JP5374832B2 - Metal hollow columnar member for impact absorbing member and manufacturing method thereof - Google Patents
Metal hollow columnar member for impact absorbing member and manufacturing method thereof Download PDFInfo
- Publication number
- JP5374832B2 JP5374832B2 JP2007129896A JP2007129896A JP5374832B2 JP 5374832 B2 JP5374832 B2 JP 5374832B2 JP 2007129896 A JP2007129896 A JP 2007129896A JP 2007129896 A JP2007129896 A JP 2007129896A JP 5374832 B2 JP5374832 B2 JP 5374832B2
- Authority
- JP
- Japan
- Prior art keywords
- cross
- hollow columnar
- columnar member
- section
- side length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Body Structure For Vehicles (AREA)
Description
本発明は、衝撃吸収部材用の590MPa級以上のハイテン鋼製中空柱状部材及びその製造方法に関し、特に、筐体を構成するフレーム部材として使用される、590MPa級以上のハイテン鋼製の薄肉中空柱状部材に関する。 TECHNICAL FIELD The present invention relates to a hollow columnar member made of high-tensile steel of 590 MPa class or higher for an impact absorbing member and a method for manufacturing the same, and in particular, used as a frame member constituting a housing, and a thin hollow columnar shape made of high- tensile steel of 590 MPa class or higher It relates to members.
近年、燃料高・原料高に伴い製造の現場ではコスト削減が早急に要求されている。しかし、コスト削減により製品の性能が悪くなることは、メーカーの信用失墜につながる可能性がある。特に筐体を構成するフレーム部材の性能悪化は安全性の面で避けなければならない。自動車分野では衝突安全性の維持と燃費向上のため、車体に搭載されるフレーム部材に超ハイテンを適用する例が多くなっている。すなわち、材料の質の変更によりコストの削減が図られている。 In recent years, there has been an urgent demand for cost reduction at manufacturing sites due to high fuel and high raw materials. However, the deterioration of product performance due to cost reductions may lead to the loss of manufacturer confidence. In particular, deterioration of the performance of the frame member constituting the housing must be avoided in terms of safety. In the automobile field, in order to maintain collision safety and improve fuel efficiency, there are many examples in which ultra high tension is applied to a frame member mounted on a vehicle body. That is, the cost is reduced by changing the quality of the material.
製品の質を維持または向上させ、かつコスト削減を可能とする技術として、上記の材料そのものの変更によるコスト削減方法があるが、新材料の開発は長い時間と莫大な開発コストを要する。また他のコスト削減方法として、部材形状を最適化することが考えられる。この手法は開発期間と開発コストの面で優れた手法であり、過去に様々な検討が行われている。 As a technique for maintaining or improving product quality and enabling cost reduction, there is a cost reduction method by changing the material itself, but development of a new material requires a long time and enormous development cost. Another possible cost reduction method is to optimize the member shape. This method is excellent in terms of development period and development cost, and various studies have been conducted in the past.
本発明に関連する先行技術として、特許文献1には、軸方向の少なくとも一部における横断面形状が複数の頂点を有する閉断面であって、内部へ向かって凹んだ溝部を形成する衝撃吸収部材が開示されている。 As a prior art related to the present invention, Patent Document 1 discloses a shock absorbing member in which a cross-sectional shape in at least a part in the axial direction is a closed cross section having a plurality of vertices and forms a groove portion recessed toward the inside. Is disclosed.
また、特許文献2に中空矩形断面を有するアルミニウム合金押出部材からなるエネルギー吸収部材において、壁面部の外側に矩形断面の凸部を有する部材が記載されている。 Moreover, in the energy absorption member which consists of an aluminum alloy extrusion member which has a hollow rectangular cross section in patent document 2, the member which has a convex part of a rectangular cross section on the outer side of a wall surface part is described.
さらに、特許文献3には、略矩形断面形状をなす自動車のフロントサイドフレーム構造として、側面に軸線方向に延在する、内側に凸状となるビードや、外側に凸状となるビードが形成されている構造が開示されている。 Further, in Patent Document 3, as a front side frame structure of an automobile having a substantially rectangular cross-sectional shape, a bead that extends in the axial direction on the side surface and has a convex shape on the inside and a bead that has a convex shape on the outside are formed. A structure is disclosed.
しかしながら、上記特許文献を含めても、具体的かつ即座に設計に適用できる利便性の高い設計指針は今まで開示されていない。エネルギー吸収能に優れ、かつ局所的な折れ曲がりによる全体座屈が発生し難い断面形状を統計的にまとめた例はなく、設計者の経験と部材レベルの検証の繰り返しという、人材の育成に大きく依存し、かつ時間および開発コストを多くかけ、様々な設計の現場で品質に大きな差が出ているのが現状である。したがって設計者の経験に依存する度合いを低減させ、無駄なコストを消費しないような設計指針は、高品質保持および開発期間短縮を促し、結果として開発競争力およびその持続力を高める結果となりうる。 However, even including the above-mentioned patent documents, a convenient design guideline that can be applied to design specifically and immediately has not been disclosed so far. There are no examples of statistically summarized cross-sectional shapes that have excellent energy absorption capability and are less likely to cause overall buckling due to local bending, and rely heavily on human resource development, repeated designers' experience and member-level verification. However, it takes a lot of time and development costs, and there is a big difference in quality at various design sites. Therefore, a design guideline that reduces the degree of dependence on the designer's experience and does not consume unnecessary costs can promote high quality maintenance and shorten the development period, and as a result, increase development competitiveness and its sustainability.
ここで、全体座屈とは、柱状部材が十分に蛇腹状に変形せず、局所的に折れ曲がる現象を指すこととする。一般的にエネルギー吸収能と局所的な折れ曲がりによる全体座屈に対する耐性とは相反する関係にあり、そもそもこの2つを両立させることが難しい。エネルギー吸収能の向上を図れば全体座屈がし易くなり、全体座屈を防ぐため曲げ剛性を高めようとすれば、エネルギー吸収能が低減する。そのため、設計者にはエネルギー吸収能と耐全体座屈性のバランスがとれた設計が要求される。 Here, the overall buckling refers to a phenomenon in which the columnar member is not sufficiently deformed into a bellows shape and is locally bent. In general, energy absorption ability and resistance to overall buckling caused by local bending are in a contradictory relationship, and it is difficult to make the two compatible in the first place. If the energy absorption capacity is improved, it becomes easy to buckle as a whole, and if it is attempted to increase the bending rigidity in order to prevent the overall buckling, the energy absorption capacity is reduced. For this reason, designers are required to have a design that balances energy absorption ability and overall buckling resistance.
以上の点から、特許文献1に記載された部材は、エネルギー吸収能を高めるために耐全体座屈性が大きく低減するという問題がある。なるほど特許文献1に示される部材は、荷重がある範囲の方向に継続的に負荷するようなとき、優れた衝撃吸収能(以下、エネルギー吸収能と称する)を発揮する可能性がある。 From the above points, the member described in Patent Document 1 has a problem that the overall buckling resistance is greatly reduced in order to increase the energy absorption ability. The member shown in Patent Document 1 has a possibility of exhibiting excellent shock absorption capability (hereinafter referred to as energy absorption capability) when the load is continuously applied in a certain range.
しかし、部材の変形に伴い負荷された荷重方向は複雑となるのが普通であり、曲げ剛性の低い断面構造は容易に全体座屈を引き起こす。特許文献1に記載された発明は「蛇腹状に座屈することによって所定の衝撃吸収能を確保すること」(特許文献1の段落番号0032)を課題としているが、特許文献1の図1に記載されているように、コーナー部をカットして八角形断面を基本とする形状は、曲げ剛性を大きく低減させるため、小さな座屈を繰り返すような蛇腹状変形をせず折れ曲がりによる全体座屈を引き起こしやすい。そのため、実際のエネルギー吸収能は想定されるエネルギー吸収能より極端に低くなるおそれがある。 However, the load direction applied with the deformation of the member is usually complicated, and a cross-sectional structure with low bending rigidity easily causes overall buckling. The invention described in Patent Document 1 has an object of “securing a predetermined shock absorption capacity by buckling in a bellows shape” (paragraph number 0032 of Patent Document 1). As shown in the figure, the shape based on the octagonal cross section by cutting the corner part greatly reduces the bending rigidity, so that it does not undergo bellows-like deformation that repeats small buckling, and causes overall buckling due to bending. Cheap. Therefore, the actual energy absorption capacity may be extremely lower than the assumed energy absorption capacity.
また、特許文献1の図17、図18、図19(a)等には、コーナー部(角部、以下同じ)を有する四角形断面の形状も記載されているが、コーナー部の曲率や、寸法が明らかではなく、開示されている図のコーナー部は、図の通り内角が直角で成形されていると仮定すると、加工による板減を引き起こしやすく結果的に弱部になりやすい。同様に多角形で成形された部材は各角部において成形時に局所的な板減を引き起こすため、容易に破断する虞がある。 Moreover, although the shape of the square cross section which has a corner part (corner part, the same hereafter) is described in FIG. 17, FIG. 18, FIG. 19 (a) etc. of patent document 1, the curvature and dimension of a corner part are also described. However, if it is assumed that the inner corner is formed at a right angle as shown in the figure, the corner portion of the disclosed figure is likely to cause a plate reduction due to processing, and is likely to become a weak portion as a result. Similarly, since the member molded in a polygon causes local reduction at the time of molding at each corner, there is a risk of breaking easily.
加えて、特許文献1の請求項5で規定されている辺長はかなり広い範囲であり、エネルギー吸収能に大きなばらつきを含む。例えば、四角形状で、それぞれの辺で凹み部が中央に1つ存在し、かつ厚さt=1.6[mm]とすると、請求項5の規定によれば、凹み部の幅W1は6.4(=4×1.6)<W1<104(=65×1.6)となり、残余領域のそれぞれの幅Xi(i=1,2)は6.4<Xi<104のうちから選択できることになる。そのうちX1=X2=100[mm]、W1=10[mm]を採用した場合、即ち、4辺の各辺で窪み部の幅が10mmで、残余領域のそれぞれの幅が100mmとなる場合には、コーナー部の曲率が極めて大きい略四角形であるとしても、後述の本発明で規定するC値は2となり(=20(10/100))、エネルギー吸収能が極めて低い部材となる。このように、極端に断面形状を非対称化させると、さらに蛇腹状に変形せずに折れ曲がりによる全体座屈を引き起こしやすくなる虞がある。 In addition, the side length defined in claim 5 of Patent Document 1 is a fairly wide range, and includes large variations in energy absorption capacity. For example, a square shape, the recess in each of the sides there is one in the center, and a thickness t = 1.6 and [mm], according to the provisions of claim 5, the width W 1 of the recess portion 6.4 (= 4 × 1.6) <W 1 <104 (= 65 × 1.6), and the width Xi (i = 1, 2) of each remaining region is 6.4 <Xi <104 You can choose from. Among them, when X 1 = X 2 = 100 [mm] and W 1 = 10 [mm] are adopted, that is, the width of the recess is 10 mm on each of the four sides, and the width of each of the remaining areas is 100 mm. In this case, even if the corner has a substantially large curvature, the C value defined in the present invention, which will be described later, is 2 (= 20 (10/100)), and the member has a very low energy absorption capability. Thus, if the cross-sectional shape is made extremely asymmetric, there is a possibility that the entire buckling due to bending is likely to occur without being deformed into a bellows shape.
特許文献2は、中空矩形断面の辺上に1つないし複数の凸部を有するものであり、凸部形成でコーナー部を増やすことにより部材のエネルギー吸収量の向上を図っている。しかし、凸部を形成した薄肉中空柱状部材は、凸部の外周を延長した直線同士の交点上に図25の符号Aに示すようなコーナー部を有さないため、後述の図2で示すように、コーナー部を有さない部材の場合、曲げ剛性が大きく低減し、小さな座屈を繰り返すような蛇腹状変形をせず折れ曲がりによる全体座屈を引き起こしやすい。そのため荷重の負荷方向によっては、実際のエネルギー吸収能は想定されるエネルギー吸収能より極端に低くなるおそれがある。 Patent Document 2 has one or a plurality of convex portions on the side of a hollow rectangular cross section, and attempts to improve the energy absorption amount of the member by increasing the corner portions by forming the convex portions. However, the thin hollow columnar member formed with the convex portion does not have a corner portion as shown by reference numeral A in FIG. 25 on the intersection of the straight lines extending the outer periphery of the convex portion, and therefore, as shown in FIG. In addition, in the case of a member that does not have a corner portion, the bending rigidity is greatly reduced, and it is easy to cause overall buckling due to bending without causing a bellows-like deformation that repeats small buckling. Therefore, depending on the load direction, the actual energy absorption capacity may be extremely lower than the assumed energy absorption capacity.
特許文献3は、本発明と同様に略四角形の辺上に1つないし複数の凹み部を有するものである。しかし、特許文献3は特許文献1と同様に耐座屈性を弱めることでエネルギー吸収能を高めようとするものであり、かつ明確な設計指針が与えられていないため、例えばフレーム部材の中央に局所的にのみ凹み部を設けるような、中央からの折れ曲がりによる全体的な座屈を容易に引き起こすおそれのある形状も多く含んでおり、目的とは逆にエネルギー吸収能を低下させるおそれがある。 Patent Document 3 has one or a plurality of indentations on a substantially square side as in the present invention. However, Patent Document 3 is intended to increase the energy absorption capacity by weakening the buckling resistance similarly to Patent Document 1, and since a clear design guideline is not given, for example, in the center of the frame member. There are many shapes that may easily cause overall buckling due to bending from the center, such as providing a dent only locally, and there is a risk that the energy absorption capacity may be reduced contrary to the purpose.
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的は、様々な薄肉断面形状における変形によるエネルギー吸収能および耐全体座屈性の両立を図り、エネルギー吸収能に優れ、かつ座屈し難い薄肉中空柱状部材の設計指針を提示すること、並びに衝撃吸収部材用の590MPa級以上のハイテン鋼製中空柱状部材及びその製造方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to achieve both energy absorption ability and overall buckling resistance by deformation in various thin-walled cross-sectional shapes, and is excellent in energy absorption ability. It is another object of the present invention to provide a design guideline for a thin-walled hollow columnar member that is difficult to buckle, and to provide a high- tensile steel hollow columnar member of 590 MPa class or higher for a shock absorbing member and a method for producing the same.
上記目的に従い、本発明者らは断面形状を様々に変化させエネルギー吸収能と耐全体座屈性を調査した結果、四隅にコーナー部を有する中空部材が折れ曲がりに対する抵抗力に優れること、またその形状は閉断面の最小辺長・最大辺長および総稜線数の関数(C値)が、エネルギー吸収量および座屈のし易さの指標である最小断面二次半径に相関することを見出した。すなわちC値はエネルギー吸収能および耐全体座屈性に優れた薄肉中空柱状部材の設計指針になりうることを知見した。したがって、構造内部材の設置空間が把握できていれば、C値により最良の部材形状が探索可能となる。なお、断面形状は軸方向に一定である必要はなく、軸方向の一部にC値を満たさない箇所があってもよい。ただしその箇所は、曲げに対し構造的な弱部になる可能性があるため、曲げ剛性の高い形状である、凹み部のない断面形状で形成されることが望ましい。 In accordance with the above object, the present inventors have investigated the energy absorption ability and the overall buckling resistance by changing the cross-sectional shape variously, and as a result, the hollow member having corner portions at the four corners is excellent in resistance to bending, and the shape thereof. Found that the function (C value) of the minimum side length / maximum side length of the closed cross section and the total number of ridges correlates with the minimum cross section secondary radius, which is an index of energy absorption and ease of buckling. That is, it has been found that the C value can serve as a design guideline for a thin-walled hollow columnar member excellent in energy absorption ability and overall buckling resistance. Therefore, if the installation space of the members in the structure can be grasped, the best member shape can be searched based on the C value. The cross-sectional shape does not need to be constant in the axial direction, and there may be a portion that does not satisfy the C value in a part of the axial direction. However, since the portion may become a structural weak portion against bending, it is desirable that the portion be formed in a cross-sectional shape having no bending portion and having a high bending rigidity.
即ち、上記課題を解決するため、本発明の要旨は以下の通りである。
発明(1)
四隅にコーナー部を有し、前記コーナー部を含んで閉断面を形成する略四角形の断面形状からなる中空の衝撃吸収部材用の590MPa級以上のハイテン鋼製中空柱状部材であって、
4辺のうちの少なくとも一辺以上に1つないし複数の凹み部を有し、その断面内の最小辺長Lminと最大辺長Lmaxとの比Lmin/Lmaxに、その断面における総稜線数Nを乗じて得られるC値(=N(Lmin/Lmax))が10以上40以下であり、
かつ、閉断面の全周長をπとし、部材厚tは1.6mm以下であり、比π/tが160以上であり、
2箇所のコーナー部の外側又は対向する2辺の間の外側に、それぞれフランジ部を有することを特徴とする、衝撃吸収部材用の590MPa級以上のハイテン鋼製中空柱状部材。
但し、前記辺長、前記総稜線数は以下により定義される。
辺長:
一辺の中間に位置する凹み部の辺長は、隣接した凸部の肩部端点を直線で結んだ距離とする。
一辺の端部にある凸部の辺長は、当該凸部の端部と反対側に位置する肩部端点から端部までの直線距離とする。
一辺の中間に位置する凸部の辺長は、凸部の両側の肩部端点間の直線距離とする。
総稜線数:
閉断面内で曲率を取り除いた各頂点を直線で結んだときの直線の総数。
That is, in order to solve the above problems, the gist of the present invention is as follows.
Invention (1)
A hollow columnar member made of high-tensile steel of 590 MPa or higher for a hollow shock absorbing member having a corner portion at four corners and having a substantially rectangular cross-sectional shape including the corner portion and forming a closed cross-section,
At least one of the four sides has one or more dents, and the ratio Lmin / Lmax between the minimum side length Lmin and the maximum side length Lmax in the cross section is multiplied by the total number N of ridge lines in the cross section. C value (= N (Lmin / Lmax)) obtained in the above is 10 or more and 40 or less,
And the total perimeter of the closed section is π, the member thickness t is 1.6 mm or less, the ratio π / t is 160 or more,
A hollow columnar member made of high-tensile steel of 590 MPa class or more for impact absorbing members, characterized by having flange portions on the outside of two corner portions or on the outside between two opposing sides.
However, the side length and the total number of ridge lines are defined as follows.
Side length:
The side length of the dent portion located in the middle of one side is a distance obtained by connecting the shoulder end points of adjacent convex portions with a straight line.
The side length of the convex portion at the end of one side is the linear distance from the shoulder end point located on the side opposite to the end of the convex portion to the end.
The side length of the convex portion located in the middle of one side is the linear distance between the shoulder end points on both sides of the convex portion.
Total ridges:
The total number of straight lines when the vertices with the curvature removed in a closed section are connected by straight lines.
発明(2)
発明(1)において、用途が自動車用であることを特徴とする衝撃吸収部材用の590MPa級以上のハイテン鋼製中空柱状部材。
Invention (2)
In the invention (1), a high-tensile steel hollow columnar member of 590 MPa class or higher for an impact absorbing member, characterized in that the use is for automobiles.
発明(3)
発明(1)または(2)の衝撃吸収部材用の590MPa級以上のハイテン鋼製中空柱状部材の製造方法であって、2つの板材を曲げ又はプレス加工により成形し、フランジ部をドリルねじ、ボルト、リベット、溶接又は接着で接合したことを特徴とする衝撃吸収部材用の590MPa級以上のハイテン鋼製中空柱状部材の製造方法。
Invention (3)
A method for producing a hollow columnar member made of high-tensile steel of 590 MPa or higher for the impact absorbing member of the invention (1) or (2), wherein two plate members are formed by bending or pressing, and the flange portion is a drill screw or bolt A method for producing a hollow columnar member made of high-tensile steel of 590 MPa or more for impact absorbing members, characterized by being joined by rivets, welding or adhesion.
発明(8)
発明(1)又は(2)の金属製中空柱状部材の製造方法であって、シームレスパイプをハイドロフォーム又はロールフォーミングで成形することを特徴とする金属製中空柱状部材の製造方法。
Invention (8)
A method for producing a metal hollow columnar member according to the invention (1) or (2), wherein the seamless pipe is formed by hydroforming or roll forming.
なお、本発明で、略四角形とは、窪み部を除く各辺を延長した直線の交点で形成される図形が四角形であることを言う。 In addition, in this invention, a substantially square means that the figure formed by the intersection of the straight line which extended each edge | side except a hollow part is a rectangle.
本発明によれば、所定の設置可能空間内で、荷重方向によらず折れ曲がりによる全体座屈を引き起こし難く、かつエネルギー吸収能に優れた最良の断面形状を有する金属製中空柱状部材及びその製造方法を提供することができる。 According to the present invention, in a predetermined installable space, a metal hollow columnar member that has the best cross-sectional shape that is unlikely to cause overall buckling due to bending regardless of the load direction and that has an excellent energy absorption capability, and a method for manufacturing the same. Can be provided.
以下に添付図面を参照しながら、本発明の薄肉中空柱状部材を実施するための好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments for implementing a thin hollow columnar member of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
まず、上記発明(1)について説明する。
第一に、薄肉金属製中空柱状部材に荷重が負荷された場合、エネルギー吸収能の観点から、折れ曲がりによる全体座屈は避けなければならない。軸方向に荷重が加わる場合でも、変形により荷重方向が複雑化し、一定して軸方向に荷重が加わることはないので、折れ曲がりによる全体座屈を防ぐためには、曲げ剛性、すなわち最小断面二次モーメントの大きさが重要となる。図2は縦の長さが80mm、横の長さが80mm、図3は縦の長さが60mm、横の長さが100mmの四角形内で、種々の断面形状とそれらの最小断面二次モーメントを比較したものである。図2、図3で示した断面形状を有する6つの薄肉金属製中空柱状部材は、ともに材料としてJSC590Yを用いた。板厚はともに1.6mmである。図中に示された形状は各断面形状の略図である。また図中の矢印はそれぞれの形状と最小断面二次モーメントとが対応している。図から四角形内のコーナー部に凹み部のある断面形状(図2、図3のそれぞれ右側の四角形)は他の断面形状に比べ、極端に最小断面二次モーメントが低いことがわかる。すなわち、折れ曲がりによる全体座屈を防ぐためには、四隅にそれぞれコーナー部を有し、前記コーナー部を含んで閉断面を形成する略四角形が最良の断面形状であると考えられる。
First, the said invention (1) is demonstrated.
First, when a load is applied to the thin metal hollow columnar member, the entire buckling due to bending must be avoided from the viewpoint of energy absorption capability. Even when a load is applied in the axial direction, the load direction becomes complicated due to deformation, and the load is not applied in a constant axial direction. Therefore, in order to prevent overall buckling due to bending, bending rigidity, that is, the minimum moment of inertia of the section The size of is important. FIG. 2 shows a vertical length of 80 mm and a horizontal length of 80 mm. FIG. 3 shows various cross-sectional shapes and their minimum secondary moments in a square having a vertical length of 60 mm and a horizontal length of 100 mm. Is a comparison. The six thin-walled metal hollow columnar members having the cross-sectional shapes shown in FIGS. 2 and 3 both used JSC590Y as a material. The plate thickness is 1.6 mm. The shape shown in the figure is a schematic view of each cross-sectional shape. Each arrow in the figure corresponds to each shape and the minimum moment of inertia of the cross section. From the figure, it can be seen that the cross-sectional shape having a recess at the corner in the square (the right-hand squares in FIGS. 2 and 3) has an extremely low minimum second-order moment as compared to the other cross-sectional shapes. That is, in order to prevent the overall buckling due to bending, it is considered that the best cross-sectional shape is a substantially quadrilateral having corner portions at four corners and forming a closed cross section including the corner portions.
第二に、本発明者らは略四角形で様々な断面形状における最小断面二次半径を検討した。最小断面二次半径rmin[M]は、最小断面二次モーメントImin[M4]と断面積A[M2]により下式で表される幾何学的変数である。 Secondly, the present inventors examined the minimum secondary radius of the cross-section in various cross-sectional shapes with a substantially square shape. The minimum cross-sectional secondary radius r min [M] is a geometrical variable represented by the following equation by the minimum cross-sectional secondary moment I min [M 4 ] and the cross-sectional area A [M 2 ].
最小断面二次半径rmin[M]は、一般的に耐座屈性を表す指標であるが、最小断面二次モーメントを断面積で除したものであるため、板厚の影響を除いた曲げ剛性を表す指標と捉えることができる。すなわち、最小断面二次半径rminは全体座屈の指標となり、最小断面二次半径rminが大きい断面形状を有する部材は全体座屈が発生し難い部材であるといえる。 The minimum secondary radius r min [M] is an index generally indicating buckling resistance, but since the minimum secondary moment is divided by the cross-sectional area, the bending without the influence of the plate thickness is used. It can be regarded as an index representing rigidity. That is, the minimum secondary cross-sectional radius r min serves as an index of overall buckling, and a member having a cross-sectional shape with a large minimum cross-sectional secondary radius r min is a member that is unlikely to generate overall buckling.
図4に各断面形状に対するC値と最小断面二次半径rminを比較した結果を示す。図4は、略四角形の縦の長さが80mm、横の長さが80mmの場合の結果である。図からC値の増加とともに最小断面二次半径rminが減少していることが確認できる。特にC値が3程度と小さい値である場合、最小断面二次半径rminの変動が大きい。またC値がある程度大きくなると最小断面二次半径rminの変動が小さくなってくることが確認できる。 FIG. 4 shows a result of comparison between the C value and the minimum secondary radius r min for each cross-sectional shape. FIG. 4 shows the results when the vertical length of the substantially square is 80 mm and the horizontal length is 80 mm. From the figure, it can be confirmed that the minimum secondary radius r min decreases as the C value increases. In particular, when the C value is as small as about 3, the variation in the minimum secondary radius r min is large. Further, it can be confirmed that when the C value increases to some extent, the fluctuation of the minimum secondary radius r min decreases.
ここで、C値は本発明者らが新たに発明した設計指針値であり、上述したように、中空の金属製柱状部材の断面内の最小辺長Lmin[M]と最大辺長Lmax[M]との比Lmin/Lmaxに、その断面における総稜線数Nを乗じて得られた値である。一般に総稜線数Nをある程度大きくすると吸収エネルギー量は向上する傾向があるが、凹み部の位置、総数、大きさによっても吸収エネルギー量は大きくばらつくため、総稜線数Nだけでは薄肉中空柱状部材の性能を的確に評価することは難しい。そこで、本発明者らは最小辺長Lmin[M]と最大辺長Lmax[M]との比Lmin/Lmaxを総稜線数Nに乗じることにより、総稜線数の影響だけでなく、凹み部の位置、総数、大きさの影響をも考慮できるような設計指針値Cを発明した。 Here, the C value is a design guideline value newly invented by the present inventors. As described above, the minimum side length L min [M] and the maximum side length L max in the cross section of the hollow metal columnar member are used. It is a value obtained by multiplying the ratio L min / L max with [M] by the total number of ridgelines N in the cross section. Generally, when the total number of ridges N is increased to some extent, the amount of absorbed energy tends to be improved. However, the amount of absorbed energy varies greatly depending on the position, total number, and size of the recesses. It is difficult to accurately evaluate performance. Therefore, the present inventors multiply the total number of ridge lines N by the ratio L min / L max of the minimum side length L min [M] and the maximum side length L max [M], thereby not only affecting the total number of ridge lines. The design guideline value C was invented so that the influence of the position, total number, and size of the dents could be taken into account.
第三に、本発明者らは略四角形で様々な断面形状における吸収エネルギー量をFEMに基づく数値解析により検討した。FEMで用いたモデルは長手方向長さが400mmの鋼製薄肉中空柱状部材であり、剛体壁により軸方向かつ圧縮方向に100mmの強制変位を与えた。複数の断面形状において同様の解析を行い、それぞれの断面形状に対するエネルギー吸収量を調べた。図5に各断面形状に対するC値と吸収エネルギーE[J]を比較したものを示す。図5は略四角形の縦の長さが80mm、横の長さが80mmの場合の結果である。図からC値の増加とともに吸収エネルギーEが増加していることが確認できる。またC値が大きくなるにつれ吸収エネルギーEの上昇が飽和することが確認できる。 Thirdly, the present inventors studied the amount of absorbed energy in various cross-sectional shapes with a substantially square shape by numerical analysis based on FEM. The model used in the FEM was a steel thin-walled hollow columnar member having a longitudinal length of 400 mm, and a forced displacement of 100 mm was applied in the axial direction and compression direction by a rigid wall. The same analysis was performed for a plurality of cross-sectional shapes, and the energy absorption amount for each cross-sectional shape was examined. FIG. 5 shows a comparison between the C value and the absorbed energy E [J] for each cross-sectional shape. FIG. 5 shows the results when the vertical length of the substantially rectangular shape is 80 mm and the horizontal length is 80 mm. From the figure, it can be confirmed that the absorbed energy E increases as the C value increases. It can also be confirmed that as the C value increases, the increase in absorbed energy E is saturated.
これらの知見から、曲げ剛性の高い略四角形状の金属製薄肉中空柱状部材の性能は、C値により良好にまとめることができることを知見した。また、本発明者らは、鋼製だけでなく、アルミニウム、ステンレス、チタン等においてもC値が4〜40の薄肉中空柱状部材がエネルギー吸収能および耐全体座屈性に優れた部材であることを見出した。C値が4未満である場合、エネルギー吸収能が急激に減少するため構造体の筐体を構成するフレーム材として機能しなくなるおそれがある。またC値が40超である部材は、総稜線数が多い部材であり製作が難しく、製作コストも増大する。さらにエネルギー吸収量の増加量および最小断面二次半径の減少量ともに微小であるため、利点が見出せないC値の領域である。C値が4に近いほど吸収エネルギーが比較的大きく、耐全体座屈性が非常に高い部材を意味する。逆にC値が40に近いほど吸収エネルギーが非常に大きく、耐全体座屈性が比較的大きい部材を意味する。従って、C値は4以上とし、好ましくは5以上、さらに好ましくは10以上とするのが好適である。また、C値の上限は40以下とし、好ましくは30以下、さらに好ましくは20以下とするのが好適である。 From these findings, it has been found that the performance of a substantially rectangular metal thin hollow columnar member with high bending rigidity can be better summarized by the C value. Moreover, the present inventors are not only made of steel but also a thin hollow columnar member having a C value of 4 to 40 in aluminum, stainless steel, titanium, etc., and is a member excellent in energy absorption ability and overall buckling resistance. I found. When the C value is less than 4, the energy absorption capability is drastically reduced, so that it may not function as a frame material constituting the housing of the structure. In addition, a member having a C value exceeding 40 is a member having a large total number of ridge lines, which makes it difficult to manufacture and increases manufacturing costs. Further, since the amount of increase in the amount of energy absorption and the amount of decrease in the minimum secondary radius of the cross section are very small, this is a C value region where no advantage can be found. A C value closer to 4 means a member having a relatively high absorbed energy and a very high overall buckling resistance. On the contrary, as the C value is closer to 40, the absorbed energy is very large and the overall buckling resistance is relatively large. Therefore, the C value is 4 or more, preferably 5 or more, more preferably 10 or more. The upper limit of the C value is 40 or less, preferably 30 or less, more preferably 20 or less.
設置場所により適切にC値を考慮した部材を設置することが望まれる。また、設計の際に基本となる設置できる空間であるが、薄肉中空柱状部材のエネルギー吸収量および耐全体座屈性を高めるため、可能な限りその略四角形の面積を1500mm2以上に大きくすること、および正方形に近い形状とすること、つまり、略四角形の2辺の比を1〜1.2とすることが望ましい。 It is desired to install a member considering the C value appropriately depending on the installation location. In addition, it is a space that can be basically installed in the design, but in order to increase the energy absorption amount and overall buckling resistance of the thin hollow columnar member, the area of the substantially square should be increased to 1500 mm 2 or more as much as possible. And a shape close to a square, that is, the ratio of two sides of a substantially square is preferably 1 to 1.2.
さらに、断面形状のコーナー部においては曲率を付与することで、急激な板減を避けることができるので、2.5mm−1以下とすることが好ましく、耐全体座屈性を向上させるために0.02mm−1以上とすることが好ましい。 Furthermore, since a sharp reduction can be avoided by giving a curvature at the corner portion of the cross-sectional shape, it is preferably 2.5 mm −1 or less, and 0 in order to improve the overall buckling resistance. 0.02 mm −1 or more is preferable.
なお、C値は最小辺長Lminと最大辺長Lmaxとの比Lmin/Lmaxに、その閉断面における総稜線数Nを乗じた値であるが、その詳細を図6に示す。各辺長は、略四角形のコーナー部2および凹み部3の形成により生じた凸部4において曲率を取り除いたときの形状を元に算出する。端部にある凸部4については凸部の肩部端点5から端部6までを結んだ直線の長さを辺長とし、凹み部3については隣接した凸部4の肩部端点5を直線で結んだ長さを辺長とする。また、中間にある凸部の場合(図示しない)は凸部の肩部端点間の直線距離とする。端点5および端点7に曲率を付与するときは、その曲率半径を0mmとしたときの形状を元に最小辺長Lminと最大辺長Lmaxを算出する。これにより閉断面内で最短のものをLmin[M]、最長のものをLmax[M]とする。また、総稜線数は各頂点を直線で結んだときの直線の総数とする。図中の丸囲いの数字はある一辺中の稜線を左端から数えたときの例であり、図6の場合、略四角形の1辺について、稜線数は5となるので、残る3辺も同じ形状であれば、総稜線数は20となる。 Incidentally, the ratio L min / L max the C value minimum edge length L min and a maximum edge length L max, is a value obtained by multiplying the total ridge count N at the closed cross section, shown in detail in FIG. Each side length is calculated based on the shape when the curvature is removed from the convex portion 4 generated by the formation of the substantially rectangular corner portion 2 and the concave portion 3. For the convex part 4 at the end, the length of the straight line connecting the shoulder end point 5 to the end part 6 of the convex part is the side length, and for the concave part 3, the shoulder end point 5 of the adjacent convex part 4 is a straight line. The length connected with is the side length. In the case of a convex portion in the middle (not shown), the straight distance between the shoulder end points of the convex portion is used. When giving curvature to the end points 5 and 7, the minimum side length L min and the maximum side length L max are calculated based on the shape when the radius of curvature is 0 mm. Accordingly, the shortest one in the closed cross section is set to L min [M], and the longest one is set to L max [M]. The total number of ridge lines is the total number of straight lines when the vertices are connected by straight lines. The numbers in circles in the figure are examples when the ridge lines in one side are counted from the left end. In the case of FIG. 6, the number of ridge lines is 5 for one side of a substantially square, so the remaining three sides have the same shape. If so, the total number of ridge lines is 20.
次に、上記発明(2)について説明する。
第一に耐全体座屈性を向上させるために、略四角形の一辺の端部に付与される曲率半径Rは大きすぎてはならない。第二に角部の急激な板減を避けるため略四角形の一辺の端部に付与される曲率半径Rは小さすぎてはならない。そこで略四角形の一辺の長さをn分割した長さが曲率半径Rに相当するとすると、略四角形における閉断面の全周長πはおよそ以下の(1)式で表すことができる。
Next, the above invention (2) will be described.
First, in order to improve the overall buckling resistance, the radius of curvature R given to the end of one side of the substantially quadrilateral must not be too large. Secondly, the radius of curvature R given to the end of one side of the substantially quadrilateral must not be too small in order to avoid sharp reduction of corners. Therefore, if the length obtained by dividing the length of one side of the substantially quadrangle by n corresponds to the radius of curvature R, the total circumferential length π of the closed section of the substantially quadrangle can be approximately expressed by the following equation (1).
なお、ここで閉断面の全周長とは、凹み部を有した断面形状であった場合でも略四角形の全周長を指すものとする(例えば、前述の図2の場合、π=320(=4×80)であり、図3の場合、π=320(=2×(60+100))である)。(1)式の両辺を厚さtで割ると、以下の(2)式が得られる。 Here, the total perimeter of the closed cross section refers to the perimeter of a substantially square shape even when the cross section has a recess (for example, in the case of FIG. 2 described above, π = 320 ( = 4 × 80), and in the case of FIG. 3, π = 320 (= 2 × (60 + 100)). When both sides of the equation (1) are divided by the thickness t, the following equation (2) is obtained.
また、曲げにより発生する最大ひずみεfは、以下の(3)式で表される。 Further, the maximum strain ε f generated by bending is expressed by the following equation (3).
よって略四角形における閉断面の全周長πと板厚tとの比は、(2)式および(3)式より、以下の(4)式で記述することができる。
なお、上式は耐全体座屈性のためn>10、また急激な板減を防ぐためεf<1の2つの条件を高機能な金属製中空柱状部材の必要条件としている。 In the above formula, two conditions of n> 10 for the overall buckling resistance and ε f <1 for preventing a sudden reduction in the thickness are necessary conditions for the highly functional metal hollow columnar member.
以上より、全周長πと板厚tとの比π/tは、耐全体座屈性とエネルギー吸収性能をより向上させるため20以上とし、好ましくは80以上、更に好ましくは160以上とするのが好適である。 From the above, the ratio π / t between the total circumference π and the plate thickness t is set to 20 or more, preferably 80 or more, more preferably 160 or more, in order to further improve the overall buckling resistance and energy absorption performance. Is preferred.
次に、上記(3)について説明する。
C値による設計指針はフランジ部を有する薄肉中空柱状部材においても適用可能である。本発明者らは、図7(a)の断面形状にフランジ部を付与した2種類の薄肉中空柱状部材に対しエネルギー吸収量および最小断面二次半径を調査した。それぞれの断面形状の寸法を、図10、図11に示す。両部材とも鋼製(JSC590Y鋼)とし、長さは400mm、厚さtは1.6mm、および全角部に0.25mm−1の曲率が付与されている。図7(a)の部材の全角部の曲率も0.25mm−1である。剛体壁により軸方向かつ圧縮方向に100mmの強制変位を与えたときのエネルギー吸収量およびその部材の最小断面二次半径を、フランジ部を有さない図7(a)で示される薄肉中空柱状部材と、上記図10と図11で示される薄肉中空柱状部材のそれぞれにおいて比較した。その結果を図12、図13に示す。
Next, the above (3) will be described.
The design guideline by C value is applicable also to the thin hollow columnar member which has a flange part. The present inventors investigated the energy absorption amount and the minimum secondary radius of the cross section of two types of thin-walled hollow columnar members provided with flange portions in the cross-sectional shape of FIG. The dimensions of each cross-sectional shape are shown in FIGS. Both members are made of steel (JSC590Y steel), the length is 400 mm, the thickness t is 1.6 mm, and a curvature of 0.25 mm −1 is given to all corners. The curvature of all corners of the member in FIG. 7A is also 0.25 mm −1 . A thin-walled hollow columnar member shown in FIG. 7 (a) having no flange portion with respect to the amount of energy absorbed when a forced displacement of 100 mm is applied in the axial direction and the compression direction by the rigid wall and the minimum secondary radius of the member. And the thin hollow columnar members shown in FIGS. 10 and 11 were compared. The results are shown in FIGS.
図12および図13は、各断面形状における最小断面二次半径および吸収エネルギー量を比較したものである。これらの実施例から、最小断面二次半径および吸収エネルギー量は、フランジ部の有無に関わらず、C値が4〜40の範囲内で想定される範囲内にあり、フランジ部を付与した場合でもC値は良好な設計指針を与えることがわかる。 12 and 13 compare the minimum secondary cross-sectional radius and the amount of absorbed energy in each cross-sectional shape. From these examples, the minimum cross-sectional secondary radius and the amount of absorbed energy are within the range where the C value is assumed within the range of 4 to 40 regardless of the presence or absence of the flange portion, even when the flange portion is provided. It can be seen that the C value provides a good design guideline.
図10に示されるフランジを略四角形の隣り合う角部に付与した場合、フランジ部を持たない形状に比べてエネルギー吸収量が若干高く、また若干最小断面二次半径も大きい。したがってフランジ部を略四角形の隣り合う角部に付与した形状が最良と考えられるが、フランジ部を大きくしすぎるとフランジ部の高い曲げ剛性のため、断面内の曲げ剛性が極端に不均一になり全体座屈を引き起こしやすくなる。 When the flange shown in FIG. 10 is applied to adjacent corners of a substantially quadrangular shape, the amount of energy absorption is slightly higher than that of the shape having no flange, and the minimum secondary radius of the cross section is also slightly larger. Therefore, it is considered that the shape with the flange part attached to the adjacent corners of a substantially rectangular shape is the best. However, if the flange part is too large, the bending rigidity in the cross section becomes extremely uneven due to the high bending rigidity of the flange part. It tends to cause overall buckling.
図11に示されるフランジを略四角形の対向する二辺の外側に付与した場合、フランジ部を持たない形状に比べて、最小断面二次半径は若干低下するもののエネルギー吸収量は大きく向上する。これは、断面内の曲げ剛性が比較的対称であること、最小断面二次半径が小さくなり蛇腹状に変形したことによりエネルギー吸収量が大きくなったと考えられる。フランジ部を付与することによりエネルギー吸収量が向上したが、フランジ部が大きすぎる場合、小さな座屈を繰り返すような蛇腹状変形をせず折れ曲がりによる全体座屈を引き起こしやすい。 When the flange shown in FIG. 11 is provided on the outer sides of two opposing sides of a substantially square shape, the amount of energy absorption is greatly improved although the minimum secondary radius of the cross section is slightly reduced as compared with the shape having no flange portion. This is thought to be due to the fact that the bending rigidity in the cross section is relatively symmetric, the minimum secondary radius of the cross section is reduced, and the amount of energy absorption is increased due to deformation in a bellows shape. Although the amount of energy absorption has been improved by providing the flange portion, when the flange portion is too large, it does not undergo bellows-like deformation that repeats small buckling, and tends to cause overall buckling due to bending.
また、フランジ部が小さすぎると接合が困難となり接合部が弱くなるおそれがある。上記の知見に従い、接合部が弱化することを防ぐためフランジ部の長さは4t以上、全体座屈を起こし難くするためフランジ部の長さは12t以下とすることが望ましい。 Moreover, when a flange part is too small, joining will become difficult and there exists a possibility that a junction part may become weak. In accordance with the above knowledge, it is desirable that the length of the flange portion is 4 t or more in order to prevent the joint portion from weakening, and the length of the flange portion is 12 t or less in order to make it difficult to cause overall buckling.
次に、上記発明(4)について説明する。
自動車分野では、衝突安全性能のいっそうの向上化、燃費向上のためのいっそうの車体軽量化、グローバル展開に向けた多くの車種の開発期間短縮といった多く課題に対し、多くの設計者、研究者が取り組んでいる。
Next, the above invention (4) will be described.
In the automotive field, many designers and researchers have responded to many issues such as further improvement in collision safety performance, further reduction in body weight to improve fuel efficiency, and reduction in the development period of many models for global expansion. We are working.
衝突安全性能関係において、日本では国連統一基準(ECE規則)R94のオフセット衝突時の乗員保護と同等の基準が制定され、2007年の新型乗用車から適用になっている。また2.5t以下の商用車にも適用が拡大されている。米国では2009年からFMVSS214に32km/hポール側突の追加が計画されている。FMVSS301が改正され80km/hオフセット後突が2006年から段階的に適用される。 In relation to collision safety performance, in Japan, a standard equivalent to the protection of passengers at the time of offset collision of UN unified standard (ECE rule) R94 has been established and has been applied since the new passenger car in 2007. The application has been expanded to commercial vehicles of 2.5 t or less. In the United States, it is planned to add a 32 km / h pole side impact to FMVSS 214 from 2009. FMVSS 301 is amended and the 80 km / h offset collision will be applied in stages from 2006.
燃費関係において、日本ではエネルギーの使用の合理化に関する法律(省エネ法)の改正により、2015年度を目標達成年度とした「重量車燃費基準」が策定され、2006年4月から施行される。米国では、連邦は2008−2011年式の小型トラックのCAFEシステムに関する改正案を発表した。連邦・カリフォルニア州両方において、次期規制強化が議論されている。 Regarding fuel efficiency, in Japan, the “Heavy Vehicle Fuel Efficiency Standard” was established in April 2006 as a target achievement year by amendment of the Law Concerning Rational Use of Energy (Energy Saving Law). In the United States, the federal announced amendments to the 2008-2011 light truck CAFE system. In both the Federal and California states, next-generation regulations are being discussed.
グローバル展開に関しては、自動車の輸出量は近年増加の一途をたどっており、2001年と2005年を比較しても約22%と急激に増加している。日本のメーカーのロシア進出等、今後海外生産が国内生産を上回ることが予想される。 With regard to global expansion, the export volume of automobiles has been increasing steadily in recent years, and has rapidly increased to about 22% even when comparing 2001 and 2005. Overseas production is expected to exceed domestic production in the future, such as Japanese manufacturers entering Russia.
以上のような背景から、急ピッチで進む設計期間の短縮、車体軽量化、衝突安全性の一層の向上のために、本発明は、設計者の負担を減らし、上記課題を早急に解決する有効なツールとなると考えられる。自動車の衝突時に動的な荷重が負荷される部材は数多くあるが、特に前面衝突時の衝突エネルギー吸収に大きく寄与するフロントサイドメンバ、または後面衝突時の衝突エネルギー吸収に大きく寄与するリアサイドメンバの形状決定時に本発明は大きく貢献できると考えられる。 From the background as described above, the present invention is effective in reducing the burden on the designer and solving the above-mentioned problems promptly in order to shorten the design period that proceeds at a rapid pitch, to reduce the weight of the vehicle body, and to further improve the collision safety. It will be a useful tool. There are many members that are subjected to dynamic loads during automobile collisions, but the shape of the front side member that contributes significantly to absorbing collision energy especially during frontal collisions, or the shape of the rear side member that contributes significantly to absorbing collision energy during rearward collisions It is believed that the present invention can make a significant contribution when making decisions.
次に、上記発明(5)について説明する。
図7(a)で示される断面形状を持つ薄肉中空柱状部材を製作する場合、まず、図14(a)に示す断面形状の板材を用意し、図14(b)のように2つの凹み部11および両端に曲げ部12をプレスにより形成する。角部の曲率はプレス荷重や、必要によりしわ押え荷重を制御することにより、適正範囲に制御することができる。次に凹み部11に挟まれた中央平面部10を上下に挟み込むように冶具により固定し、図14(c)に示すように、冶具の両端に曲げ部14を再びプレスにより成形する。次に、図14(d)に示すように、上記工程により重なった板材の両端部13を溶接により接合し所定の形状を形成する。また凹み部の総数および位置はプレス成形に使用する型の変更、またはカムを組み合わせることで調節可能である。
Next, the above invention (5) will be described.
When manufacturing a thin hollow columnar member having the cross-sectional shape shown in FIG. 7 (a), first, a plate material having the cross-sectional shape shown in FIG. 14 (a) is prepared, and two concave portions as shown in FIG. 14 (b) are prepared. 11 and bent portions 12 are formed on both ends by pressing. The curvature of the corner can be controlled within an appropriate range by controlling the press load and, if necessary, the wrinkle presser load. Next, the center plane portion 10 sandwiched between the recess portions 11 is fixed by a jig so as to be sandwiched up and down, and as shown in FIG. 14C, the bent portions 14 are formed again by pressing at both ends of the jig. Next, as shown in FIG. 14D, both end portions 13 of the plate materials overlapped in the above process are joined by welding to form a predetermined shape. The total number and position of the recesses can be adjusted by changing the mold used for press molding or combining a cam.
プレス時のパッド背圧およびプレス荷重は材質および部材寸法により異なるが、JSC590Y鋼を用いて図7(a)で示した薄肉中空柱状部材の場合、プレス荷重は50t以上、パッド背圧は5t以上とすることが望ましい。また次工程である曲げ工程も同様にプレス荷重は100t以上、パッド背圧は10t以上が好適である。なお、成形工程を容易にするため、冶具の両端の固定部は脱着可能とし成形部材は長手方向に引き抜くことで取り出しを可能とすることが望ましい。 The pad back pressure and press load at the time of pressing differ depending on the material and member dimensions, but in the case of the thin hollow columnar member shown in FIG. 7A using JSC590Y steel, the press load is 50 t or more, and the pad back pressure is 5 t or more. Is desirable. Similarly, in the next bending process, the press load is preferably 100 t or more and the pad back pressure is preferably 10 t or more. In order to facilitate the molding process, it is desirable that the fixing portions at both ends of the jig can be detached and the molded member can be taken out by pulling it out in the longitudinal direction.
別の成形方法として、ロールフォーミングを利用してもよい。まず、図15(a)に示す断面形状の板材を用意し、複数のロールにより図15(b)のように、最終的に一つの板材をロール15およびロール16により2つの凹み部17とコーナー部18を成形する。角部の曲率はロールの圧下荷重を制御することにより、適正範囲に制御することが可能である。次に図15(c)に示すように、上記工程により重なった板材の両端部19を溶接により接合し所定の形状を形成する。 As another forming method, roll forming may be used. First, a plate material having a cross-sectional shape shown in FIG. 15A is prepared, and a single plate material is finally formed by a plurality of rolls as shown in FIG. Part 18 is formed. The curvature of the corner can be controlled within an appropriate range by controlling the rolling load of the roll. Next, as shown in FIG. 15C, both end portions 19 of the plate materials overlapped in the above process are joined by welding to form a predetermined shape.
接合においては、本成形部材を衝撃吸収部材として利用する場合、局所的な弱部を低減するため、熱影響部が少ないレーザー溶接を用いることが望ましい。 In joining, when this molded member is used as an impact absorbing member, it is desirable to use laser welding with a small heat-affected zone in order to reduce local weak parts.
次に、上記発明(6)について説明する。
図7(a)で示される断面形状を持つ薄肉中空柱状部材を製作する場合、溶接鋼管をハイドロフォームにより拡管し、2つの凹み部21および4つの曲げ部22を成形する。角部の曲率はハイドロフォームの金型、媒体の圧力を制御することにより、適正範囲に制御することが可能である。凹み部の総数および位置は、ハイドロフォームに使用する型を変更することで調節することが可能である。
Next, the above invention (6) will be described.
When manufacturing a thin hollow columnar member having a cross-sectional shape shown in FIG. 7A, a welded steel pipe is expanded by hydroforming to form two recessed portions 21 and four bent portions 22. The curvature of the corner can be controlled within an appropriate range by controlling the hydroform mold and the pressure of the medium. The total number and position of the dents can be adjusted by changing the mold used for the hydroform.
ハイドロフォーム時の軸押量および内圧は材質および部材寸法により異なるが、JSC590Y鋼を用いて図7(a)で示した薄肉中空柱状部材を成形する場合、まず、図16(a)に示す断面形状の板材を用意し、図16(b)に示す溶接鋼管を製造する。その後、粗形状を成形するために、図16(c)のように溶接鋼管を金型で挟み込み、鋼管内に内圧を40MPa以上、軸押量を50mm以上負荷することが望ましい。次に形状の細部を成形するために、軸押量を負荷せず100MPa以上の内圧のみを負荷することが望ましい。これにより、図16(d)に示す薄肉中空柱状部材が形成される。 The axial push amount and internal pressure during hydroforming vary depending on the material and member dimensions. When the thin hollow columnar member shown in FIG. 7A is formed using JSC590Y steel, first, the cross section shown in FIG. A plate material having a shape is prepared, and a welded steel pipe shown in FIG. Thereafter, in order to form a rough shape, it is desirable that the welded steel pipe is sandwiched between molds as shown in FIG. 16 (c), and an internal pressure of 40 MPa or more and a shaft pressing amount of 50 mm or more are loaded in the steel pipe. Next, in order to form the details of the shape, it is desirable to load only the internal pressure of 100 MPa or more without loading the shaft pressing amount. Thereby, the thin hollow columnar member shown in FIG.
別の成形方法として、ロールフォーミングを利用してもよい。まず、図17(a)に示す断面形状の板材を用意し、図17(b)に示す溶接鋼管を製造する。そして、複数のロールにより図17(c)のように、最終的に溶接鋼管にロール23およびロール24により2つの凹み部25とコーナー部26を成形する。角部の曲率の制御は、図15と同様である。 As another forming method, roll forming may be used. First, a plate material having a cross-sectional shape shown in FIG. 17A is prepared, and a welded steel pipe shown in FIG. Then, as shown in FIG. 17C, the two recessed portions 25 and the corner portions 26 are finally formed on the welded steel pipe by the rolls 23 and 24 using a plurality of rolls. The control of the curvature of the corner is the same as in FIG.
また局所的な弱部を低減するため、熱影響部が少ないレーザー溶接を用いている溶接鋼管が望ましい。 Moreover, in order to reduce a local weak part, the welded steel pipe which uses laser welding with few heat-affected parts is desirable.
次に、上記発明(7)について説明する。
図7(a)で示される断面形状を持つ薄肉中空柱状部材を製作する場合、まず、図18(a)に示す断面形状の板材を用意し、図18(b)のように2つの曲げ部32の間に1つの凹み部31をプレスにより成形する。角部の曲率の制御は図14と同様である。プレス成形品の両端には2つのフランジ部33を有するようにする。そして、図18(c)に示すように、同成形工程により成形した2つの部材のフランジ部33を重ね合わせ、溶接を行う。また凹み部の総数および位置はプレス成形に使用する型の変更、またはカムを組み合わせることで調節可能である。
Next, the said invention (7) is demonstrated.
When manufacturing a thin hollow columnar member having the cross-sectional shape shown in FIG. 7 (a), first, a plate material having a cross-sectional shape shown in FIG. 18 (a) is prepared, and two bent portions as shown in FIG. 18 (b) are prepared. One dent 31 is formed between 32 by pressing. The control of the curvature of the corner is the same as in FIG. Two flange portions 33 are provided at both ends of the press-formed product. And as shown in FIG.18 (c), the flange part 33 of the two members shape | molded by the same formation process is piled up, and welding is performed. The total number and position of the recesses can be adjusted by changing the mold used for press molding or combining a cam.
プレス時のパッド背圧およびプレス荷重は材質および部材寸法により異なるが、JSC590Y鋼を用いて図7(a)で示した薄肉中空柱状部材の場合、プレス荷重は100t以上、パッド背圧は10t以上とすることが望ましい。接合においては、本成形部材を衝撃吸収部材として利用する場合、局所的な弱部を低減するため、熱影響部が少ないレーザー溶接を用いることが望ましい。 The pad back pressure and press load at the time of pressing differ depending on the material and member dimensions, but in the case of the thin hollow columnar member shown in FIG. 7A using JSC590Y steel, the press load is 100 t or more and the pad back pressure is 10 t or more. Is desirable. In joining, when this molded member is used as an impact absorbing member, it is desirable to use laser welding with a small heat-affected zone in order to reduce local weak parts.
次に、上記発明(8)について説明する。
図7(a)で示される断面形状を持つ薄肉中空柱状部材を製作する場合、まず図19(a)に示す断面形状のシームレスパイプを用意し、図19(b)に示すように、シームレスパイプを型の中に挿入し、ハイドロフォームにより拡管し、図19(c)に示すように、2つの凹み部41および4つの曲げ部42を成形する。凹み部の総数および位置は、ハイドロフォームに使用する型を変更することで調節することが可能である。角部の曲率の制御は図16と同様である。
Next, the above invention (8) will be described.
When manufacturing a thin hollow columnar member having a cross-sectional shape shown in FIG. 7A, first, a seamless pipe having a cross-sectional shape shown in FIG. 19A is prepared. As shown in FIG. 19B, a seamless pipe is prepared. Is inserted into a mold and expanded with a hydroform, and as shown in FIG. 19 (c), two indentations 41 and four bent portions 42 are formed. The total number and position of the dents can be adjusted by changing the mold used for the hydroform. The control of the curvature of the corner is the same as in FIG.
ハイドロフォーム時の軸押量および内圧は材質および部材寸法により異なるが、JSC590Y鋼を用いて図7(a)で示した薄肉中空柱状部材を成形する場合、まず、粗形状を成形するために、図19(b)のように溶接鋼管を金型で挟み込み、鋼管内に内圧を40MPa以上、軸押量を50mm以上負荷することが望ましい。次に形状の細部を成形するために、軸押量を負荷せず100MPa以上の内圧のみを負荷することが望ましい。 Axial pressing amount and internal pressure during hydroforming vary depending on the material and member dimensions, but when forming the thin hollow columnar member shown in FIG. 7 (a) using JSC590Y steel, first, in order to form a rough shape, As shown in FIG. 19 (b), it is desirable that the welded steel pipe is sandwiched between molds, and an internal pressure of 40 MPa or more and a shaft pressing amount of 50 mm or more are loaded in the steel pipe. Next, in order to form the details of the shape, it is desirable to load only the internal pressure of 100 MPa or more without loading the shaft pressing amount.
別の成形方法として、ロールフォーミングを利用してもよい。まず、図20(a)に示す断面形状のシームレスパイプを用意し、図20(b)に示すように、シームレスパイプを複数のロールに挿入し、図20(c)のように、最終的に溶接鋼管をロール43およびロール44により2つの凹み部45とコーナー部46を成形する。角部の曲率の制御は図15と同様である。 As another forming method, roll forming may be used. First, a seamless pipe having a cross-sectional shape shown in FIG. 20 (a) is prepared, and the seamless pipe is inserted into a plurality of rolls as shown in FIG. 20 (b), and finally, as shown in FIG. 20 (c). Two recessed portions 45 and a corner portion 46 are formed on the welded steel pipe by the roll 43 and the roll 44. The control of the curvature of the corner is the same as in FIG.
また、凹み部3の形状は、凸部4の肩部端点5と共有する角部の内角を90°以上とすること、凹み部4の深さは少なくとも板厚の5倍以上とすることがエネルギー吸収量の向上のために望ましい。 The shape of the recess 3 is such that the internal angle of the corner shared with the shoulder end point 5 of the protrusion 4 is 90 ° or more, and the depth of the recess 4 is at least 5 times the plate thickness. Desirable for improving energy absorption.
以下、本発明を具体的に実施した実施例を参照しながら、本発明を具体的に説明する。金属製薄肉中空柱状部材の設置空間として縦方向長さと横方向長さがそれぞれ100mmおよび60mmである略四角形断面を持つ部材が設置可能であり、また柱状部材の少なくともひとつの側面に凹凸のないことを設置可能条件とし、その範囲内での全体座屈の発生し難い断面形状を探索した。材料として、JSC590Yを用いた。例えば、本発明例として、断面形状が図7(a)に示されるような部材を1枚の鋼板からプレス加工して、端部同士を溶接して製造した。軸方向長さは400mmの中空柱状部材、板厚は1.6mmである。すなわちπ/t=200に相当する。また、すべての角部には0.25mm−1の曲率が付与されている。肩部端点の内角は全て110度とした。また、凹み部の深さは10mmとした。図7の部材のC値は6.66であり(=12(33.3/60)、本発明の範囲内である。剛体壁により100mmだけ軸方向かつ圧縮方向につぶし、その吸収エネルギー量を調べた。 Hereinafter, the present invention will be specifically described with reference to examples in which the present invention is specifically implemented. A member having a substantially square cross section with a longitudinal length and a lateral length of 100 mm and 60 mm, respectively, can be installed as an installation space for the metal thin hollow columnar member, and there is no unevenness on at least one side surface of the columnar member. The cross-sectional shape in which the entire buckling hardly occurs within the range was searched. JSC590Y was used as the material. For example, as an example of the present invention, a member having a cross-sectional shape shown in FIG. 7A was pressed from a single steel plate and manufactured by welding the ends. A hollow columnar member with an axial length of 400 mm and a plate thickness of 1.6 mm. That is, it corresponds to π / t = 200. Further, a curvature of 0.25 mm −1 is given to all corners. The interior angles of the shoulder end points were all 110 degrees. Moreover, the depth of the dent part was 10 mm. The C value of the member in Fig. 7 is 6.66 (= 12 (33.3 / 60), which is within the scope of the present invention. The rigid wall is crushed by 100 mm in the axial direction and in the compression direction, and the amount of absorbed energy is reduced. Examined.
図7(b)は断面形状が図7(a)である中空柱状部材のFEMメッシュ分割図である。図7(c)は最終的な変形状況の把握のため軸方向かつ圧縮方向に200mmつぶした後の変形図である。図7(c)から、凹み部を図7(a)のように付与した断面形状では蛇腹状に変形してつぶれていることが確認できた。 FIG.7 (b) is a FEM mesh division | segmentation figure of the hollow columnar member whose cross-sectional shape is Fig.7 (a). FIG.7 (c) is a deformation | transformation figure after crushing 200 mm to an axial direction and a compression direction in order to grasp | ascertain the final deformation | transformation condition. From FIG.7 (c), it has confirmed that it was deform | transforming into a bellows shape and it was crushed in the cross-sectional shape which provided the dent part like Fig.7 (a).
またC値が2、12、22、28と異なる他の形状においても同様の解析を行い、吸収エネルギー量および最小断面二次半径を比較した。略四角形の寸法、コーナー部の曲率半径、肩部端点の内角、板厚は、全て図7の部材と同一とした。すなわち、C値は異なる断面形状であるが、全てπ/t=200(=(2・160/1.6))である。その結果を図8および図9に示す。C値が6.66〜28となる断面形状を有する中空柱状部材は、C値が2である中空柱状部材と比較し、図8から耐全体座屈性が比較的優れ、図9からエネルギー吸収量がより大きいものであることが確認できた。 The same analysis was performed for other shapes having C values different from 2, 12, 22, and 28, and the amount of absorbed energy and the secondary radius of the minimum cross section were compared. The dimensions of the substantially square, the radius of curvature of the corner portion, the inner angle of the shoulder end point, and the plate thickness were all the same as those of the member of FIG. That is, the C values are different cross-sectional shapes, but all are π / t = 200 (= (2 · 160 / 1.6)). The results are shown in FIGS. Compared with the hollow columnar member having a C value of 2.66, the hollow columnar member having a C value of 6.66 to 28 has relatively good overall buckling resistance from FIG. It was confirmed that the amount was larger.
さらにC値がそれぞれ2、7、12、22、28であり、略四角形寸法、コーナー部の曲率半径、肩部端点の内角は同一であるが、板厚を4mm、8mm(それぞれπ/t=80=2・160/4、π/t=40=2・160/8に相当)と変更した部材に対して、同様の解析を行いC値の違いによる最小断面二次半径およびエネルギー吸収量の変化を調査した。その結果を図21、図22、図23、図24に示す。 Further, the C values are 2, 7, 12, 22, and 28, respectively, and the substantially square dimensions, the radius of curvature of the corner portion, and the inner angle of the shoulder end point are the same, but the plate thickness is 4 mm and 8 mm (respectively π / t = 80 = 2 · 160/4, equivalent to π / t = 40 = 2 · 160/8), the same analysis was performed, and the minimum secondary radius and energy absorption amount due to the difference in C values The change was investigated. The results are shown in FIG. 21, FIG. 22, FIG. 23, and FIG.
図21、図22はそれぞれπ/t=80である部材に対するC値の違いによる最小断面二次半径およびエネルギー吸収量の比較図、図23、図24はそれぞれπ/t=40である部材に対するC値の違いによる最小断面二次半径およびエネルギー吸収量の比較図である。以上の結果からπ/tの異なる薄肉中空柱状部材に対しても、多少の差異はあるが最小断面二次半径およびエネルギー吸収量は、C値の違いにより図8、図9と同様の傾向が見られ、C値=4〜40を満たす部材は全体座屈が発生し難く、かつ荷重負荷による入力エネルギーの吸収能が高いことが確認できた。 FIGS. 21 and 22 are comparison diagrams of the minimum cross-sectional secondary radius and the energy absorption amount due to the difference in C value for a member with π / t = 80, respectively, and FIGS. 23 and 24 are for a member with π / t = 40, respectively. It is a comparison figure of the minimum cross-section secondary radius and energy absorption amount by the difference in C value. From the above results, even for thin hollow columnar members having different π / t, there is a slight difference, but the minimum cross-sectional secondary radius and energy absorption amount tend to be the same as in FIGS. 8 and 9 due to the difference in C value. It was confirmed that the members satisfying the C value = 4 to 40 are less likely to be buckled as a whole and have a high ability to absorb input energy due to load.
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.
1 金属製中空柱状部材
2 コーナー部
3 凹み部
4 部
5 肩部端点
DESCRIPTION OF SYMBOLS 1 Metal hollow columnar member 2 Corner part 3 Recessed part 4 Part 5 Shoulder end point
Claims (3)
4辺のうちの少なくとも一辺以上に1つないし複数の凹み部を有し、その断面内の最小辺長Lminと最大辺長Lmaxとの比Lmin/Lmaxに、その断面における総稜線数Nを乗じて得られるC値(=N(Lmin/Lmax))が10以上40以下であり、かつ、閉断面の全周長をπとし、部材厚tは1.6mm以下であり、比π/tが160以上であり、2箇所のコーナー部の外側又は対向する2辺の間の外側に、それぞれフランジ部を有することを特徴とする、衝撃吸収部材用の590MPa級以上のハイテン鋼製中空柱状部材。
但し、前記辺長、前記総稜線数は以下により定義される。
辺長:一辺の中間に位置する凹み部の辺長は、隣接した凸部の肩部端点を直線で結んだ距離とする。
一辺の端部にある凸部の辺長は、当該凸部の端部と反対側に位置する肩部端点から端部までの直線距離とする。
一辺の中間に位置する凸部の辺長は、凸部の両側の肩部端点間の直線距離とする。
総稜線数:
閉断面内で曲率を取り除いた各頂点を直線で結んだときの直線の総数。 A hollow columnar member made of high-tensile steel of 590 MPa or higher for a hollow shock absorbing member having a corner portion at four corners and having a substantially rectangular cross-sectional shape including the corner portion and forming a closed cross-section,
At least one of the four sides has one or more dents, and the ratio Lmin / Lmax between the minimum side length Lmin and the maximum side length Lmax in the cross section is multiplied by the total number N of ridge lines in the cross section. The C value (= N (Lmin / Lmax)) obtained in this way is 10 or more and 40 or less, the entire circumference of the closed section is π, the member thickness t is 1.6 mm or less, and the ratio π / t is A hollow columnar member made of high-tensile steel of 590 MPa or more for impact absorbing members, which is 160 or more and has a flange portion on the outside of two corner portions or on the outside between two opposing sides.
However, the side length and the total number of ridge lines are defined as follows.
Side length: The side length of the recessed portion located in the middle of one side is a distance obtained by connecting the shoulder end points of adjacent convex portions with a straight line.
The side length of the convex portion at the end of one side is the linear distance from the shoulder end point located on the side opposite to the end of the convex portion to the end.
The side length of the convex portion located in the middle of one side is the linear distance between the shoulder end points on both sides of the convex portion.
Total ridges:
The total number of straight lines when the vertices with the curvature removed in a closed section are connected by straight lines.
3. A method for producing a high-tensile steel hollow columnar member of 590 MPa class or higher for an impact absorbing member according to claim 1 or 2, wherein two plate members are formed by bending or pressing, and the flange portion is formed by a drill screw or bolt. A method for producing a hollow columnar member made of high-tensile steel of 590 MPa or more for impact absorbing members, characterized by being joined by rivets, welding or adhesion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007129896A JP5374832B2 (en) | 2007-05-15 | 2007-05-15 | Metal hollow columnar member for impact absorbing member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007129896A JP5374832B2 (en) | 2007-05-15 | 2007-05-15 | Metal hollow columnar member for impact absorbing member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008284931A JP2008284931A (en) | 2008-11-27 |
JP5374832B2 true JP5374832B2 (en) | 2013-12-25 |
Family
ID=40145103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007129896A Active JP5374832B2 (en) | 2007-05-15 | 2007-05-15 | Metal hollow columnar member for impact absorbing member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5374832B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5238588B2 (en) * | 2009-04-13 | 2013-07-17 | 本田技研工業株式会社 | Vehicle frame structure |
KR101138186B1 (en) | 2009-07-27 | 2012-04-24 | 주식회사 포스코 | A method for a tube with integral flange |
US9126628B2 (en) | 2011-12-01 | 2015-09-08 | Ford Global Technologies, Llc | Lightweight vehicle beam |
KR102178756B1 (en) * | 2018-07-10 | 2020-11-16 | 주식회사 포스코 | Frame structure and panel structure and frame connecting structure |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108863A (en) * | 1994-10-12 | 1996-04-30 | Honda Motor Co Ltd | Front side frame structure of automobile |
JPH08168814A (en) * | 1994-12-15 | 1996-07-02 | Furukawa Electric Co Ltd:The | Production of hollow member for automobile stracture made of aluminum alloy |
JPH0930345A (en) * | 1995-07-18 | 1997-02-04 | Nissan Motor Co Ltd | Tubular member for car body structure and its manufacture |
JP3676491B2 (en) * | 1996-04-12 | 2005-07-27 | 新日本製鐵株式会社 | Shock absorbing member |
JP2001180398A (en) * | 1999-12-24 | 2001-07-03 | Futaba Industrial Co Ltd | Bumper reinforcement of tailored blank |
JP2002079388A (en) * | 2000-09-06 | 2002-03-19 | Nippon Steel Corp | Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse |
JP2003290844A (en) * | 2002-04-05 | 2003-10-14 | Nippon Steel Corp | Hydroforming method superior in formability |
JP2005104335A (en) * | 2003-09-30 | 2005-04-21 | Jfe Steel Kk | Side member tube hydroforming member |
JP4723942B2 (en) * | 2004-09-28 | 2011-07-13 | アイシン精機株式会社 | Vehicle shock absorber and vehicle shock absorption structure |
-
2007
- 2007-05-15 JP JP2007129896A patent/JP5374832B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008284931A (en) | 2008-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2969555C (en) | Structural member | |
KR101854511B1 (en) | Blank, molded plate, method of manufacturing press-molded product and press-molded product | |
EP3037187B1 (en) | Production method for press-molded body, and press molding device | |
US9365085B2 (en) | Bumper reinforcement and method of manufacturing the same | |
JP5374832B2 (en) | Metal hollow columnar member for impact absorbing member and manufacturing method thereof | |
JP6304379B2 (en) | Door impact beam | |
JP5235007B2 (en) | Crash box | |
US10974578B2 (en) | Door impact beam | |
TW201808697A (en) | Automobile-body press-formed component and manufacturing method therefor | |
KR102196701B1 (en) | Drawing molded article for automobile structural members, method for manufacturing drawing molded article for automobile structural members, and apparatus for manufacturing drawing molded article for automobile structural members | |
JP2007001386A (en) | Bumper stay and bumper device | |
JP2011056997A (en) | Metal hollow columnar member | |
JP2010023658A (en) | Bumper reinforcement and method of manufacturing the same | |
JP2005103613A (en) | Hat channel type member for automobile | |
JP5237252B2 (en) | Automotive bumper structure | |
JPWO2002064284A1 (en) | Bumper line hose having a substantially B-shaped closed cross section formed by press molding having a deep drawing process and a method of manufacturing the same | |
EP3597512B1 (en) | Molded body, structural member, and method for manufacturing molded body | |
JP2005104335A (en) | Side member tube hydroforming member | |
JP4572674B2 (en) | Shock absorbing member | |
JP2015074354A (en) | Structure member for vehicle body made of high tensile steel plate and welded structure body | |
WO2024204278A1 (en) | Structural member for automobile body and automobile body | |
KR20110061391A (en) | Manufacturing method for front-side member of ultrahigh-strength steel | |
JPH11278055A (en) | Automobile door stiffener excellent in absorbed energy in collision | |
JP2013000760A (en) | Metallic pipe having joining bearing surface and method of manufacturing the metallic pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110623 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121005 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130326 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130619 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130909 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5374832 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |