JP2003290844A - Hydroforming method superior in formability - Google Patents

Hydroforming method superior in formability

Info

Publication number
JP2003290844A
JP2003290844A JP2002103265A JP2002103265A JP2003290844A JP 2003290844 A JP2003290844 A JP 2003290844A JP 2002103265 A JP2002103265 A JP 2002103265A JP 2002103265 A JP2002103265 A JP 2002103265A JP 2003290844 A JP2003290844 A JP 2003290844A
Authority
JP
Japan
Prior art keywords
tube
value
pipe
circumference
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002103265A
Other languages
Japanese (ja)
Inventor
Keinosuke Iguchi
敬之助 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002103265A priority Critical patent/JP2003290844A/en
Publication of JP2003290844A publication Critical patent/JP2003290844A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a machining method capable of producing a formed article that needs machining harder than conventional in hydroforming. <P>SOLUTION: The hydroforming method in which an axial thrust and hydraulic pressure are imparted to a metallic tube is characterized by the way of using the metallic tube. In the formula defined in (1),εratio=εaxis/ε circumfrence...(1), where ε axis = axial thrust [mm]/length of tube expansion part in axial direction [mm], and where ε circumference=(circumference of maximum tube expansion part in die [mm] - circumference of tube stock [mm])/circumference of tube stock [mm]; when the ε ratio is in the deformation region of 0.3 or below, a metallic tube is used in which γ value in the tube axial direction is larger than γ value in the tube circumferential direction; and when the ε ratio is in the deformation region of 0.3 or above, a metallic tube is used in which γvalue in the tube circumferential direction is larger than γ value in the tube axial direction. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、鋼管、アルミニウ
ム管、チタン管などの金属管を金型内に装着し、管内に
内圧をかけ同時に管軸方向に押し込みつつ所定の形状に
加工するハイドロフォーム成形法に関するものである。 【0002】 【従来の技術】自動車部品等において、鋼管等の金属管
をハイドロフォーム成形により製造した製品が採用され
始めている。ここでハイドロフォーム成形とは、図1の
拡管型の成形例に示すように、金属管1を金型4、5に
入れ、液導入孔8から金属管1内に液9を導入して内圧
をかけ、両側から押し込み用のシリンダー6、7で管軸
方向に圧縮荷重を負荷して押し込みつつ所定の形状に加
工する方法である。得られた成形品3は軽量で、しかも
複雑な形状のものまで成形可能である。金属管1は、図
2に示すように金属板2を管状に成形し、突合せ部を溶
接して製造されるほか、シームレス管も使用される。 【0003】一般には素材の金属管として、軟質材料、
n値の高い材料、r値の高い材料が高い加工性を示すこ
とが知られている。また、ハイドロフォーム加工におい
ては管のr値の異方性が加工性に影響を及ぼすことが知
られている。この面内異方性を利用した技術として、特
開平10−175027号公報に管軸方向のr値を管周
方向のr値より高めることで高い加工性を得る金属管が
開示されている。 【0004】 【発明が解決しようとする課題】従来の技術では、高い
加工性を得るために管軸方向のr値を管周方向のr値よ
り高めた金属管が使用されている。しかし、本来面内異
方性の影響は、ハイドロフォーム成形が行われる際に十
分に軸押しが出来るかどうかで変化してくる。このた
め、管軸方向のr値を管周方向のr値より高めた金属管
が常にハイドロフォーム成形で高い成形性を示すとは限
らない。本発明では、従来よりも厳しい加工を可能とす
るハイドロフォーム加工方法を提供することを目的とす
る。 【0005】 【課題を解決するための手段】上記目的を達成するた
め、本発明の要旨とするところは、金属管に軸押しと液
圧を加えるハイドロフォーム加工方法において、下記
(1)式で定義されるε比が0.3以下の変形領域のと
き、管軸方向のr値が管周方向のr値より大である金属
管を用い、ε比が0.3以上の変形領域のとき、管周方
向のr値が管軸方向のr値より大である金属管を用いる
ことを特徴とする成形性の優れたハイドロフォーム加工
方法である。 ε比=ε軸/ε周 ・・・・・・(1) ここで、 ε軸=軸押し量[mm]/拡管部の軸方向長さ[mm] ε周=(金型の最大拡管部の周長[mm]−素管の周長
[mm])/素管の周長[mm] 尚、本発明において、拡管部の軸方向長さとは、素管が
成形開始時に金型にセットされた時点で金型と全周が接
触してない部分の素管の中心軸の長さと定義し、金型の
最大拡管部の周長とは、金型の管軸方向を法線方向とす
る断面の周長で最大のものと定義する。 【0006】 【発明の実施の形態】以下、本発明を詳細に説明する。
図1に示すような拡管部の直径D1が140mm、拡管部
の軸方向長さL1が100mmの単純拡管型の金型を用い
て、管周方向のr値が管軸方向のr値より大きい金属管
と、管軸方向のr値が管周方向のr値より大である金属
管を、ε比が0から0.5の間で種々の値をとるように
軸押し量を1mmから60mmまで様々に変化させてハイド
ロフォーム成形を行った。ここで成形は、1mmの軸押し
を行ってから一定の保持圧力で所定量の軸押しを行い、
その後1000barまで昇圧する加工経路で行い、素管
がバーストした時点での拡管率を測定した。なお、材料
の特性ごとに最適な加工条件は異なる為、軸押し時の保
持圧力を170barから370barの範囲で20bar刻み
で変えた11通りの経路について試験し、その中で最も
大きく拡管した時の値を最大拡管率とした。この試験結
果よりε比が0.3以上の変形領域のとき、管周方向の
r値が管軸方向のr値より大きい金属管を使い、ε比が
0.3以下の時は管軸方向のr値が管周方向のr値より
大である金属管を使うことにより最大拡管率が大きくな
る知見を得た。 【0007】冷延鋼板は、熱延板を冷延した後焼鈍して
製造され、通常圧延方向(L方向)のr値よりも圧延方
向に対して直角方向(C方向)のr値の方が高い。従っ
て、このような冷延鋼板を図2の様に管状に成形する場
合、圧延方向(L方向)が管周方向(rθの方向)とな
るように板取することで本発明における管周方向のr値
が管軸方向のr値より大きい金属管を製造することがで
きる。また、圧延方向(L方向)が管軸方向(rφの方
向)となるように板取することで管軸方向のr値が管周
方向のr値より大である金属管を製造することができ
る。 【0008】 【実施例】板厚2.3mmの鋼板(JIS G3141に
規定されるSTCE)を図2のように管状に成形し溶接
して外径63.5mmの鋼管を製造し長さ430mmに切り
出して金属管1とし、図1に示すような拡管部の直径D
1が140mm、拡管部の軸方向長さL1が100mmの単
純拡管型の金型を用いて成形試験を行った。鋼板は、圧
延方向(L方向)のr値(rL)が1.2であり圧延方
向に対し直角方向(C方向)のr値(rc)が2.2で
あるものを使用して、L方向を管軸方向として造管し、
周方向r値(rθ)が大となる鋼管Aと、C方向を管軸
方向として造管し、軸方向r値(rφ)が大となる鋼管
Bを製造した。成形は1mmの軸押しを行ってから一定の
保持圧力で所定量の軸押しを行い、その後1000bar
まで昇圧する加工経路で行い、素管がバーストした時点
での拡管率を測定した。 【0009】なお、材料の特性ごとに最適な加工条件は
異なる為、A、Bそれぞれの鋼管について軸押し時の保
持圧力を170barから370barの範囲で20bar刻み
で変えた11通りの経路について試験し、その中で最も
大きく拡管した時の値を最大拡管率とした。また軸押し
量は、ε比が0.3以上となる軸押し量60mmと0.3
以下となる20mmの2水準について行った。 【0010】軸押し量60mmのとき、ε比は下記のよう
になる。 ε比=ε軸/ε周=(軸押し量/拡管部の軸方向長さ)/{(金型の最大拡管 部の周長[mm]−素管の周長[mm])/素管の周長} =(60/100)/{(π・140−π・63.5)/(π・63.5)} =0.50 また、同様に、軸押し量20mmのとき、ε比は下記のよ
うになる。 ε比=(20/100)/{(π・140−π・63.5)/(π・63.5 )} =0.17 【0011】結果は、表1に示すように、ε比が0.3
以上となる軸押し量60mmの成形では管周方向のr値
(rθ)が管軸方向のr値(rφ)よりも大きい鋼管A
の場合に、最大拡管率大となり優れた加工性が得られ
た。ε比が0.3以下となる軸押し量20mmの成形では
管軸方向のr値(rφ)が管周方向のr値(rθ)より
も大きい鋼管Bの場合に、最大拡管率大となり優れた加
工性が得られた。 【0012】 【表1】 【0013】 【発明の効果】本発明の加工方法は、ハイドロフォーム
加工において軸押し量と拡管率のバランスに応じて、最
適なr値の面内異方性を持つ金属管を使用することで従
来よりも厳しい加工を要する成形品まで製造可能であ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of mounting a metal pipe such as a steel pipe, an aluminum pipe, or a titanium pipe in a mold and applying an internal pressure to the pipe at the same time in the axial direction of the pipe. The present invention relates to a hydroform molding method for processing into a predetermined shape while pushing. 2. Description of the Related Art In automobile parts and the like, products in which metal pipes such as steel pipes are manufactured by hydroforming are beginning to be used. Here, the hydroform molding means that the metal tube 1 is put into the dies 4 and 5 and the liquid 9 is introduced into the metal tube 1 through the liquid introduction hole 8 and the internal pressure is increased as shown in the example of the expansion mold shown in FIG. This is a method of forming a predetermined shape while applying a compressive load in the tube axis direction with the pushing cylinders 6 and 7 from both sides and pushing. The obtained molded article 3 is lightweight and can be molded into a complicated shape. As shown in FIG. 2, the metal tube 1 is manufactured by forming a metal plate 2 into a tubular shape and welding a butt portion, and a seamless tube is also used. [0003] Generally, a soft material,
It is known that a material having a high n value and a material having a high r value exhibit high workability. In hydroforming, it is known that the anisotropy of the r value of the pipe affects the workability. As a technique using this in-plane anisotropy, Japanese Patent Application Laid-Open No. H10-175027 discloses a metal pipe which obtains high workability by increasing the r value in the tube axis direction than the r value in the tube circumferential direction. [0004] In the prior art, in order to obtain high workability, a metal pipe having an r value in the pipe axis direction higher than the r value in the pipe circumferential direction is used. However, the influence of in-plane anisotropy originally changes depending on whether or not axial pressing can be sufficiently performed when hydroform molding is performed. For this reason, a metal pipe in which the r value in the pipe axis direction is higher than the r value in the pipe circumferential direction does not always show high formability by hydroforming. An object of the present invention is to provide a hydroform processing method that enables more severe processing than before. [0005] In order to achieve the above object, the gist of the present invention is to provide a hydroforming method for applying axial pressing and liquid pressure to a metal pipe by the following formula (1). When the defined ε-ratio is a deformation region of 0.3 or less, use a metal pipe whose r-value in the tube axis direction is larger than the r-value in the tube circumferential direction, and when the ε-ratio is a deformation region of 0.3 or more. And a hydroforming method excellent in formability, characterized by using a metal pipe having an r value in the pipe circumferential direction larger than the r value in the pipe axis direction. ε ratio = ε axis / ε circumference ... (1) where ε axis = axial pushing amount [mm] / axial length of expanded part [mm] ε circumference = (maximum expanded part of mold) Perimeter [mm] −perimeter of base tube [mm]) / perimeter of base tube [mm] In the present invention, the axial length of the expanded portion refers to the length of the base tube set in a mold at the start of molding. Defined as the length of the central axis of the raw tube at the point where the mold and the entire circumference are not in contact at the time when it was performed, and the perimeter of the maximum expanded part of the mold is the normal direction of the mold's pipe axis direction. Is defined as the maximum perimeter of the section to be formed. Hereinafter, the present invention will be described in detail.
As shown in FIG. 1, the diameter r1 of the expanded portion is 140 mm, and the axial length L1 of the expanded portion is 100 mm. The metal pipe and the metal pipe whose r value in the pipe axis direction is larger than the r value in the pipe circumferential direction are set so that the axial pushing amount is 1 mm to 60 mm so that the ε ratio takes various values between 0 and 0.5. Hydroform molding was performed with various changes. Here, the shaping is performed by pressing the shaft by 1 mm and then pressing the shaft by a predetermined amount at a constant holding pressure.
Thereafter, the pressure was increased to 1000 bar in a machining path, and the pipe expansion rate at the time when the raw pipe burst was measured. In addition, since the optimal processing conditions differ for each material characteristic, the test was performed on 11 different paths in which the holding pressure at the time of pressing the shaft was changed in the range of 170 bar to 370 bar in increments of 20 bar. The value was taken as the maximum expansion ratio. From this test result, when the ε ratio is in the deformed region of 0.3 or more, use a metal pipe having an r value in the circumferential direction of the tube larger than the r value in the tube axis direction. It has been found that the maximum pipe expansion ratio is increased by using a metal pipe whose r value is larger than the r value in the pipe circumferential direction. A cold-rolled steel sheet is manufactured by cold-rolling a hot-rolled sheet and then annealing. Usually, the r-value in the direction perpendicular to the rolling direction (C direction) is smaller than the r value in the rolling direction (L direction). Is high. Therefore, when such a cold-rolled steel sheet is formed into a tubular shape as shown in FIG. 2, the sheet is taken out so that the rolling direction (L direction) is the pipe circumferential direction (the direction of rθ). A metal pipe having an r value larger than the r value in the tube axis direction can be manufactured. In addition, a metal pipe whose r value in the tube axis direction is larger than r value in the tube circumferential direction can be manufactured by taking a plate so that the rolling direction (L direction) is in the tube axis direction (rφ direction). . A steel plate having a thickness of 2.3 mm (STCE specified in JIS G3141) is formed into a tube as shown in FIG. 2 and welded to produce a steel pipe having an outer diameter of 63.5 mm and a length of 430 mm. The metal tube 1 is cut out and has a diameter D of an expanded portion as shown in FIG.
A molding test was carried out using a simple expansion mold having a length of 140 mm and a length L1 of 100 mm in the axial direction of the expanded portion. Steel sheet, using what r values in the rolling direction r value (L direction) (r L) is perpendicular to and rolling direction is 1.2 (C direction) (r c) is 2.2 , L direction is the tube axis direction,
A steel pipe A having a large circumferential r value (rθ) and a steel pipe B having a large axial r value (rφ) were manufactured with the C direction as the pipe axis direction. Molding is performed by pressing the shaft by 1 mm, then pressing the shaft by a predetermined amount at a constant holding pressure, and then 1000 bar.
The pipe expansion rate was measured at the time when the pipe bursted. Since the optimum processing conditions are different for each material characteristic, eleven paths were tested for each of the A and B steel pipes in which the holding pressure at the time of axial pressing was changed from 170 bar to 370 bar in steps of 20 bar. The value at the time when the pipe was expanded the most was defined as the maximum expansion rate. In addition, the axial pushing amount is 60 mm when the ε ratio is 0.3 or more and 0.3 mm.
The following two levels of 20 mm were performed. When the axial pushing amount is 60 mm, the ε ratio is as follows. ε ratio = ε axis / ε circumference = (axial pushing amount / axial length of expanded part) / {(perimeter of maximum expanded part of mold [mm]-peripheral length of base tube [mm]) / base tube Perimeter of} = (60/100) / {(π · 140−π · 63.5) / (π · 63.5)} = 0.50 Similarly, when the axial pushing amount is 20 mm, the ε ratio Is as follows. ε ratio = (20/100) / {(π · 140−π · 63.5) / (π · 63.5)} = 0.17 As shown in Table 1, the ε ratio is 0.3
In the above-described forming with a shaft pushing amount of 60 mm, the steel pipe A in which the r value (rθ) in the pipe circumferential direction is larger than the r value (rφ) in the pipe axis direction.
In the case of the above, the maximum pipe expansion ratio was large, and excellent workability was obtained. In the case of forming with a shaft pushing amount of 20 mm where the ε ratio is 0.3 or less, the steel pipe B having a larger r value (rφ) in the pipe axis direction than the r value (rθ) in the pipe circumferential direction has a larger maximum expansion ratio and is excellent. Workability was obtained. [Table 1] According to the working method of the present invention, a metal pipe having an in-plane anisotropy of an optimum r value is used in hydroforming according to the balance between the axial pushing amount and the expansion ratio. It is possible to manufacture molded products that require more severe processing than before.

【図面の簡単な説明】 【図1】本発明の対象とするハイドロフォーム加工法の
例を示す断面図である。 【図2】本発明で使用する金属管の製造例を示す斜視図
である。 【符号の説明】 1 金属管 2 金属板 3 成形品 4,5 金型 6,7 シリンダー 8 液導入孔 9 液
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing an example of a hydroforming method according to the present invention. FIG. 2 is a perspective view showing a production example of a metal tube used in the present invention. [Explanation of Signs] 1 Metal tube 2 Metal plate 3 Molded product 4,5 Die 6,7 Cylinder 8 Liquid introduction hole 9 Liquid

Claims (1)

【特許請求の範囲】 【請求項1】 金属管に軸押しと液圧を加えるハイドロ
フォーム加工方法において、下記(1)式で定義される
ε比が0.3以下の変形領域のとき、管軸方向のr値が
管周方向のr値より大きい金属管を用い、ε比が0.3
以上の変形領域のとき、管周方向のr値が管軸方向のr
値より大きい金属管を用いることを特徴とする成形性の
優れたハイドロフォーム加工方法。 ε比=ε軸/ε周 ・・・・・・(1) ここで、 ε軸=軸押し量[mm]/拡管部の軸方向長さ[mm] ε周=(金型の最大拡管部の周長[mm]−素管の周長
[mm])/素管の周長[mm]
Claims 1. In a hydroforming method for applying axial pressure and hydraulic pressure to a metal tube, when the ε ratio defined by the following equation (1) is a deformation region of 0.3 or less, the tube is A metal pipe having an r value in the axial direction larger than the r value in the circumferential direction is used, and the ε ratio is 0.3.
In the above deformation region, the r value in the pipe circumferential direction is r in the pipe axis direction.
A hydroforming method excellent in formability, characterized by using a metal tube having a larger value. ε ratio = ε axis / ε circumference ... (1) where ε axis = axial pushing amount [mm] / axial length of expanded part [mm] ε circumference = (maximum expanded part of mold) Perimeter [mm]-tube circumference [mm]) / tube circumference [mm]
JP2002103265A 2002-04-05 2002-04-05 Hydroforming method superior in formability Withdrawn JP2003290844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002103265A JP2003290844A (en) 2002-04-05 2002-04-05 Hydroforming method superior in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002103265A JP2003290844A (en) 2002-04-05 2002-04-05 Hydroforming method superior in formability

Publications (1)

Publication Number Publication Date
JP2003290844A true JP2003290844A (en) 2003-10-14

Family

ID=29242570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002103265A Withdrawn JP2003290844A (en) 2002-04-05 2002-04-05 Hydroforming method superior in formability

Country Status (1)

Country Link
JP (1) JP2003290844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284931A (en) * 2007-05-15 2008-11-27 Nippon Steel Corp Metal hollow columnar member and method of manufacturing the same
JP2013079414A (en) * 2011-10-03 2013-05-02 Nippon Steel & Sumitomo Metal Corp α+β TYPE TITANIUM ALLOY PLATE FOR WELDING PIPE EXCELLENT IN PIPE-FORMING ABILITY, METHOD FOR PRODUCING THE SAME, AND α+β TYPE TITANIUM ALLOY WELDING PIPE PRODUCT EXCELLENT IN STRENGTH AND INTENSITY IN LONGITUDINAL DIRECTION OF THE PIPE
CN109454145A (en) * 2018-09-20 2019-03-12 南京理工大学 A kind of thin-wall metal pipe hydroforming equipment and method based on vibration feed supplement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284931A (en) * 2007-05-15 2008-11-27 Nippon Steel Corp Metal hollow columnar member and method of manufacturing the same
JP2013079414A (en) * 2011-10-03 2013-05-02 Nippon Steel & Sumitomo Metal Corp α+β TYPE TITANIUM ALLOY PLATE FOR WELDING PIPE EXCELLENT IN PIPE-FORMING ABILITY, METHOD FOR PRODUCING THE SAME, AND α+β TYPE TITANIUM ALLOY WELDING PIPE PRODUCT EXCELLENT IN STRENGTH AND INTENSITY IN LONGITUDINAL DIRECTION OF THE PIPE
CN109454145A (en) * 2018-09-20 2019-03-12 南京理工大学 A kind of thin-wall metal pipe hydroforming equipment and method based on vibration feed supplement

Similar Documents

Publication Publication Date Title
TWI711498B (en) Formed material manufacturing method and formed material
JPWO2008130055A1 (en) Hydroform processing method
JPH10175026A (en) Hydroforming method of tube
JP2016073986A (en) Manufacturing method and manufacturing device of diameter expanded pipe part
JPH09327723A (en) Thickening of metal tube
JP3481409B2 (en) Hydroforming method of steel pipe
JP3549750B2 (en) Forming method of high expansion pipe and high expansion pipe
JP2009045672A (en) Method of hydroforming hollow aluminum extruded material
JP2003290844A (en) Hydroforming method superior in formability
JP6665643B2 (en) Manufacturing method and manufacturing apparatus for expanded pipe parts
JPH05345231A (en) Manufacture of rack tube
JP4009129B2 (en) Hydroform processing method
JP2003154407A (en) Aluminum extruded material for hydroforming and method of manufacturing the same
JP3676994B2 (en) Hydraulic bulge forming method for aluminum hollow extrusions
JP5293040B2 (en) Deck pipe forming method
JP2007185697A (en) Machining method and machining device for metallic tube
JP2009285665A (en) Aluminum alloy seamless extruded tube excellent in high temperature tube expansion formability and its manufacturing method
JP4133465B2 (en) Hydroform processing method
EP1342515A1 (en) Process for the manufacture of closed, hardened sections with no cross-sectional limits
EP1379341B1 (en) Method of manufacturing a closed profile
JP4406163B2 (en) Manufacturing method of steel pipe with excellent formability
JP2002059220A (en) Electric resistance welded steel tube excellent in hydroforming workability
JP2001096316A (en) Hydroforming method for steel pipe
JPH10103188A (en) High pressure fuel injection pipe material and manufacture thereof
JP3854534B2 (en) Titanium welded pipe excellent in workability and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607