A/dm2)とする。
【0017】
図2は、本発明の電解時に付与する電流のタイミグチャートの一例であり、両電極13a,13bには、先づ30秒間0.1A(低電流:0.03A/dm2)の電流を付与し、次いで2〜6時間10A(電解電流:2.5A/dm2)の電流を付与して電解する。所定時間電解後、両電極13a,13bに対する印加電圧を正逆切替えるが、切替え直前には、1秒間の間は0.1A(低電流:0.03A/dm2)の電流を付与し、その後3秒間電流の付与を停止する。
【0018】
その後、電極13a,13bに対する印加電圧を正逆切替え、その後の30秒間0.1A(低電流:0.03A/dm2)の電流を付与し、次いで2〜6時間10A(電解電流:2.5A/dm2)の電流を付与して電解する。所定時間電解後、両電極13a,13bに対する印加電圧を正逆切替えるが、切替直前には1秒間の間、0.1A(低電流:0.03A/dm2)の電流を付与し、その後3秒間電流の付与を停止する。
【0019】
以上の電解を1サイクルとして、所定時間の間これを繰り返し行い、両電極室14b,14cに酸性水とアルカリ性水とを交互生成させるとともに、アルカリ性水の生成時に析出するスケールを酸性水にて除去する。
【図面の簡単な説明】
【図1】本発明の電解方法を実施するために使用する電解装置の一例を示す概略構成図である。
【図2】同電解方法における電解時に付与する電流のタイミングチャートである。
【符号の説明】
10…電解装置、11…電解槽、12a,12b…隔膜、13a,13b…電極、14a…中間室、14b,14c…電極室、20…貯溜タンク。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for electrolyzing saline.
[0002]
[Prior art]
As an example of the electrolysis method of the saline solution, as shown in JP-A-4-330987 and JP-A-6-315585, an electrode is provided in each electrode chamber partitioned by a diaphragm. There is a method for electrolyzing salt water, which comprises a chamber and a cathode chamber, and generates acidic water in the anode chamber by electrolyzing saline in both electrode chambers, and generates alkaline water in the cathode chamber . Among these generated waters, acidic water has a bactericidal action, and alkaline water has an effect of preventing the deterioration of the hue of fish and shellfish, an effect of preventing the occurrence of drip, and an action of preventing the deterioration of the hue of vegetables. Each of these generated waters is used as a fresh food processing solution, for example.
[0003]
In general, when electrolysis of saline solution is continuously performed, a small amount of calcium or the like present in the salt solution is deposited as a scale in the form of salt or hydroxide, and the current value is gradually reduced during the electrolysis. There is a problem that the permeability of the electrode is impaired, the electrolytic efficiency is lowered, and the electrodes and the diaphragm are deteriorated.
[0004]
As a means for coping with this, in the electrolysis method disclosed in each of the above-mentioned publications, a DC voltage is alternately switched between forward and reverse at predetermined time intervals to both electrodes disposed in each electrode chamber, and each electrode is applied. A method of removing scales deposited on each electrode and diaphragm by electrolyzing saline in the chamber and alternately generating acidic water and alkaline water in each electrode chamber is employed.
[0005]
However, in the electrolysis method in which the DC voltage is alternately switched between forward and reverse and the saline solution is electrolyzed in each of the electrode chambers, the hydrogen ions in the acidic water remaining in the anode chamber at the time of forward / reverse switching of the applied voltage Is absorbed by the electrode switched to the cathode. For this reason, each electrode may be reduced during electrolysis to deteriorate or be damaged.
[0006]
For this reason, in the electrolysis method disclosed in the latter publication, a method in which a positive voltage lower than the electrolysis voltage during electrolysis is applied to the electrode on the anode chamber side when the applied voltage is switched between forward and reverse. It has been. According to such a method, the hydrogen ions in the anode chamber do not repel the electrodes in the chamber and do not enter the electrode, and the hydrogen ions remaining in the anode chamber during this time flow out to the outside together with the saline solution that is sequentially supplied. To do.
[0007]
[Problems to be solved by the invention]
By the way, the method of electrolyzing salt water has been gradually improved, adopting a method of using high-concentration saline as electrolyzed water, a method of using a diaphragm with low electrical resistance, a method of setting the distance between electrodes to a short distance, etc. It came to be. When these methods are adopted, the electrolysis voltage of the saline solution is lowered and the electrolysis of the saline solution can be sufficiently performed even at a low voltage. For this reason, when the applied voltage is switched between forward and reverse, the method of applying a positive voltage lower than the electrolytic voltage during electrolysis to the electrode on the anode chamber side causes electrolysis of the saline solution depending on the applied voltage, resulting in hydrogen It may not be possible to prevent ions from entering the electrode. Accordingly, the present invention addresses such problems.
[0008]
[Means for Solving the Problems]
According to the present invention, the voltage applied to both electrodes respectively disposed in each electrode chamber partitioned by a diaphragm is alternately switched between forward and reverse at predetermined time intervals to electrolyze saline with a predetermined electrolytic current , In the salt water electrolysis method in which acidic water is generated on the anode chamber side and alkaline water is generated on the cathode chamber side of the chamber, when the forward / reverse switching of the applied voltage to both electrodes is performed, A constant current that is lower than the electrolytic current applied to the electrodes during electrolysis is applied to the electrodes for a short time immediately before and immediately after switching of the applied voltage.
[0009]
In the electrolysis method of the present invention, an electrolytic cell that is partitioned into an intermediate chamber and two side chambers by a pair of diaphragms is employed to form each side chamber as an electrode chamber, and high-concentration saline is supplied to the intermediate chamber Electrolysis, both electrodes are electrodes having a platinum iridium coating on the surface of a titanium substrate, and the low current is set in a range of 0.1 A to 0.3 A, the electrolysis is performed on both electrodes It is preferable to carry out by applying a predetermined electrolytic current to.
[0010]
[Operation and effect of the invention]
According to the electrolysis method of the present invention, it is possible to remove scales deposited on each electrode and the diaphragm during electrolysis by electrolysis by switching the applied voltage forward and reverse, and remain in the anode chamber when the applied voltage is switched forward and backward. It is possible to prevent the hydrogen ions in the acidic water from repelling the electrode in the same chamber and entering the same electrode, thereby preventing the electrode from being deteriorated and damaged.
[0011]
In addition, according to the electrolysis method of the present invention, when the applied voltage is switched between forward and reverse, the electrode is applied with a current lower than the electrolysis current, so that electrolysis during this period can be reliably prevented, Deterioration and damage of the electrode due to hydrogen ions in acidic water can be reliably prevented. Furthermore, according to the electrolysis method of the present invention, a method with high electrolysis efficiency, such as a method using a high-concentration saline solution, a method using a diaphragm having a low electrical resistance, a method for setting the distance between electrodes to a short distance, etc. Can be employed, which is extremely advantageous for saline electrolysis.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an electrolysis method of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an electrolysis apparatus suitable for carrying out the electrolysis method of the present invention. The electrolysis apparatus 10 includes an electrolytic cell 11, a pair of diaphragms 12a and 12b, and a pair of electrodes 13a and 13b. The diaphragms 12a and 12b divide the inside of the electrolytic cell 11 into an intermediate chamber 14a and left and right electrode chambers 14b and 14c, and the electrodes 13a and 13b are arranged in the electrode chambers 14b and 14c, respectively.
[0013]
In the electrolytic cell 11, the saline supply line 15a and the outflow line 16a are connected to the intermediate chamber 14a, the tap water supply line 15b and the outflow line 16b are connected to the first electrode chamber 14b, and A tap water supply line 15c and an outflow line 16c are connected to the second electrode chamber 14c. As a result, saturated saline (high-concentration saline) is supplied from the saline storage tank 20 to the intermediate chamber 14a, and tap water is supplied to both the electrode chambers 14b and 14c. It flows out through each outflow line 16a-16c.
[0014]
Both outflow pipes 16b and 16c are connected to an acid water storage tank and an alkaline water storage tank (not shown) via a switching valve, and are generated in both electrode chambers 14b and 14c by the operation of the switching bubble. The electrolyzed water can be selectively discharged to any one of the storage tanks according to their properties. Moreover, both electrodes 13a and 13b are electrodes having high electrolysis efficiency formed by applying a platinum iridium film on the surface of a titanium base material, and are connected to a DC power source (not shown) via a changeover switch. Thus, the applied voltage to both electrodes 13a and 13b can be switched between forward and reverse alternately.
[0015]
The salt water storage tank 20 has a function of preparing a high-concentration saturated saline solution, and includes a preparation tank 21, a storage tank 22, and a circulation path 23. An excessive amount of salt and tap water are supplied to the preparation tank 21, and the saline solution in the preparation tank 21 is circulated by driving the circulation pump 23 a to prepare saturated saline. The prepared saturated saline solution overflows and flows out to the storage tank 22, and a fixed amount of saturated saline solution is stored in the storage tank 22 by the float switch 24. The stored saturated saline is supplied to the intermediate chamber 14a of the electrolytic cell 11 through the supply line 15a when the electrolysis apparatus 10 is operated.
[0016]
The electrolysis method of the present invention is carried out using such an electrolysis apparatus 10. In operation, tap water is supplied to both electrode chambers 14b and 14c, and high-concentration saline (saturated saline) is supplied to the intermediate chamber 14a, and an applied voltage is applied between the electrodes 13a and 13b every predetermined time. Electrolyze by alternately switching forward and reverse. Electrolysis is controlled by an electrolysis current applied to both electrodes 13a and 13b. Current to be applied to the electrodes 13,13b, for example, predetermined time 10A to electrolysis during (2-6 hours) (electrolysis current: 2.5A / dm 2), 0.1A between predetermined time immediately before switching of the applied voltage (low current: 0.03A / dm 2), the applied voltage switching immediately between given time 0.1 a (low current: 0.03A / dm 2) and.
[0017]
FIG. 2 is an example of a timing chart of the current applied during electrolysis according to the present invention, and a current of 0.1 A (low current: 0.03 A / dm 2 ) is applied to both electrodes 13 a and 13 b for 30 seconds. Then, electrolysis is performed by applying a current of 10 A (electrolytic current: 2.5 A / dm 2 ) for 2 to 6 hours. After electrolysis for a predetermined time, the applied voltage to both electrodes 13a and 13b is switched between forward and reverse. Immediately before the switching , a current of 0.1 A (low current: 0.03 A / dm 2 ) is applied for 1 second , and thereafter Stop applying current for 3 seconds.
[0018]
Thereafter, the applied voltage to the electrodes 13a and 13b is switched between forward and reverse, and then a current of 0.1 A (low current: 0.03 A / dm 2 ) is applied for 30 seconds, and then 10 A (electrolytic current: 2.. Electrolysis is performed by applying a current of 5 A / dm 2 ). After a predetermined time the electrolyte, both electrodes 13a, but obtain reciprocal switches the applied voltage to 13b, during one second in immediately before the switching, 0.1 A (low current: 0.03A / dm 2) current and the application of, then Stop applying current for 3 seconds.
[0019]
The above electrolysis is performed as one cycle, and this is repeated for a predetermined time, so that acid water and alkaline water are alternately generated in both electrode chambers 14b and 14c, and scales deposited during the generation of alkaline water are removed with acidic water. To do.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of an electrolysis apparatus used for carrying out an electrolysis method of the present invention.
FIG. 2 is a timing chart of current applied during electrolysis in the electrolysis method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Electrolyzer, 11 ... Electrolyzer, 12a, 12b ... Diaphragm, 13a, 13b ... Electrode, 14a ... Intermediate | middle chamber, 14b, 14c ... Electrode chamber, 20 ... Storage tank.

Claims (4)

隔膜にて区画された各電極室にそれぞれ配設した両電極に印加する電圧を所定時間毎に正逆交互に切替えて食塩水を所定の電解電流にて電解し、前記各電極室のうち陽極室側にて酸性水を生成するとともに陰極室側にてアルカリ性水を生成する食塩水の電解方法において、前記両電極に対する印加電圧の正逆切替えに際して、印加電圧の切替え直前の短時間、または、印加電圧の切替え直前および直後の短時間、前記両電極に電解時に付与する電解電流に比較して低い一定電流を付与することを特徴とする食塩水の電解方法。The voltage applied to both electrodes disposed in each electrode chamber partitioned by a diaphragm is switched alternately between forward and reverse at predetermined time intervals to electrolyze saline with a predetermined electrolytic current , and the anode of each of the electrode chambers In the salt water electrolysis method in which acidic water is generated on the chamber side and alkaline water is generated on the cathode chamber side, when forward / reverse switching of the applied voltage to both electrodes, a short time immediately before switching of the applied voltage, or A method for electrolyzing a saline solution, characterized in that a constant current lower than that applied during electrolysis is applied to both electrodes for a short time immediately before and after switching of an applied voltage. 請求項1に記載の電解方法において、内部を一対の隔膜にて中間室と両側室に区画形成された電解槽を採用して各側室を電極室に構成し、中間室に高濃度の食塩水を供給して電解することを特徴とする食塩水の電解方法。2. The electrolysis method according to claim 1, wherein an electrolytic cell in which the inside is partitioned into a middle chamber and both side chambers by a pair of diaphragms is adopted to constitute each side chamber as an electrode chamber, and a high concentration saline solution is provided in the middle chamber. A method for electrolyzing salt water, characterized in that electrolysis is performed by supplying water. 請求項1または2に記載の電解方法において、前記両電極はチタン基材の表面に白金イリジウム被膜を有する電極であり、かつ前記低電流が0.1A〜0.3Aであることを特徴とする食塩水の電解方法。3. The electrolysis method according to claim 1, wherein the two electrodes are electrodes having a platinum iridium coating on the surface of a titanium substrate, and the low current is 0.1 A to 0.3 A. Electrolysis method of saline solution. 請求項1または2に記載の電解方法において、前記電解を、前記両電極に所定の電解電流を付与して行うことを特徴とする食塩水の電解方法。The electrolysis method according to claim 1 or 2, wherein the electrolysis is performed by applying a predetermined electrolysis current to both electrodes.
JP27434995A 1995-10-23 1995-10-23 Electrolysis method of saline solution Expired - Fee Related JP3677330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27434995A JP3677330B2 (en) 1995-10-23 1995-10-23 Electrolysis method of saline solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27434995A JP3677330B2 (en) 1995-10-23 1995-10-23 Electrolysis method of saline solution

Publications (2)

Publication Number Publication Date
JPH09108673A JPH09108673A (en) 1997-04-28
JP3677330B2 true JP3677330B2 (en) 2005-07-27

Family

ID=17540425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27434995A Expired - Fee Related JP3677330B2 (en) 1995-10-23 1995-10-23 Electrolysis method of saline solution

Country Status (1)

Country Link
JP (1) JP3677330B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009072778A (en) * 2007-04-13 2009-04-09 Masaaki Arai Electrolytic water producing device and method, and electrolytic water
JP4216892B1 (en) * 2007-04-13 2009-01-28 優章 荒井 Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP4713625B2 (en) * 2007-12-31 2011-06-29 優章 荒井 Precision parts cleaning equipment
SG10202109751UA (en) * 2017-03-06 2021-10-28 Evoqua Water Tech Llc Half-cell electrochemical configurations for self-cleaning electrochlorination devices
CN113862690B (en) * 2021-11-30 2022-11-29 合肥综合性国家科学中心能源研究院(安徽省能源实验室) Water electrolysis hydrogen production device based on bipolar electrode system

Also Published As

Publication number Publication date
JPH09108673A (en) 1997-04-28

Similar Documents

Publication Publication Date Title
EP2245693B1 (en) Device and method for performing a reverse electrodialysis process
US20040168933A1 (en) Method and apparatus for producing electrolyzed water
JP3677330B2 (en) Electrolysis method of saline solution
JP3667405B2 (en) Electrolyzed water generator
JP3575713B2 (en) Method and apparatus for generating electrolyzed water
JP3802580B2 (en) Electrolyzed water generator
JP3390878B2 (en) Electrolyzed water generator
JP3509999B2 (en) Electrolyzed water generator
JP3561346B2 (en) Electrolyzed water generator
JP3568290B2 (en) Electrolyzed water generator
JP2003034889A (en) Method for electrolysis in device for generating strong- electrolyzed water
JP3353964B2 (en) Method and apparatus for producing electrolyzed water
JP3398173B2 (en) Electrolysis method of saline solution
JP3649538B2 (en) Method for removing metal components from food
JPH0970581A (en) Ionic water producing device
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP3287649B2 (en) Electrolysis method of saline solution
JPH09108677A (en) Electrolytic water generator
JP3893693B2 (en) Electrolyzed water production equipment
JP3518900B2 (en) Method for producing electrolyzed water
JP3547819B2 (en) Electrolyzed water generator
JP3653129B2 (en) Electrolyzed water generator
JP3677331B2 (en) Electrolyzed water generator
JPH11165174A (en) Method for controlling energization of ionic water generator
JP3411078B2 (en) Electrolyzed water production equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees