JP2004203211A - Automobile bumper beam - Google Patents

Automobile bumper beam Download PDF

Info

Publication number
JP2004203211A
JP2004203211A JP2002374808A JP2002374808A JP2004203211A JP 2004203211 A JP2004203211 A JP 2004203211A JP 2002374808 A JP2002374808 A JP 2002374808A JP 2002374808 A JP2002374808 A JP 2002374808A JP 2004203211 A JP2004203211 A JP 2004203211A
Authority
JP
Japan
Prior art keywords
bumper beam
thickness
collision
wall portion
upper wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002374808A
Other languages
Japanese (ja)
Other versions
JP4216065B2 (en
Inventor
Takaharu Amano
敬治 天野
Yoshiya Suzuki
義也 鈴木
Hideo Kamitsuma
英雄 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unipres Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Unipres Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Unipres Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2002374808A priority Critical patent/JP4216065B2/en
Priority to US10/690,576 priority patent/US6893062B2/en
Priority to DE60304416T priority patent/DE60304416T2/en
Priority to EP03024506A priority patent/EP1415865B1/en
Priority to MXPA03009897A priority patent/MXPA03009897A/en
Priority to CNB2003101046894A priority patent/CN1265988C/en
Publication of JP2004203211A publication Critical patent/JP2004203211A/en
Application granted granted Critical
Publication of JP4216065B2 publication Critical patent/JP4216065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bumper beam structure that reduces a maximum load generated at the moment of collision. <P>SOLUTION: The bumper beam has an H-shaped section, which is formed of an upper wall, a bottom wall opposite to the upper wall, a pair of side walls connecting both ends of the upper wall to that of the bottom wall, and a connecting rib, which is formed in the middle between the upper and bottom walls to connect the two side walls. The upper wall is thicker than the bottom wall, and the upper wall, connecting rib, and bottom wall are arranged in this order of increasing or decreasing thickness. Both corners of the upper wall are curved at a radius of curvature R 0.1-0.3 times as long as the length of the upper wall. The bumper beam is made of an aluminum alloy extruded hollow member. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のバンパーを補強するバンパービームに関するものである。
【0002】
【従来の技術】
一般に、自動車のバンパーは、車体に連結されるとともにバンパーの強度を保つバンパービームと、このバンパービームに取り付けられて車体の外観を整える樹脂製の表皮材とから概略構成されている。そして、このバンパービームは燃費低減のために軽量化が図られており、近年では軽合金製とする例が多くなってきている。例えば、図5に断面図として示すバンパービーム30は、アルミ合金材で押し出し成形されたバンパービームの一例で、“日の字型”断面に押し出し成形された中空構造を有している。すなわち、互いに平行な上壁部31と底壁部32、及びこれらと直角方向に互いに平行な側壁部33,34と、上壁部31と底壁部32と平行して、側壁部33,34を2分するように中央に設けられた連結リブ35から構成されている。
【0003】
バンパービーム30は、実際にはサイドメンバー16を介して車両17の前面または後面に取り付けられ、衝突の際には衝突面側の側壁部33が図の左方矢印の方向からの衝撃力Fを受け止める面となる。従って“日の字型”断面構造の部材の内でも側壁部33が最も厚さが厚く作られている。また、図5の例では上壁部31及び底壁部32と連結リブ35は同じ厚さに作られており、図の左方からの衝撃力を均等に受け止めて衝撃力をやわらげる構造となっている。
このようなバンパービームは軽量化を目的として7000番系高力アルミニウム合金等で作成される。通常、バンパービームには発泡材等からなる緩衝材が取り付けられ、表面はバンパーカバーで覆われている。
【0004】
バンパービームは自動車の衝突等により外部から衝撃力が加わった時に、その衝撃エネルギーをバンパービーム材料の塑性変形により吸収し、他の部材の損傷を回避すると同時に人体の安全を確保するための重要な部材である。
ところで、自動車の衝突の形態には壁状障害物がバンパービームの壁面の全面に比較的に高速で衝突する形態と、柱状障害物がバンパービームの壁面の一部に比較的に低速で衝突する形態とがある。
前者の衝突形態では、衝突による衝突エネルギーは乗員の負傷やバンパービーム取り付け部材の座屈損傷を招くような大きなものであることが多く、バンパービームに対しては徐々に変形崩壊して大量の衝突エネルギーを吸収できるものであることが望まれている。
一方、後者の衝突形態では、乗員の負傷や取り付け部材の損傷を招くような大きな衝突エネルギーを有する場合は少なく、バンパービームに対しては変形崩壊して衝突エネルギーを吸収するよりも、衝突荷重で変形し難い剛性に富んだものであることが望まれている。
【0005】
バンパービームには、軽量化を図りつつも形材の曲げ剛性と曲がる時のエネルギー吸収量を大きくすることが求められている。断面形状の改良によりこれらの特性を改良する提案が開示されている(例えば、特許情報1参照。)。
ここでは、長さ方向に一様な矩形断面形状のアルミ合金形材からなり、衝突方向に対して垂直な壁面を有するように車体側に位置する壁面の両端部が車体に取り付けられるバンパービームであり、上記アルミ合金形材の車体側に位置する角隅部が板厚の2.5倍以上の半径Rで湾曲をなしているバンパービームが開示されている。
具体的には図6に示すように、バンパービーム40は、バンパーカバー内に設けられたアルミ合金形材からなっており、車体42側に位置する壁面41aがサイドメンバー44を介して車体42に支持されている。上記のアルミ合金形材は、長さ方向に一様な例えば“日”字形の矩形断面形状に形成されており、一対の横設リブ41b,41bと、両横設リブ41b,41bの両端に接続された縦設リブ41a,41aと、縦設リブ41a,41a間に接続された補強リブ41cとからなっている。
【0006】
上記のバンパービーム40は、縦設リブ41a,41aが衝突方向に対して垂直となると共に、横設リブ41b,41bが衝突方向に対して平行となるように設けられている。そして、車体42側の角隅部41d,41dは、縦設リブ41a,41aの長さの1/6以下の範囲において板厚の2.5倍以上の半径Rで湾曲されている。一方、バンパービーム40の衝突側の角隅部41e,41eは、板厚程度の半径rで略直角に曲折されている。これにより、バリアー衝突時においては、湾曲された角隅部41d,41dを座屈の起点に位置させることによって、発生荷重を抑制しながら座屈を促進し、衝突エネルギーを効率良く吸収するようになっている。また、ポール衝突時においては、湾曲された角隅部41d,41dを座屈の起点の反対側に位置させることによって、大きな発生荷重を生じさせるようになっている。尚、半径Rを縦設リブ41a,41aの長さの1/6以下に制限した理由は、1/6を越えるとサイドメンバ44への取り付けが困難になると共に吸収エネルギーが低下するからであるとされている。
この構造によれば、上記の二つの衝突形態に対応できるような、徐々に変形崩壊して大量の衝突エネルギーを吸収できる特性と、衝突荷重で変形し難い剛性に富んだ特性とを兼ね備えることができるとされている。
【0007】
【特許文献1】
特開平8−80879号公報 (第5頁、図2)
【0008】
【発明が解決しようとする課題】
しかしながら、バンパービームがあまり強すぎると、バンパービームの座屈と共に車体の取り付け金具であるサイドメンバーを損傷させてしまうことになる。
サイドメンバーは衝突の瞬間に発生する最大荷重によって損傷する。
例えば、図5に断面で示すような全角隅部が直角に曲折されたバンパービームでは、図7に示すように衝突によりバンパービームが3.5〜4.5mm塑性変形する間の平均荷重は50kN程度であるのに対して、衝突直後のバンパービームの変位量が1mmに達する以前の0.5mm程度塑性変形する間に、最大250kNもの最大荷重が発生し、2mm程度変位した後はほぼ一定の平均潰し荷重で変形していく。この場合には最大荷重は平均荷重の5.88倍にも達する。
この最大荷重を低くすることができれば、サイドメンバーを損傷させることなくバンパービームの変形崩壊のみで衝突エネルギーを吸収することができる。
従来はバンパービームが3.5〜4.5mm塑性変形する間の、発生荷重が大幅な変動を伴わない場合の最大荷重と吸収エネルギーの関係を問題としており、衝突の瞬間に発生する最大荷重を下げる試みはなされていなかった。
人身の安全を確保するためにも、衝突の瞬間に発生するこの最大荷重のピークをできる限り低くすることが重要である。
本発明の目的は、上記衝突の瞬間に発生するこの最大荷重のピークをできる限り低くし、バンパービームの取付け金具であるサイドメンバーの損傷を防ぐことのできるバンパービームの構造を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため普通乗用車のバンパービームの断面形状を種々検討した結果、サイドメンバーが損傷するのは、長さ100mmのバンパービーム試片に荷重を加えた場合に瞬間的に発生する高い荷重が車体を潰す荷重を越える場合である。衝突の瞬間に発生する最大荷重をこの車体を潰す荷重と同等にすることで、バンパービームの塑性変形により、サイドメンバーを損傷させることなく衝突エネルギーを吸収できることが判明した。バンパービームの構造を、従来と同様として最大荷重を低くすると、衝突の後半に発生する衝撃荷重が低くなり過ぎる構造となってしまい、バンパービームとしてのエネルギー吸収能が低下してしまうことも判明した。
従って、図7に示す潰し変位量−潰し荷重曲線において、最大ピークのみを引き下げて波形をより矩形波形に近づけることができれば、サイドメンバーを損傷させることなくバンパービームの塑性変形により衝突エネルギーを吸収できることになり、エネルギー吸収材として安定した性能を有するバンパービームとすることができると考えた。そこでバンパービームの断面形状を種々検討した結果、衝撃を受ける面の部材の厚さを厚くし、衝撃を受ける面と直角をなす部材の厚さを変化させ、かつ衝撃を受ける部材面の両端に特定の曲率半径を付与させることにより、上記目的を達成できることを見い出し本発明に至った。
【0010】
すなわち、本発明のバンパービームでは、断面形状が上壁部と、上壁部に対向する底壁部と、前記上壁部および底壁部の両端部を連結する一対の側壁部と、前記上壁部および底壁部の中間に設けられて2つの側壁部を連結する連結リブとからなる日の字型を呈し、衝突面側の側壁部の厚さが車体取付け面側の側壁部の厚さよりも厚く、前記上壁部と連結リブ及び底壁部の厚さがこの順に次第に厚く、もしくは薄くなるように構成されており、かつ衝突面側の側壁部の両角隅部は前記衝突面側の側壁部の長さの0.05〜0.3倍の長さの曲率半径Rで湾曲したアルミニウム合金製の押し出し中空部材からなるバンパービームとした。
【0011】
前記上壁部の厚さは前記底壁部の厚さの0.8倍以上0.9倍未満とすることが好ましい。また、前記連結リブの厚さは前記底壁部の厚さの0.9倍以上1.0倍未満とすることが好ましい。
連結リブをこのように構成することにより、高い剛性を有すると同時に、衝突時に発生する最大ピーク荷重を飛躍的に低減させることができるようになり、サイドメンバーを損傷することなしに、衝突エネルギーをバンパービームで吸収し、乗員に与える損傷を飛躍的に少なくすることができるようになる。
【0012】
本発明においては、前記連結リブの取り付け位置を前記側壁部の中央よりも底壁部寄りに設けることができるし、あるいは前記側壁部の中央よりも上壁部寄りに設けることもできる。
このように連結リブの位置をずらすことにより、自動車のデザイン上バンパービームの中心線とサイドメンバーの中心線が一致せず、バンパービームの中心線がサイドメンバーの中心線よりも高い位置又は低い位置にきた場合でも、強い衝撃エネルギーを受けるバンパービーム断面の底部を強化することが可能となる。
前記連結リブの取り付け位置を前記側壁部の中央よりも底壁部寄りに設けた場合には、上壁部、連結リブ、底壁部の厚さをこの順に次第に厚くなるように構成する。
反対に前記連結リブの取り付け位置を前記側壁部の中央よりも上壁部寄りに設けた場合には、上壁部、連結リブ、底壁部の厚さをこの順に次第に薄くなるように構成する。
【0013】
【発明の実施の形態】
次に図面を用いて本発明を具体的に説明する。なお、以下の図面においては判り易く説明するため、各部の縮尺は必ずしも正確には描かれていない。
(第1の実施形態)
図1は本発明のバンパービームの第1の実施形態を示す断面図である。図に示すように本発明のバンパービーム10は、断面形状が上壁部1と、上壁部1と対向する底壁部2と、上壁部1および底壁部2の両端部を連結する一対の側壁部3、4と、上壁部1および底壁部2の中央に設けられてこれら2つの部位を連結する連結リブ5とからなる“日の字型”を呈するように構成して剛性を確保するようにしてある。このバンパービーム10は、紙面左側の側壁部3が衝突面側の側壁部であり、矢印Fで示す衝突の際の衝撃力が加わる。紙面右側の側壁部4が車体取付け面側の側壁部であり、サイドメンバー6を介して車体7に取り付けられる。
【0014】
本発明のバンパービームは、衝突面側の側壁部3の厚さt3が車体取付け面側の側壁部4の厚さt4よりも厚く、かつ前記上壁部1と連結リブ5及び底壁部2の厚さt1,t5,t2が、この順に次第に厚くなるように構成されている。すなわち、図1においてt4<t3であり、t1<t5<t2である。
この場合、底壁部2の厚さt2を基準として、上壁部1の厚さt1 は底壁部2の厚さt2の0.80倍以上0.9倍未満、連結リブ5の厚さt5は底壁部2の厚さt2の0.90以上1.0倍未満とするのが好ましい。すなわち、
0.8×t2≦t1<0.9×t2 ・・・・・(1)
0.9×t2≦t5<1.0×t2 ・・・・・(2)
程度とするのが好ましい。
これは自動車のデザイン上バンパービームの中心線とサイドメンバーの中心線が必ずしも一致しておらず、バンパービームの中心線がサイドメンバーの中心線よりも高い位置にくることが多いからである。このような場合には、バンパービームの断面の底部ほど強い衝撃エネルギーを受けるので、底部を強化しておくことが有効となる。
【0015】
さらに衝突面側の側壁部3の両角隅部は、前記衝突面側の側壁部3の長さL1の0.05〜0.3倍の長さの曲率半径Rで湾曲させておく。すなわち、
R=(0.05〜0.3)×L1 ・・・・・(3)
とする。
また、車体取付け面側の側壁部4の両角隅部の曲率半径rは、直接衝撃を受けないので材料の加工精度も配慮して、ノッチ効果による脆弱化を避けるため、側壁部4の板厚程度に僅かな曲率半径rを与えておけば良い。すなわち、
r=(0.2〜0.4)×t4 ・・・・・・(4)
としておけば良い。
【0016】
バンパービームを上記のように構成すれば衝突した瞬間に発生する最大荷重のピークを効果的に低下させることができ、サイドメンバーを損傷することなしに衝突エネルギーをバンパービームで吸収し、乗員に与える損傷を飛躍的に少なくすることができるようになる。
【0017】
図2は、図1に示す断面形状のバンパ−ビームの衝突実験におけるバンパービームの変位量と潰し荷重の関係を模式的に示したものである。図に示すように衝突直後の変位量が1mmに達する以前に最大荷重が発生し、その後はほぼ一定の潰し荷重で変形していく。図2の太線で示した曲線jは図7と同様に、“日の字型”バンパービームの衝突面側の側壁部両端の曲率半径Rを0(曲率半径ナシ)にした場合の変位量曲線であって、変位量が約0.5mm程度の時に250kNの最大荷重が発生している。これに対して細線で示した本発明に係わる曲線aは、曲率半径Rを10mmとした場合であって、変位量1mm前後の時に最大荷重が約150kN前後と大幅に低下して発生し、曲線はより矩形波に近づいている。
このように“日の字型”バンパービームの衝突面側の側壁部両端に曲率半径Rを付与することにより衝突時に発生する最大荷重を大幅に低減させることができ、サイドメンバーを損傷することなくバンパービームで衝突エネルギーを有効に吸収することができるので、乗員の安全確保に極めて有効となる。
【0018】
(第2の実施形態)
次に、第2の実施形態としてバンパービームの中心線とサイドメンバーの中心線が一致しておらず、バンパービームの中心線がサイドメンバーの中心線よりも低い位置にくる場合の例を図3に示す。
この場合には、衝突面側の側壁部3の厚さt3が車体取付け面側の側壁部4の厚さt4よりも厚く、かつ前記上壁部1と連結リブ5及び底壁部2の厚さt1,t5,t2が、この順に次第に薄くなるように構成する。すなわち、図3においてt4<t3でありt2<t5<t1である。中間リブ5の厚さt5は基準となる上壁部1の厚さt1の0.9倍以上1.0倍未満、底壁部2の厚さt2は基準となる上壁部1の厚さt1の0.8倍以上0.9倍未満とするのが好ましい。
すなわち、
0.9×t1≦t5<1.0×t1 ・・・・・(5)
0.8×t1≦t2<0.9×t1 ・・・・・(6)
また、前記第1の実施形態の場合と同様に、衝突側の側壁部両端隅部は、前記衝突面側の側壁部3の長さL1の0.05〜0.3倍の長さの曲率半径Rで湾曲させる。また、車体取付け面側の側壁部4の両角隅部は、該車体取付け面側の側壁部4の厚さt4の0.2〜0.4倍の長さの曲率半径rで湾曲させるのが好ましい。
バンパービームを上記のように構成することにより、バンパービームの衝突側の側壁部両端隅部に設けた曲率半径Rの効果により、衝突時に発生する最大荷重を大幅に引き下げることができる。
【0019】
(第3の実施形態)
次に、第3の実施形態としてバンパービームの中心線とサイドメンバーの中心線が一致しておらず、バンパービームの中心線がサイドメンバーの中心線よりも高い位置にくる場合の例を図4に示す。バンパービームの断面の底部を強化する対策として、図4に示すように、連結リブの取付け位置を相対向する衝突側の側壁部及び車体取り付け側の側壁部の中央よりも、底壁部側に設ける。バンパービームの中心線とサイドメンバーの中心線のズレの量、並びにバンパービームの強度を考慮すれば、連結リブの取付け位置は衝突側の側壁部及び車体取り付け側の側壁部の下から三分の一前後を目安とする。
この場合においても、先の第1及び第2の実施形態と同様に、衝突面側の側壁部3の厚さt3が車体取付け面側の側壁部4の厚さt4よりも厚く、かつ前記上壁部1と連結リブ5及び底壁部2の厚さt1,t5,t2が、この順に次第に厚くなるように構成する。また、衝突側の側壁部両端隅部は、前記衝突面側の側壁部3の長さL1の0.05〜0.3倍の長さの曲率半径Rで湾曲させる。また、車体取付け面側の側壁部4の両角隅部は、該車体取付け面側の側壁部4の厚さt4の0.2〜0.4倍の長さの曲率半径rで湾曲させるのが好ましい。
バンパービームを上記のように構成することにより、バンパービームの衝突側の側壁部両端隅部に設けた曲率半径Rの効果により、衝突時に発生する最大荷重を大幅に引き下げることができる。
【0020】
【発明の効果】
本発明によれば、バンパービームの断面形状を詳細に検討した結果、衝撃を受ける面の厚さを厚くして剛性を高め、衝撃を受ける面の両端に曲率半径Rを付与した形状にしたので、衝突の際バンパービームの変形直後に発生する最大荷重が低くなり、乗員の受ける身体的損傷を少なくすることができるようになる。
本発明のバンパービームを装着した車両は、より安全性の高い車両といえる。
【図面の簡単な説明】
【図1】本発明の自動車用バンパービームの第1の実施形態の断面形状を示す図である。
【図2】本発明の自動車用バンパービームの変位量と潰し荷重との関係を模式的に示す図である。
【図3】本発明の自動車用バンパービームの第2の実施形態の断面形状を示す図である。
【図4】本発明の自動車用バンパービームの第3の実施形態の断面形状を示す図である。
【図5】従来の自動車用バンパービームの断面形状の一例を示す図である。
【図6】従来の自動車用バンパービームの断面形状の他の例を示す図である。
【図7】従来の自動車用バンパービームの変位量と荷重の関係を示す図である。
【符号の説明】
1・・・・・・上壁部、2・・・・・・底壁部、3・・・・・・衝突面側の側壁部、4・・・・・・車体取付け面側の側壁部、5・・・・・・連結リブ、10,11,30,40・・・・・・バンパービーム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bumper beam for reinforcing a bumper of an automobile.
[0002]
[Prior art]
2. Description of the Related Art In general, a bumper of an automobile generally includes a bumper beam that is connected to a vehicle body and maintains the strength of the bumper, and a resin skin material that is attached to the bumper beam to adjust the appearance of the vehicle body. The bumper beam has been reduced in weight in order to reduce fuel consumption, and in recent years, the use of light alloys has been increasing. For example, a bumper beam 30 shown as a cross-sectional view in FIG. 5 is an example of a bumper beam extruded from an aluminum alloy material, and has a hollow structure extruded in a “sun-shaped” cross section. That is, the upper wall portion 31 and the bottom wall portion 32 which are parallel to each other, the side wall portions 33 and 34 which are parallel to each other in a direction perpendicular thereto, and the side wall portions 33 and 34 which are parallel to the upper wall portion 31 and the bottom wall portion 32. Is formed by a connecting rib 35 provided at the center so as to divide it into two.
[0003]
The bumper beam 30 is actually attached to the front or rear surface of the vehicle 17 via the side member 16, and in the event of a collision, the side wall 33 on the collision surface side generates an impact force F from the direction of the left arrow in the drawing. It is the face to receive. Therefore, the side wall portion 33 is formed to be the thickest among the members having the "sun-shaped" sectional structure. In the example of FIG. 5, the upper wall 31 and the bottom wall 32 and the connecting rib 35 are formed to have the same thickness, and have a structure in which the impact force from the left side of the figure is equally received and the impact force is softened. ing.
Such a bumper beam is made of a 7000 series high-strength aluminum alloy or the like for the purpose of weight reduction. Usually, a cushioning material made of a foam material or the like is attached to the bumper beam, and the surface is covered with a bumper cover.
[0004]
When a bumper beam receives an external impact due to a collision of a car, etc., it absorbs the impact energy by plastic deformation of the bumper beam material, which is important for avoiding damage to other members and ensuring the safety of the human body. It is a member.
By the way, there are two types of collisions of a vehicle: a wall-shaped obstacle collides with the entire surface of the bumper beam at a relatively high speed, and a columnar obstacle collides with a part of the wall of the bumper beam at a relatively low speed. There is a form.
In the former type of collision, the collision energy due to the collision is often large enough to cause injury to the occupant and buckling damage of the bumper beam mounting member, and the bumper beam gradually deforms and collapses, causing a large amount of collision. It is desired that the material can absorb energy.
On the other hand, in the latter type of collision, there are few cases in which the collision energy is large enough to cause injury to the occupant or damage to the mounting member, and the bumper beam is deformed and collapsed to absorb the collision energy rather than absorbing the collision energy. It is desired that the material has high rigidity that is difficult to deform.
[0005]
For the bumper beam, it is required to increase the bending rigidity of the profile and the amount of energy absorbed when bending, while reducing the weight. A proposal for improving these characteristics by improving the cross-sectional shape has been disclosed (for example, see Patent Information 1).
Here, a bumper beam that is made of an aluminum alloy profile with a rectangular cross section that is uniform in the length direction and that has a wall surface that is perpendicular to the collision direction and that is mounted on the vehicle body at both ends of the wall surface located on the vehicle body side is used. In addition, there is disclosed a bumper beam in which a corner of the aluminum alloy profile located on the vehicle body side is curved with a radius R that is 2.5 times or more the plate thickness.
Specifically, as shown in FIG. 6, the bumper beam 40 is made of an aluminum alloy material provided in the bumper cover, and the wall surface 41 a located on the vehicle body 42 side is connected to the vehicle body 42 via the side member 44. Supported. The above-described aluminum alloy material is formed in a rectangular cross section having a uniform shape in the longitudinal direction, for example, in the shape of a "Japanese character". The pair of horizontal ribs 41b, 41b, and both ends of both horizontal ribs 41b, 41b are provided at both ends. The vertical ribs 41a, 41a are connected, and the reinforcing ribs 41c are connected between the vertical ribs 41a, 41a.
[0006]
The bumper beam 40 is provided such that the vertical ribs 41a, 41a are perpendicular to the collision direction and the horizontal ribs 41b, 41b are parallel to the collision direction. The corners 41d, 41d on the vehicle body 42 side are curved with a radius R of at least 2.5 times the plate thickness in a range of 1/6 or less of the length of the vertical ribs 41a, 41a. On the other hand, the corners 41e, 41e on the collision side of the bumper beam 40 are bent at a substantially right angle with a radius r about the plate thickness. Thereby, at the time of barrier collision, the curved corners 41d, 41d are positioned at the starting point of buckling, thereby promoting buckling while suppressing the generated load and efficiently absorbing the collision energy. Has become. Further, at the time of a pole collision, a large generated load is generated by positioning the curved corners 41d, 41d on the side opposite to the starting point of buckling. The reason that the radius R is limited to 1/6 or less of the length of the vertical ribs 41a, 41a is that if it exceeds 1/6, it becomes difficult to attach the side member 44 and the absorbed energy decreases. It has been.
According to this structure, it is possible to have both a characteristic capable of absorbing a large amount of collision energy by gradually deforming and collapsing and a characteristic of high rigidity that is difficult to be deformed by a collision load, which can cope with the above two collision modes. It is possible.
[0007]
[Patent Document 1]
JP-A-8-80879 (page 5, FIG. 2)
[0008]
[Problems to be solved by the invention]
However, if the bumper beam is too strong, the buckling of the bumper beam and the side member, which is the mounting bracket of the vehicle body, will be damaged.
The side members are damaged by the maximum load that occurs at the moment of the collision.
For example, in the case of a bumper beam whose all corners are bent at right angles as shown in the cross section in FIG. 5, the average load during the plastic deformation of the bumper beam by 3.5 to 4.5 mm due to collision is 50 kN as shown in FIG. On the other hand, the maximum load as much as 250 kN is generated during the plastic deformation of about 0.5 mm before the displacement of the bumper beam reaches 1 mm immediately after the collision, and after the displacement of about 2 mm, the load is almost constant. Deforms with an average crushing load. In this case, the maximum load reaches 5.88 times the average load.
If the maximum load can be reduced, the collision energy can be absorbed only by the deformation and collapse of the bumper beam without damaging the side members.
Conventionally, the relationship between the maximum load and the absorbed energy when the generated load is not accompanied by a large fluctuation during the plastic deformation of the bumper beam of 3.5 to 4.5 mm has been a problem. No attempt was made to lower it.
In order to ensure personal safety, it is important to minimize the peak of the maximum load generated at the moment of a collision as much as possible.
An object of the present invention is to provide a bumper beam structure that can minimize the peak of the maximum load generated at the moment of the collision as much as possible and can prevent damage to a side member that is a mounting bracket for the bumper beam. .
[0009]
[Means for Solving the Problems]
As a result of various examinations of the cross-sectional shape of the bumper beam of an ordinary passenger car to solve the above problem, the side member is damaged only when a high load is instantaneously generated when a load is applied to a bumper beam specimen having a length of 100 mm. Exceeds the load that crushes the vehicle body. By making the maximum load generated at the moment of a collision equal to the load that crushes the vehicle body, it was found that the plastic deformation of the bumper beam could absorb the collision energy without damaging the side members. It was also found that if the maximum load is reduced as in the conventional bumper beam structure, the impact load generated in the latter half of the collision will be too low, and the energy absorption capacity of the bumper beam will be reduced. .
Therefore, in the crushing displacement-crushing load curve shown in FIG. 7, if only the maximum peak is lowered to make the waveform closer to a rectangular waveform, the collision energy can be absorbed by plastic deformation of the bumper beam without damaging the side members. It is considered that a bumper beam having stable performance as an energy absorbing material can be obtained. Therefore, as a result of various examinations of the cross-sectional shape of the bumper beam, the thickness of the member on the impacted surface was increased, the thickness of the member perpendicular to the impacted surface was changed, and both ends of the impacted member surface were changed. It has been found that the above object can be achieved by giving a specific radius of curvature, and the present invention has been accomplished.
[0010]
That is, in the bumper beam of the present invention, the cross-sectional shape is an upper wall portion, a bottom wall portion facing the upper wall portion, a pair of side wall portions connecting both ends of the upper wall portion and the bottom wall portion, and A connection rib provided between the wall portion and the bottom wall portion for connecting the two side wall portions, and the thickness of the side wall portion on the collision surface side is the thickness of the side wall portion on the vehicle body mounting surface side. The upper wall portion, the connecting ribs, and the bottom wall portion are configured such that the thicknesses thereof gradually increase or decrease in this order, and both corners of the side wall portion on the collision surface side are on the collision surface side. The bumper beam was made of an extruded hollow member made of an aluminum alloy and curved with a radius of curvature R of 0.05 to 0.3 times the length of the side wall portion.
[0011]
It is preferable that the thickness of the upper wall be 0.8 times or more and less than 0.9 times the thickness of the bottom wall. Further, it is preferable that the thickness of the connecting rib is 0.9 times or more and less than 1.0 times the thickness of the bottom wall portion.
By configuring the connecting ribs in this way, it is possible to have a high rigidity and dramatically reduce the maximum peak load generated at the time of a collision, and to reduce the collision energy without damaging the side members. It is absorbed by the bumper beam, and the damage to the occupant can be drastically reduced.
[0012]
In the present invention, the attachment position of the connecting rib may be provided closer to the bottom wall than the center of the side wall, or may be provided closer to the upper wall than the center of the side wall.
By shifting the position of the connecting rib in this way, the center line of the bumper beam does not match the center line of the side member due to the design of the vehicle, and the center line of the bumper beam is higher or lower than the center line of the side member. In this case, the bottom of the cross section of the bumper beam which receives strong impact energy can be strengthened.
When the attachment position of the connecting rib is provided closer to the bottom wall than the center of the side wall, the thickness of the upper wall, the connecting rib, and the bottom wall is gradually increased in this order.
Conversely, when the connecting rib is mounted closer to the upper wall than the center of the side wall, the thickness of the upper wall, the connecting rib, and the bottom wall is gradually reduced in this order. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be specifically described with reference to the drawings. In the following drawings, the scale of each part is not necessarily drawn accurately for easy understanding.
(1st Embodiment)
FIG. 1 is a sectional view showing a first embodiment of the bumper beam of the present invention. As shown in the figure, a bumper beam 10 of the present invention connects an upper wall 1 with a cross-sectional shape, a bottom wall 2 facing the upper wall 1, and both ends of the upper wall 1 and the bottom wall 2. A pair of side walls 3 and 4 and a connection rib 5 provided at the center of the top wall 1 and the bottom wall 2 and connecting these two parts are configured to exhibit a “sun” shape. The rigidity is ensured. In the bumper beam 10, the side wall 3 on the left side of the drawing is the side wall on the collision surface side, and an impact force at the time of collision indicated by arrow F is applied. The side wall 4 on the right side of the drawing is the side wall on the vehicle body mounting surface side, and is mounted on the vehicle body 7 via the side member 6.
[0014]
In the bumper beam of the present invention, the thickness t3 of the side wall portion 3 on the collision surface side is larger than the thickness t4 of the side wall portion 4 on the vehicle body mounting surface side, and the upper wall portion 1, the connecting rib 5, and the bottom wall portion 2 are provided. Are configured such that the thicknesses t1, t5, and t2 of the first layer gradually increase in this order. That is, in FIG. 1, t4 <t3 and t1 <t5 <t2.
In this case, based on the thickness t2 of the bottom wall 2, the thickness t1 of the upper wall 1 is 0.80 times or more and less than 0.9 times the thickness t2 of the bottom wall 2, and the thickness of the connecting rib 5 t5 is preferably set to 0.90 or more and less than 1.0 times the thickness t2 of the bottom wall portion 2. That is,
0.8 × t2 ≦ t1 <0.9 × t2 (1)
0.9 × t2 ≦ t5 <1.0 × t2 (2)
It is preferable to set the degree.
This is because the center line of the bumper beam does not always coincide with the center line of the side member due to the design of the vehicle, and the center line of the bumper beam is often located higher than the center line of the side member. In such a case, since the impact energy is stronger at the bottom of the cross section of the bumper beam, it is effective to strengthen the bottom.
[0015]
Further, both corners of the side wall 3 on the collision surface side are curved with a radius of curvature R of 0.05 to 0.3 times the length L1 of the side wall 3 on the collision surface side. That is,
R = (0.05-0.3) × L1 (3)
And
The radius of curvature r at both corners of the side wall portion 4 on the vehicle body mounting surface side is set to be equal to the thickness of the side wall portion 4. What is necessary is just to give a slightly small radius of curvature r. That is,
r = (0.2-0.4) × t4 (4)
It is good if you put it.
[0016]
If the bumper beam is configured as described above, the peak of the maximum load generated at the moment of a collision can be effectively reduced, and the collision energy is absorbed by the bumper beam without damaging the side members and given to the occupant. Damage can be drastically reduced.
[0017]
FIG. 2 schematically shows the relationship between the displacement of the bumper beam and the crushing load in a bumper-beam collision experiment having the cross-sectional shape shown in FIG. As shown in the figure, the maximum load is generated before the displacement immediately after the collision reaches 1 mm, and thereafter, it deforms with a substantially constant crushing load. Similar to FIG. 7, the curve j indicated by the bold line in FIG. 2 is a displacement amount curve when the radius of curvature R at both ends of the side wall on the collision surface side of the “sun-shaped” bumper beam is set to 0 (no radius of curvature). The maximum load of 250 kN is generated when the displacement is about 0.5 mm. On the other hand, a curve a according to the present invention shown by a thin line is a case where the radius of curvature R is 10 mm, and when the displacement amount is about 1 mm, the maximum load is significantly reduced to about 150 kN, and the curve a is generated. Is closer to a square wave.
In this way, by giving the radius of curvature R to both ends of the side wall on the collision surface side of the "sun-shaped" bumper beam, the maximum load generated at the time of collision can be greatly reduced, and the side member is not damaged. The collision energy can be effectively absorbed by the bumper beam, which is extremely effective for ensuring the safety of the occupants.
[0018]
(Second embodiment)
Next, an example in which the center line of the bumper beam does not coincide with the center line of the side member as the second embodiment, and the center line of the bumper beam is lower than the center line of the side member is shown in FIG. Shown in
In this case, the thickness t3 of the side wall portion 3 on the collision surface side is larger than the thickness t4 of the side wall portion 4 on the vehicle body mounting surface side, and the thickness of the upper wall portion 1, the connecting rib 5, and the bottom wall portion 2 The thicknesses t1, t5, and t2 are configured to become gradually thinner in this order. That is, in FIG. 3, t4 <t3 and t2 <t5 <t1. The thickness t5 of the intermediate rib 5 is 0.9 times or more and less than 1.0 times the thickness t1 of the reference upper wall 1, and the thickness t2 of the bottom wall 2 is the thickness of the reference upper wall 1. It is preferable that t1 is 0.8 times or more and less than 0.9 times.
That is,
0.9 × t1 ≦ t5 <1.0 × t1 (5)
0.8 × t1 ≦ t2 <0.9 × t1 (6)
As in the case of the first embodiment, both corners of the side wall on the collision side have a curvature of 0.05 to 0.3 times the length L1 of the side wall 3 on the collision side. Curved with radius R. Further, both corners of the side wall portion 4 on the vehicle body mounting surface side are preferably curved with a radius of curvature r of 0.2 to 0.4 times the thickness t4 of the side wall portion 4 on the vehicle body mounting surface side. preferable.
By configuring the bumper beam as described above, the maximum load generated at the time of collision can be significantly reduced due to the effect of the radius of curvature R provided at both corners of the side wall on the collision side of the bumper beam.
[0019]
(Third embodiment)
Next, as a third embodiment, an example in which the center line of the bumper beam does not match the center line of the side member, and the center line of the bumper beam is located higher than the center line of the side member is shown in FIG. Shown in As a countermeasure to strengthen the bottom of the cross section of the bumper beam, as shown in FIG. 4, the connecting position of the connecting rib is set closer to the bottom wall than the center of the opposing side wall on the collision side and the side wall on the vehicle body mounting side. Provide. Considering the amount of misalignment between the center line of the bumper beam and the center line of the side member, and the strength of the bumper beam, the mounting position of the connecting rib is three-thirds below the side wall on the collision side and the side wall on the vehicle body mounting side. Use around one.
Also in this case, similarly to the first and second embodiments, the thickness t3 of the side wall portion 3 on the collision surface side is larger than the thickness t4 of the side wall portion 4 on the vehicle body mounting surface side, and The thicknesses t1, t5, and t2 of the wall portion 1, the connection rib 5, and the bottom wall portion 2 are configured to gradually increase in this order. The corners at both ends of the side wall on the collision side are curved with a radius of curvature R of 0.05 to 0.3 times the length L1 of the side wall 3 on the collision side. Further, both corners of the side wall portion 4 on the vehicle body mounting surface side are preferably curved with a radius of curvature r of 0.2 to 0.4 times the thickness t4 of the side wall portion 4 on the vehicle body mounting surface side. preferable.
By configuring the bumper beam as described above, the maximum load generated at the time of collision can be significantly reduced due to the effect of the radius of curvature R provided at both corners of the side wall on the collision side of the bumper beam.
[0020]
【The invention's effect】
According to the present invention, as a result of examining the cross-sectional shape of the bumper beam in detail, as a result of increasing the thickness of the impact-receiving surface to increase rigidity, the impact-receiving surface is formed to have a radius of curvature R at both ends of the impact-receiving surface. In addition, the maximum load generated immediately after the deformation of the bumper beam in the event of a collision is reduced, so that physical damage to the occupant can be reduced.
A vehicle equipped with the bumper beam of the present invention can be said to be a vehicle with higher safety.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional shape of a first embodiment of an automobile bumper beam of the present invention.
FIG. 2 is a diagram schematically illustrating a relationship between a displacement amount and a crushing load of the bumper beam for an automobile according to the present invention.
FIG. 3 is a view showing a cross-sectional shape of a second embodiment of the automotive bumper beam of the present invention.
FIG. 4 is a view showing a sectional shape of a third embodiment of the bumper beam for an automobile of the present invention.
FIG. 5 is a diagram showing an example of a cross-sectional shape of a conventional bumper beam for an automobile.
FIG. 6 is a view showing another example of a cross-sectional shape of a conventional bumper beam for an automobile.
FIG. 7 is a diagram showing a relationship between a displacement amount and a load of a conventional bumper beam for an automobile.
[Explanation of symbols]
1 ... top wall, 2 ... bottom wall, 3 ... side wall on collision side, 4 ... side wall on vehicle mounting side 5, connecting ribs, 10, 11, 30, 40 ... bumper beam

Claims (3)

断面形状が上壁部と、上壁部に対向する底壁部と、前記上壁部および底壁部の両端部を連結する一対の側壁部と、前記上壁部および底壁部の中間に設けられて2つの側壁部を連結する連結リブとからなる日の字型を呈し、衝突面側の側壁部の厚さが車体取付け面側の側壁部の厚さよりも厚く、前記上壁部と連結リブ及び底壁部の厚さがこの順に次第に厚く、もしくは薄くなるように構成されており、かつ衝突面側の側壁部の両角隅部は前記衝突面側の側壁部の長さの0.05〜0.3倍の長さの曲率半径Rで湾曲した、アルミニウム合金製の押し出し中空部材からなることを特徴とする自動車用バンパービーム。The cross-sectional shape is an upper wall portion, a bottom wall portion facing the upper wall portion, a pair of side wall portions connecting both ends of the upper wall portion and the bottom wall portion, and an intermediate portion between the upper wall portion and the bottom wall portion. And a connecting rib for connecting the two side walls. The side wall on the collision surface side is thicker than the side wall on the vehicle body mounting surface side. The thickness of the connecting rib and the bottom wall is gradually increased or decreased in this order, and both corners of the side wall on the collision surface side have a length of 0. A bumper beam for an automobile, comprising an extruded hollow member made of an aluminum alloy and having a curvature radius R having a length of 0.5 to 0.3 times. 前記上壁部の厚さが前記底壁部の厚さの0.8倍以上0.9倍未満であり、かつ前記連結リブの厚さが前記底壁部の厚さの0.9倍以上1.0倍未満であることを特徴とする請求項1に記載の自動車用バンパービーム。The thickness of the top wall is 0.8 times or more and less than 0.9 times the thickness of the bottom wall, and the thickness of the connecting rib is 0.9 times or more the thickness of the bottom wall. 2. The automotive bumper beam according to claim 1, wherein the ratio is less than 1.0. 前記底壁部の厚さが前記上壁部の厚さの0.8倍以上0.9倍未満であり、かつ前記連結リブの厚さが前記上壁部の厚さの0.9倍以上1.0倍未満であることを特徴とする請求項1に記載の自動車用バンパービーム。The thickness of the bottom wall is 0.8 times or more and less than 0.9 times the thickness of the upper wall, and the thickness of the connection rib is 0.9 times or more the thickness of the upper wall. 2. The automotive bumper beam according to claim 1, wherein the ratio is less than 1.0.
JP2002374808A 2002-11-01 2002-12-25 Bumper beam for automobile Expired - Fee Related JP4216065B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002374808A JP4216065B2 (en) 2002-12-25 2002-12-25 Bumper beam for automobile
US10/690,576 US6893062B2 (en) 2002-11-01 2003-10-23 Bumper beam for automobiles
DE60304416T DE60304416T2 (en) 2002-11-01 2003-10-24 Bumper crossmember for motor vehicles
EP03024506A EP1415865B1 (en) 2002-11-01 2003-10-24 Bumper beam for automobiles
MXPA03009897A MXPA03009897A (en) 2002-11-01 2003-10-29 Bumper beam for automobiles.
CNB2003101046894A CN1265988C (en) 2002-11-01 2003-10-30 Bumper beam for automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374808A JP4216065B2 (en) 2002-12-25 2002-12-25 Bumper beam for automobile

Publications (2)

Publication Number Publication Date
JP2004203211A true JP2004203211A (en) 2004-07-22
JP4216065B2 JP4216065B2 (en) 2009-01-28

Family

ID=32812713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374808A Expired - Fee Related JP4216065B2 (en) 2002-11-01 2002-12-25 Bumper beam for automobile

Country Status (1)

Country Link
JP (1) JP4216065B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221920A (en) * 2007-03-09 2008-09-25 Marujun Co Ltd Bumper beam for automobile
JP2009101848A (en) * 2007-10-23 2009-05-14 Kobe Steel Ltd Vehicular underrun protector
JP2014151706A (en) * 2013-02-06 2014-08-25 Toyota Motor Corp Vehicular bumper with pedestrian collision detection device
JP2017043158A (en) * 2015-08-25 2017-03-02 本田技研工業株式会社 Vehicle body rear part structure
JP2017226266A (en) * 2016-06-21 2017-12-28 三菱アルミニウム株式会社 Exterior beam for vehicle
JP2019123280A (en) * 2018-01-12 2019-07-25 株式会社神戸製鋼所 Vehicle collision safety device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221920A (en) * 2007-03-09 2008-09-25 Marujun Co Ltd Bumper beam for automobile
JP4546496B2 (en) * 2007-03-09 2010-09-15 株式会社丸順 Bumper beam for automobile
US7931315B2 (en) 2007-03-09 2011-04-26 Marujun Co., Ltd. Bumper beam for automobile
JP2009101848A (en) * 2007-10-23 2009-05-14 Kobe Steel Ltd Vehicular underrun protector
JP2014151706A (en) * 2013-02-06 2014-08-25 Toyota Motor Corp Vehicular bumper with pedestrian collision detection device
JP2017043158A (en) * 2015-08-25 2017-03-02 本田技研工業株式会社 Vehicle body rear part structure
JP2017226266A (en) * 2016-06-21 2017-12-28 三菱アルミニウム株式会社 Exterior beam for vehicle
JP2019123280A (en) * 2018-01-12 2019-07-25 株式会社神戸製鋼所 Vehicle collision safety device
JP7000168B2 (en) 2018-01-12 2022-01-19 株式会社神戸製鋼所 Collision safety device for vehicles

Also Published As

Publication number Publication date
JP4216065B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
EP1415865B1 (en) Bumper beam for automobiles
JP4488353B2 (en) Bumper to reduce pedestrian injury
JP4004924B2 (en) Bumper device for vehicle
JP4059187B2 (en) Vehicle hood structure
US6851731B2 (en) Crash energy absorbing element
JP3223896B2 (en) Impact energy absorbing structure on top of car body
US7063376B2 (en) Structural member for a vehicle frame assembly
JP4787728B2 (en) Body bumper beam and body shock absorber
JP2005297726A (en) Automobile bumper
JP4216065B2 (en) Bumper beam for automobile
JP2001199292A (en) Bumper reinforcement
JP3676491B2 (en) Shock absorbing member
JPH07228267A (en) Strength member structure of car body
JP4956081B2 (en) Body bumper beam and body shock absorber
EP1262374B1 (en) Crash energy absorbing element
JP4216045B2 (en) Bumper beam for automobile
JP4473537B2 (en) Energy absorber for personal protection
JP2006062635A (en) Impact absorbing member for automobile
JP2000053017A (en) Automobile energy absorptive structure
JPH0820297A (en) Bumper reinforcement
CN210116554U (en) Longitudinal beam recessed auxiliary frame
JP2889162B2 (en) Energy absorption structure on the side of the vehicle
JP3493755B2 (en) Pillow head shock absorption protective cover
JP3562919B2 (en) Shock absorbing bumper
JPH08207679A (en) Energy absorbing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees