JP3676491B2 - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP3676491B2
JP3676491B2 JP11431796A JP11431796A JP3676491B2 JP 3676491 B2 JP3676491 B2 JP 3676491B2 JP 11431796 A JP11431796 A JP 11431796A JP 11431796 A JP11431796 A JP 11431796A JP 3676491 B2 JP3676491 B2 JP 3676491B2
Authority
JP
Japan
Prior art keywords
cross
buckling
section
sectional shape
start end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11431796A
Other languages
Japanese (ja)
Other versions
JPH09277953A (en
Inventor
朗弘 上西
幸久 栗山
松男 臼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11431796A priority Critical patent/JP3676491B2/en
Publication of JPH09277953A publication Critical patent/JPH09277953A/en
Application granted granted Critical
Publication of JP3676491B2 publication Critical patent/JP3676491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車用の構造部材に関し、詳しくは、衝突時にエネルギーを吸収する必要のある自動車フレーム部材に好適な衝撃吸収部材に関する。
【0002】
【従来の技術】
近年、自動車業界では、衝突時の乗員への傷害を低減し得る車体構造の開発が急務の課題となっている。このような衝突安全性に優れた車体構造として、衝突時の衝撃エネルギーを客室部以外の構造部材の変形で吸収させ、客室部の変形を最小限として生存空間を確保しようとする車体構造があり、広く採用されてきている。この場合、構造部材に衝撃エネルギーをいかに有効に吸収させるかが重要な課題である。
一般に、自動車構造部材は、長手方向(軸方向)に衝撃荷重を受けたとき、蛇腹状に座屈することで衝突エネルギーを吸収する。高い衝撃吸収能を実現するためには、蛇腹状座屈を効率よく起こさせること、座屈時の荷重を高くすること、の2つが必要である。
【0003】
従来、上記課題の解決のため、材料面では、板厚の厚い金属板を用いたり、高強度の金属板を用いて座屈時の荷重を高くする対策が、また、構造面では、効率よく蛇腹状座屈を起こさせるために潰れビードと呼ばれる変形の端緒を与える窪みを構造部材に配置する対策が取られてきた(自動車技術、vol.47、no.4(1993)、p.57)。
その外、構造面から座屈時の荷重を高くする一つの方策として、断面の多角形化が効果的であることが知られている(自動車技術会論文集、vol.7(1974)、p.60)。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術の材料面からの対策である構造部材の板厚を厚くすることは、部材の重量が増加するため、車両全体の重量増を招き、自動車の燃費や走行性能を悪化させることとなり好ましくない。また、高強度な金属板は、一般に、その強度に反比例してその伸び率が低いため、自ずから成形性も劣悪であり、現状では構造部材用の金属板の高強度化には限界がある。
【0005】
構造面からの対策である多角形化によって座屈荷重を増加させることは、図4に示すように、座屈開始時の衝撃荷重の大きな増加につながり、車体構造に組み込んだ時には、他部材(客室部など)に衝撃荷重が伝わることになる。その結果、本来変形すべきでない部材に座屈が生じて生存空間の確保が難しくなったり、大きな加速度変化が乗員に加わることで乗員傷害の危険性が高まることになる。
そのため、現状では、衝撃吸収部材として比較的初期衝撃荷重が小さい断面形状である長方形断面の部材を用い、かつ、その後の蛇腹状座屈を安定して起こさせるために座屈開始端から断面形状を極力一定に保ち、かつ、座屈による潰れ量を確保するために部材を直線化する設計がなされている。
初期座屈荷重を増加させることなく、安定座屈時の荷重を高めれば、衝撃吸収部材としての飛躍的な性能の向上が期待できる。
【0006】
本発明は、この現状に鑑み開発されたもので、構造部材の衝撃吸収エネルギーを向上させる構造を採用し、板厚、重量が同一の場合、衝撃吸収能を向上させ、板厚、重量が減少しても衝撃吸収能を低下しない衝撃吸収部材を提供するものである。
【課題を解決するための手段】
本発明者らは、この安定座屈時の座屈荷重の増加と初期衝撃荷重の低減という従来知見では相反する課題の両立に取り組んだ結果、従来のように断面形状を長手方向に一定に保つのではなく、長手方向に座屈開始端から連続的に多角形化していくことによりこの課題が達成できることを見出した。
【0007】
本発明は上記知見に基づき構成されたものであり、その要旨は、
長手方向(軸方向)に衝撃荷重を受けて、蛇腹状に座屈することで衝突エネルギーを吸収する衝撃吸収部材において、座屈開始端の断面形状が4角形以上の多角形閉断面であり、他端の断面形状が座屈開始端の断面形状より多い辺を有する多角形閉断面であり、両端の間は両者の断面形状がなめらかに結ばれるように連続的に変化する断面形状を有し、かつ、板厚tと断面の周長Mの比t/Mが0.0025以上であることを特徴とする衝撃吸収部材である。
【0008】
また、座屈開始端断面の最短辺の長さをS、部材軸方向長さをLとするとき、座屈開始端から、S≦D≦L−Sを満たす部材長手方向の距離Dだけ、断面形状が一定であることを特徴とする衝撃吸収部材である。
【0009】
以下に、本発明を詳細に説明する。
本発明は、全体としては4角形以上の多角形断面を採用することで座屈荷重の増加を図り、座屈開始端の断面形状を他端に比べて低多角形化することにより、多角形化により予期される初期衝撃荷重の増加を抑制する。それにより、従来不可能であった座屈荷重の増加と初期衝撃荷重の低減という課題の両立を実現するものである。
この際、順次前方から座屈を起こさせるために、両端の間は両者の断面形状がなめらかに結ばれるように連続的に変化する断面形状である必要がある。
【0010】
また、板厚tと断面の周長Mの比t/Mが0.0025以上であることが必要である。これは、t/Mが0.0025未満の場合、角部の特定の場所に変形が局所化して折れ込みが生じ、蛇腹状の座屈が起こらないため、塑性変形しない直辺部分が残ってしまい、衝撃吸収能を損なうためである。
また、座屈開始端断面の最短辺の長さをS、部材軸方向長さをLとするとき、座屈開始端から、S≦D≦L−Sを満たす部材長手方向の距離Dだけ断面形状が変化しないこと、すなわち、一定であることが望ましい。端面から開始する1番目の座屈を安定して生じさせ、ひいてはその後の座屈を安定させるためには、断面形状が一定であることが望ましいが、断面形状が全長に渡って一定である必要はなく、S以上の距離に渡って変化しなければ、1番目の座屈を安定化できるため、Sを、座屈開始端からの断面形状が変化しない部材長手方向の距離Dの下限値とする。
一方、この距離DがL−Sを越えると、安定座屈時の座屈荷重の増加(吸収エネルギーの増加)と初期衝撃荷重の低減という相反する課題のうち、特に、吸収エネルギーの増加が望めなくなるため、距離DはL−S以下である必要がある。
【0011】
なお、座屈開始端から長手方向に距離Sまでの間の断面がほぼ一定断面であるとみなせる場合も、本発明と同様の効果が得られる。
本発明の衝撃吸収部材は、通常のプレスにより成形し、その後、溶接することにより作製できる。また、近年発達してきた円管に内圧と軸圧縮力をかけ外型になじませる成形法であるハイドロフォームも、この部材の成形に適した方法である。
【0012】
【発明の実施の形態】
次に、実施例により本発明の実施の形態を具体的に説明する。
(実施例1)
実際の構造部材は種々の形状を有しており、それらを個々にテストすることは困難である。そこで、構造部材をモデル化することによって、本発明の効果を確認する実験を行った。
図1に、本発明の一例である590N/mm2 級の鋼板により作製した座屈開始端の断面が正方形で他端の断面が正八角形である部材(A)を示す。部材の板厚は2.0mm、その全長は320mmで、座屈開始端の正方形の周長と他端の正八角形の周長はともに280mm、長手方向の断面変化は座屈開始端(x=0)から70mmは正方形のまま、70mmから320mmまでは正方形(x=70の位置)の角と正八角形(x=320mmの位置)の角を結ぶ形で長手方向の八角形断面形状を連続的に変化させた。この部材の正八角形側に400kgfの重錘を固定し、正方形側から速度15m/sで剛体壁に衝突させた。比較のため、板厚が2.0mm、全長320mm、周長280mmで、断面が正方形である部材(B)、正六角形である部材(C)、正八角形である部材(D)の実験も行った。
【0013】
衝突時の荷重−時間曲線を図2に示す。部材(A)は、座屈荷重が高くまた変動量が小さいことが分かる。この際の初期衝撃荷重と10msec経過までに部材に吸収されたエネルギーをそれぞれ表1に示す。部材(B)は、初期衝撃荷重、吸収エネルギーともに低い。部材(B)を多角形化した部材(C)および部材(D)では、部材(B)より吸収エネルギーが増加するものの初期衝撃荷重も大きく増加してしまう。これに対し、本発明の部材(A)では、部材(B)と比較して吸収エネルギーが大きく増加していても初期衝撃荷重の増加は最小限であり、衝撃吸収部材として優れていることが分かる。本実施例では、座屈開始端の断面として4角形を用いたが、車体設計上、より大きな初期衝撃荷重が許容できる場合は、開始端断面を4角形以上の多角形とすることにより、より高い衝撃吸収能の向上が期待できる。
【0014】
(実施例2)
図1に示した形状を、板厚0.5mmから2.0mmまでの590N/mm2 級の鋼板を用いて作製し、実施例1と同様の衝突実験を行った。それぞれの部材が10msec経過までに吸収したエネルギーを表2および図3に示す。板厚tと断面の周長Mの比t/Mが0.0025未満である部材(H)では、角部の特定の場所に変形が局所化し折れ込みが生じて蛇腹状の座屈が起こらないため、塑性変形しない直辺部分が残ってしまい、吸収エネルギー量が小さかった。t/Mが0.0025以上の部材(E)〜(G)は、蛇腹状の座屈を呈したため、高い衝撃吸収エネルギーを示した。
【0015】
【発明の効果】
本発明の衝撃吸収部材は、初期衝撃荷重が小さくかつ吸収エネルギー量が大きく、同一材質、同一重量の従来の衝撃吸収部材と比較して座屈の安定性およびエネルギー吸収能に優れているため、自動車の安全性の向上に対して有効である。また、同一のエネルギー吸収能を有する従来の衝撃吸収部材と比較すると、高強度材を用いなくても軽量化が可能になるため、自動車の燃費向上や走行性能の向上に対しても有効である。
【図面の簡単な説明】
【図1】本発明の一実施例である衝撃吸収部材の斜視図である。
【図2】本発明の衝撃吸収部材の実施例の衝突試験で得られる荷重−時間線図を比較例とともに示す図である。
【図3】本発明の衝撃吸収部材の実施例の吸収エネルギーと板厚周長比t/Mの関係を示す図である。
【図4】種々の断面を有する衝撃吸収部材の荷重−変位線図である。
【表1】

Figure 0003676491
【表2】
Figure 0003676491
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structural member for an automobile, and more particularly to an impact absorbing member suitable for an automobile frame member that needs to absorb energy in the event of a collision.
[0002]
[Prior art]
In recent years, in the automobile industry, the development of a vehicle body structure that can reduce injury to passengers during a collision has become an urgent issue. As such a vehicle body structure with excellent collision safety, there is a vehicle body structure that absorbs impact energy at the time of collision by deformation of structural members other than the passenger compartment and secures a living space with minimal deformation of the passenger compartment. Have been widely adopted. In this case, how to effectively absorb the impact energy in the structural member is an important issue.
In general, when an automobile structural member receives an impact load in the longitudinal direction (axial direction), the automobile structural member absorbs collision energy by buckling in a bellows shape. In order to realize a high shock absorption capacity, it is necessary to efficiently cause bellows-like buckling and to increase the load during buckling.
[0003]
Conventionally, in order to solve the above problems, measures have been taken to increase the load during buckling using a thick metal plate or a high-strength metal plate on the material side. In order to cause a bellows-like buckling, measures have been taken to place a depression called a collapse bead in the structural member, which is called a collapsed bead (Automotive Technology, vol. 47, no. 4 (1993), p. 57). .
In addition, it is known that polygonal cross-section is effective as one measure for increasing the buckling load from the structural surface (Automotive Engineering Society Proceedings Vol. 7 (1974), p. .60).
[0004]
[Problems to be solved by the invention]
However, increasing the thickness of the structural member, which is a countermeasure from the material aspect of the above-mentioned prior art, increases the weight of the member, leading to an increase in the weight of the entire vehicle and deteriorating the fuel consumption and driving performance of the automobile. It is not preferable. In addition, a high-strength metal plate generally has a low elongation rate in inverse proportion to its strength, so that the formability is naturally inferior. At present, there is a limit to increasing the strength of a metal plate for a structural member.
[0005]
Increasing the buckling load by polygonalization, which is a countermeasure from the structural aspect, leads to a large increase in impact load at the start of buckling, as shown in FIG. The impact load is transmitted to the guest room. As a result, buckling occurs in a member that should not be deformed and it is difficult to secure a living space, or a large change in acceleration is applied to the occupant, thereby increasing the risk of occupant injury.
For this reason, at present, a rectangular cross-section member having a relatively small initial impact load is used as the shock absorbing member, and the cross-sectional shape from the buckling start end in order to cause subsequent bellows-like buckling stably. In order to keep constant as much as possible and to secure the amount of collapse due to buckling, the member is designed to be linear.
If the load at the time of stable buckling is increased without increasing the initial buckling load, a dramatic improvement in performance as an impact absorbing member can be expected.
[0006]
The present invention has been developed in view of this situation, adopting a structure that improves the impact absorption energy of the structural member, and if the plate thickness and weight are the same, the shock absorption capacity is improved and the plate thickness and weight are reduced. Even so, the present invention provides an impact absorbing member that does not lower the impact absorbing ability.
[Means for Solving the Problems]
As a result of tackling the conflicting problems in the conventional knowledge of increasing the buckling load during stable buckling and reducing the initial impact load, the present inventors have kept the cross-sectional shape constant in the longitudinal direction as in the past. Instead, the inventors have found that this problem can be achieved by continuously making a polygon from the buckling start end in the longitudinal direction.
[0007]
The present invention is configured based on the above findings, and the gist thereof is as follows.
In an impact absorbing member that receives impact load in the longitudinal direction (axial direction) and buckles in a bellows shape to absorb collision energy, the buckling start end has a polygonal closed cross section with a quadrilateral or more in cross section. The cross-sectional shape of the end is a polygonal closed cross-section having more sides than the cross-sectional shape of the buckling start end, and the cross-sectional shape that continuously changes so that the cross-sectional shape of both ends is smoothly connected between both ends, In addition, the shock absorbing member is characterized in that a ratio t / M of the plate thickness t and the circumferential length M of the cross section is 0.0025 or more.
[0008]
Further, when the length of the shortest side of the buckling start end cross section is S and the length in the member axial direction is L, only the distance D in the member longitudinal direction satisfying S ≦ D ≦ LS from the buckling start end, The shock absorbing member has a constant cross-sectional shape.
[0009]
The present invention is described in detail below.
The present invention, as a whole, increases the buckling load by adopting a polygonal cross section of a quadrangle or more, and reduces the cross-sectional shape of the buckling start end to a lower polygon than the other end, thereby reducing the polygon. Suppresses the increase in initial impact load expected by As a result, it is possible to achieve both of the problems of increasing the buckling load and reducing the initial impact load, both of which were impossible before.
At this time, in order to cause buckling sequentially from the front, the cross-sectional shape needs to change continuously so that the cross-sectional shape of both ends is smoothly connected.
[0010]
Further, the ratio t / M of the plate thickness t and the circumferential length M of the cross section needs to be 0.0025 or more. This is because when t / M is less than 0.0025, deformation is localized at a specific portion of the corner and folding occurs, and bellows-like buckling does not occur. This is because the shock absorbing ability is impaired.
Further, when the length of the shortest side of the buckling start end cross section is S and the length in the member axial direction is L, the cross section is a distance D in the longitudinal direction of the member satisfying S ≦ D ≦ LS from the buckling start end. It is desirable that the shape does not change, that is, is constant. In order to stably generate the first buckling starting from the end face, and thus to stabilize the subsequent buckling, it is desirable that the cross-sectional shape is constant, but the cross-sectional shape needs to be constant over the entire length. Since the first buckling can be stabilized if it does not change over a distance of S or more, S is the lower limit value of the distance D in the longitudinal direction of the member that does not change the cross-sectional shape from the buckling start end. To do.
On the other hand, when the distance D exceeds LS, among the conflicting problems of increasing the buckling load during stable buckling (increasing absorbed energy) and reducing the initial impact load, it is particularly possible to increase the absorbed energy. Therefore, the distance D needs to be LS or less.
[0011]
Note that the same effect as the present invention can be obtained even when the cross section from the buckling start end to the distance S in the longitudinal direction can be regarded as a substantially constant cross section.
The impact absorbing member of the present invention can be produced by molding with a normal press and then welding. In addition, hydroforming, which has been developed in recent years, is a method suitable for forming this member, which is a forming method in which an internal pressure and axial compression force are applied to a circular pipe to conform to an outer mold.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the embodiment of the present invention will be described specifically by way of examples.
(Example 1)
Actual structural members have various shapes and it is difficult to test them individually. Therefore, an experiment for confirming the effect of the present invention was performed by modeling the structural member.
FIG. 1 shows a member (A) having a buckling start end made of a 590 N / mm 2 grade steel plate, which is an example of the present invention, having a square cross section at the other end and a regular octagonal cross section at the other end. The plate thickness of the member is 2.0 mm, the total length is 320 mm, the circumference of the square at the buckling start end and the circumference of the regular octagon at the other end are both 280 mm, and the cross-sectional change in the longitudinal direction is the buckling start end (x = 0) to 70 mm remain square, and from 70 mm to 320 mm, the octagonal cross-sectional shape in the longitudinal direction is continuous by connecting the corner of the square (position x = 70) and the corner of the regular octagon (position x = 320 mm). Was changed. A 400 kgf weight was fixed to the regular octagonal side of this member, and collided with the rigid body wall at a speed of 15 m / s from the square side. For comparison, experiments were also conducted on a member (B) having a plate thickness of 2.0 mm, a total length of 320 mm, a circumferential length of 280 mm, a square section, a regular hexagonal member (C), and a regular octagonal member (D). It was.
[0013]
The load-time curve at the time of collision is shown in FIG. It can be seen that the member (A) has a high buckling load and a small fluctuation amount. Table 1 shows the initial impact load and the energy absorbed by the member up to 10 msec. The member (B) has low initial impact load and absorbed energy. In the member (C) and the member (D) in which the member (B) is polygonalized, although the absorbed energy is increased as compared with the member (B), the initial impact load is also greatly increased. On the other hand, in the member (A) of the present invention, even if the absorbed energy is greatly increased compared to the member (B), the increase in the initial impact load is minimal, and it is excellent as an impact absorbing member. I understand. In this example, a quadrangular shape was used as the cross section of the buckling start end. However, if a larger initial impact load can be allowed in the vehicle body design, the start end cross section can be made more polygonal than the quadrangular shape. High impact absorption can be expected.
[0014]
(Example 2)
The shape shown in FIG. 1 was produced using a 590 N / mm 2 grade steel plate having a thickness of 0.5 mm to 2.0 mm, and the same collision experiment as in Example 1 was performed. The energy absorbed by each member up to 10 msec is shown in Table 2 and FIG. In the member (H) in which the ratio t / M of the plate thickness t and the circumferential length M of the cross section is less than 0.0025, the deformation is localized at a specific portion of the corner and the folds are generated, causing a bellows-like buckling. As a result, a straight side portion that does not undergo plastic deformation remains, and the amount of absorbed energy is small. The members (E) to (G) having t / M of 0.0025 or more exhibited a bellows-like buckling, and thus exhibited high impact absorption energy.
[0015]
【The invention's effect】
The shock absorbing member of the present invention has a small initial impact load and a large amount of absorbed energy, and is superior in buckling stability and energy absorbing ability compared to conventional shock absorbing members of the same material and weight. It is effective for improving the safety of automobiles. In addition, compared with a conventional impact absorbing member having the same energy absorbing ability, it is possible to reduce the weight without using a high-strength material. .
[Brief description of the drawings]
FIG. 1 is a perspective view of an impact absorbing member according to an embodiment of the present invention.
FIG. 2 is a view showing a load-time diagram obtained in a collision test of an example of the shock absorbing member of the present invention together with a comparative example.
FIG. 3 is a graph showing the relationship between the absorbed energy and the plate thickness circumference ratio t / M in an embodiment of the shock absorbing member of the present invention.
FIG. 4 is a load-displacement diagram of an impact absorbing member having various cross sections.
[Table 1]
Figure 0003676491
[Table 2]
Figure 0003676491

Claims (2)

長手方向(軸方向)に衝撃荷重を受けて、蛇腹状に座屈することで衝突エネルギーを吸収する衝撃吸収部材において、座屈開始端の断面形状が4角形以上の多角形閉断面であり、他端の断面形状が座屈開始端の断面形状より多い辺を有する多角形閉断面であり、両端の間は両者の断面形状がなめらかに結ばれるように連続的に変化する断面形状を有し、かつ、板厚tと断面の周長Mの比t/Mが0.0025以上であることを特徴とする衝撃吸収部材。In an impact absorbing member that receives impact load in the longitudinal direction (axial direction) and buckles in a bellows shape to absorb collision energy, the buckling start end has a polygonal closed cross section with a quadrilateral or more in cross section. The cross-sectional shape of the end is a polygonal closed cross-section having more sides than the cross-sectional shape of the buckling start end, and the cross-sectional shape that continuously changes so that the cross-sectional shape of both ends is smoothly connected between both ends, And the ratio t / M of plate | board thickness t and the perimeter M of a cross section is 0.0025 or more, The impact-absorbing member characterized by the above-mentioned. 座屈開始端断面の最短辺の長さをS、部材軸方向長さをLとするとき、座屈開始端から、S≦D≦L−Sを満たす部材長手方向の距離Dだけ、断面形状が一定であることを特徴とする請求項1記載の衝撃吸収部材。When the length of the shortest side of the buckling start end cross section is S and the length in the member axial direction is L, the cross sectional shape is the distance D in the longitudinal direction of the member satisfying S ≦ D ≦ LS from the buckling start end. The shock absorbing member according to claim 1, wherein is constant.
JP11431796A 1996-04-12 1996-04-12 Shock absorbing member Expired - Lifetime JP3676491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11431796A JP3676491B2 (en) 1996-04-12 1996-04-12 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11431796A JP3676491B2 (en) 1996-04-12 1996-04-12 Shock absorbing member

Publications (2)

Publication Number Publication Date
JPH09277953A JPH09277953A (en) 1997-10-28
JP3676491B2 true JP3676491B2 (en) 2005-07-27

Family

ID=14634834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11431796A Expired - Lifetime JP3676491B2 (en) 1996-04-12 1996-04-12 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP3676491B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199941B1 (en) 1998-05-08 2001-03-13 Toyota Jidosha Kabushiki Kaisha Impact energy absorbing structure in upper vehicle body portion and impact energy absorbing member
JP3512753B2 (en) 2001-04-20 2004-03-31 川崎重工業株式会社 Railcar collision energy absorption structure
CN100406768C (en) * 2003-07-28 2008-07-30 住友金属工业株式会社 Crash energy absorption member
CN100476233C (en) 2003-07-28 2009-04-08 住友金属工业株式会社 Cash energy absorption member
CN100504105C (en) * 2003-07-28 2009-06-24 住友金属工业株式会社 Impact absorption member
JP5374832B2 (en) * 2007-05-15 2013-12-25 新日鐵住金株式会社 Metal hollow columnar member for impact absorbing member and manufacturing method thereof
KR20160043127A (en) 2011-08-09 2016-04-20 신닛테츠스미킨 카부시키카이샤 Shock absorbing member
CN103732942B (en) 2011-08-09 2015-09-23 新日铁住金株式会社 Impact absorbing member
JP2013067324A (en) * 2011-09-26 2013-04-18 Aisin Seiki Co Ltd Crash box and vehicle bumper apparatus including the same
IN2015DN01802A (en) 2012-08-21 2015-05-29 Nippon Steel & Sumitomo Metal Corp
MX2016006535A (en) 2013-11-27 2016-08-03 Nippon Steel & Sumitomo Metal Corp Shock-absorbing part.

Also Published As

Publication number Publication date
JPH09277953A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP4412282B2 (en) Shock absorbing member
JP3912422B2 (en) Crash box
US7665586B2 (en) Crash box
JP4371059B2 (en) Shock absorbing member
US5868457A (en) Structural member of vehicle body
US6793246B2 (en) Knee support for occupants
US20120146360A1 (en) Deformable Cross-Car Beam for Side Impact Protection
RU2672005C1 (en) Construction element
JP3676491B2 (en) Shock absorbing member
JPH07101354A (en) Side member for vehicle
KR101779568B1 (en) Shock absorbing member
JP2001199292A (en) Bumper reinforcement
JPH06171441A (en) Bumper beam and bumper
JP4473537B2 (en) Energy absorber for personal protection
JP5034793B2 (en) Shock absorption method
JPH09277954A (en) Tapered impact absorbing member
JP4036234B2 (en) Crash box
JP2006062635A (en) Impact absorbing member for automobile
JP6565291B2 (en) Shock absorbing member, vehicle body and shock absorbing method
JPH115564A (en) Side member structure of vehicle
JPS6013730Y2 (en) frame structure
JP2005104335A (en) Side member tube hydroforming member
JP2004203211A (en) Automobile bumper beam
JPH08207679A (en) Energy absorbing member
JPH0995197A (en) Energy absorbing construction of side part of vehicle body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

EXPY Cancellation because of completion of term