JP3676180B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery Download PDF

Info

Publication number
JP3676180B2
JP3676180B2 JP2000094295A JP2000094295A JP3676180B2 JP 3676180 B2 JP3676180 B2 JP 3676180B2 JP 2000094295 A JP2000094295 A JP 2000094295A JP 2000094295 A JP2000094295 A JP 2000094295A JP 3676180 B2 JP3676180 B2 JP 3676180B2
Authority
JP
Japan
Prior art keywords
battery
valve member
storage battery
elastic body
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000094295A
Other languages
Japanese (ja)
Other versions
JP2001283809A (en
Inventor
慎一郎 岩井
尚 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000094295A priority Critical patent/JP3676180B2/en
Publication of JP2001283809A publication Critical patent/JP2001283809A/en
Application granted granted Critical
Publication of JP3676180B2 publication Critical patent/JP3676180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • H01M50/333Spring-loaded vent valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は安全弁機構を備えた密閉型アルカリ蓄電池に係り、特に、安全弁機構の改良に関する。
【0002】
【従来の技術】
ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池などの密閉型蓄電池においては、電池を過充電したり過放電した場合には、電池内部で酸素ガスや水素ガスが異常発生することがある。このためこの種の電池では、ガスの異常発生により電池内圧が所定圧を超えたときガスを電池外に放出させ、ガス放出によって電池内圧が所定圧よりも低下したときには、再び電池内が密閉化される復帰式の安全弁機構が組み込まれている。
【0003】
このような復帰式の安全弁機構は、封口板に設けられた弁孔を塞く弁部材と、この弁部材を所定の押圧力で付勢するスプリングなどの押圧部材から構成され、電池内が所定圧に達すると弁部材が作動するように押圧部材の押圧力を調整している。これにより、電池内圧が定常状態のときには、弁部材は不作動で弁孔を塞いで電池内を密閉し、電池内圧が所定圧を超えた場合には、弁部材は作動して弁部材と弁孔との間に隙間を形成して発生ガスを電池外に排出するような構造になっている。
【0004】
【発明が解決しようとする課題】
しかしながら、電池内が所定圧を越えた場合に弁部材が作動するように押圧部材の押圧力を調整していても、押圧部材の劣化などにより押圧力が低下して、電池内が所定圧に達する前に弁部材が作動したり、あるいは弁部材の劣化などにより弁部材が弁孔に固着して、電池内圧が所定圧に達しても弁部材が作動しなかったりすることがある。
【0005】
ここで、弁部材を所定の押圧力で付勢するスプリングなどの押圧部材の押圧力が低すぎると、弁部材と弁孔との間の密着力が不足して、電池内が所定圧に達する前に(電池内圧が所定圧以下であっても)弁部材が作動して、電内に充填された電解液が弁孔から漏れるという問題を生じる。また、弁部材が弁孔に固着していると、電池内が所定圧に達しても(電池内圧が所定圧以上になっても)弁部材が作動しなくて、発生したガスを電池外に放出することができなくなって、電内圧が異常に上昇して外装缶の底部あるいは封口板が外方に突出するという問題を生じる。
【0006】
本発明は、上記問題点を解消するためになされたものであって、押圧部材が所定の圧力で弁部材を押圧できるような安全弁機構として、電池内が所定圧よりも低い場合は弁部材が作動しないようにし、所定圧に達したら弁部材が確実に作動するようして、液漏れが生じなくて安全性に優れた密閉型アルカリ蓄電池を提供することを目的とするものである。
【0007】
【発明が解決しようとする課題】
上記目的を達成するために、本発明の密閉型アルカリ蓄電池は、弁部材は弾性体と鋼板とのラミネート材により構成されて、弾性体が弁孔を塞ぐように配置されるとともに、鋼板が押圧部材により押圧されるように配置されており、弾性体はエチレン−プロピレン三量体(EPDM)により形成されており、押圧部材が弁部材に付与する付勢力を弁部材と封口板との接触面で1.59〜3.59MPaにするとともに、弾性体の厚みを0.35〜0.50mmにしている。
【0008】
弁部材が弾性体と鋼板とのラミネート材により構成され、ラミネート材の鋼板が押圧部材により押圧されるように配置されていると、押圧部材の押圧力を鋼板を介して確実に弾性体に付与することができるようになる。これにより、電池内が所定圧よりも低い場合は弁部材が作動しなくなり、所定圧に達したら弁部材は確実に作動するようになって、液漏れが生じなくて安全性に優れた密閉型アルカリ蓄電池が得られるようになる。
【0009】
この場合、押圧部材が弁部材に付与する付勢力が弁部材と封口板との接触面で、1.59MPa未満であると電池内が所定圧よりも低くても弁部材が作動して漏液を生じ、また、3.59MPaより大きいと電池内が所定圧に達しても弁部材が作動しなくて電池が膨らむため、押圧部材が弁部材に付与する付勢力は、弁部材と封口板との接触面1.59〜3.59MPaにする必要がある。また、弾性体の厚みが0.35mm未満であると電池内が所定圧よりも低くても弁部材が作動して漏液を生じ、また、0.50mmより大きいと弾性部材と弁孔が固着して電池内が所定圧に達しても弁部材が作動しなくなるため、弾性体の厚みは0.35〜0.50mmにする必要がある。
【0010】
そして、弾性体としては、所定の弾力性を有するとともに、弾力性を長期間維持でき、かつ劣化の少ない材質により構成するのが望ましく、このような材質としはエチレン−プロピレン三量体(ethylene-propylene terpolymer:EPDM)が好ましい。また、押圧部材としては、弾力性に優れ、かつ弁部材に所定の押圧力を付与できて構造が簡単なコイルばねを用いるのが望ましい。
【0011】
【発明の実施の形態】
ついで、本発明をニッケル−カドミウム蓄電池に適用した一実施の態様を図1、図2に基づいて説明する。なお、図1は本発明のニッケル−カドミウム蓄電池の全体構造を示す部分破断図であり、図2は、図1に示す封口体を拡大して示す断面図である。
【0012】
1.ニッケル−カドミウム蓄電池
本実施形態のニッケル−カドミウム蓄電池は、パンチングメタルからなる極板芯体の両面に水酸化ニッケルを主体とする正極活物質と結着剤とからなる正極活物質スラリーを塗着して、乾燥後に所定の形状に切断してニッケル正極板を作製する。また、パンチングメタルからなる極板芯体の両面に水酸化カドミウムを主体とする負極活物質と結着剤とからなる正極活物質スラリーを塗着して、乾燥後に所定の形状に切断してカドミウム負極板を作製する。
【0013】
ついで、これらのニッケル正極板とカドミウム負極板との間にセパレータを介在させて渦巻状に巻回して渦巻状電極群20を作製し、この渦巻状電極群20の上面に露出する正極芯体に正極集電リード21を溶接するとともに、渦巻状電極群20の下面に露出する負極芯体に負極集電リード(図示せず)を溶接する。ついで、この渦巻状電極群20を鉄にニッケルメッキを施した有底筒状の外装缶(底面の外面は負極外部端子となる)10内に挿入して収納する。
【0014】
この後、封口板31と正極キャップ33とからなる封口体30を用意し、この封口体30の封口板31の底面に正極から延出する正極集電リード21をスポット溶接した後、封口板31の外周部に環状の絶縁ガスケットを37を装着する。ついで、外装缶10の上方外周部に絞り加工を施して環状溝部11を形成した後、この環状溝部11の上に絶縁ガスケット37を載置し、外装缶10の開口端縁12を内方にカシメつけることによって電池を密封して、図1に示すようなニッケルーカドミウム蓄電池を組み立てた。
【0015】
2.封口体
封口体30は、図2に拡大して示すように、中央部が下方に突出した封口板31と、中央部が上方に突出した正極キャップ33とで構成される。封口板31の下方に突出した部分の中心部には弁孔32が設けられており、正極キャップ33の上方に突出した部分の側壁には排気用開孔33aが設けられている。そして、封口板31の下方に突出した中央部と正極キャップ33の上方に突出した中央部とで形成される空間内には、電池内圧が高まったときに作動する安全弁機構が組み込まれている。なお、正極キャップ33は正極外部端子を兼用している。
【0016】
この安全弁機構は、弾性体33と鋼板34とをラミネートした弁部材と、コイルばね36からなる押圧部材から構成されている。弁部材の弾性体33は封口板31に設けられた弁孔32を閉塞するように配置されており、この弾性体33は鋼板34を介して押圧部材のコイルばね36の付勢力により、弁孔32を閉塞する方向に付勢されている。
【0017】
ここで、弾性体33はエチレン−プロピレン三量体(ethylene-propylene terpolymer:EPDM)を主成分とする成形材を、所定の厚みになるように円板状に成形して形成されている。また、鋼板34は厚みが0.30mmのニッケル等のメッキを施した鉄製の鋼板あるいはステンレス製の鋼板を円板状に打ち抜き成型して形成されている。そして、これらの弾性体33と鋼板34をラミネート加工して一体化させて弁部材を形成している。
コイルばね36は、弁部材に所定の押圧力(付勢力)を付与できるように、所定の線径を有する線材(例えば、鋼線、ステンレス線等)をコイル状に成型して形成されている。
【0018】
3.押圧部材の押圧力についての検討
ついで、厚みが0.40mmの弾性体33を用いて、この弾性体33と鋼板34をラミネート加工して一体化させて弁部材を形成した。一方、線径が異なる線材を用いて、スプリング荷重がそれぞれ1.00MPa、1.59MPa、2.00MPa、2.50MPa、3.00MPa、3.59MPaおよび4.50MPaとなるようにコイルばね36をそれぞれ形成した。これらの弁部材とコイルばね36とを用いて封口体30をそれぞれ作製した。
【0019】
ついで、このように作製した封口体をそれぞれ用いて、上述のようにニッケル−カドミウム蓄電池A,B,C,D,E,F,Gをそれぞれ作製した。ついで、これらの各電池A,B,C,D,E,F,Gを100個用意し、各電池A,B,C,D,E,F,Gを短絡状態にして、長期間(例えば、365日間)放置した後、液漏れが生じた個数(漏液の発生割合)および弾性体33が封口板31に固着した個数(弾性体の固着割合)を測定すると、下記の表1に示すような結果となった。
【0020】
なお、スプリング荷重が1.00MPaのコイルばね(押圧部材)36を用いたニッケル−カドミウム蓄電池を電池Aとし、1.59MPaのコイルばね(押圧部材)36を用いたニッケル−カドミウム蓄電池を電池Bとし、2.00MPaのコイルばね(押圧部材)36を用いたニッケル−カドミウム蓄電池を電池Cとし、2.50MPaのコイルばね(押圧部材)36を用いたニッケル−カドミウム蓄電池を電池Dとし、3.00MPaのコイルばね(押圧部材)36を用いたニッケル−カドミウム蓄電池を電池Eとし、3.59MPaのコイルばね(押圧部材)36を用いたニッケル−カドミウム蓄電池を電池Fとし、4.50MPaのコイルばね(押圧部材)36を用いたニッケル−カドミウム蓄電池を電池Gとした。
【0021】
【表1】

Figure 0003676180
【0022】
上記表1から明らかなように、スプリング荷重が1.00MPaのコイルばね(押圧部材)36を用いた電池Aに漏液が発生し、またスプリング荷重が4.50MPaのコイルばね(押圧部材)36を用いた電池Gに弾性体の固着が発生してことが分かる。一方、スプリング荷重が1.59MPaの電池B、2.00MPaの電池C、2.50MPaの電池D、3.00MPaの電池E、3.59MPaの電池Fにおいては、漏液や弾性体の固着が発生しなかった。このことから、コイルばね(押圧部材)36によるスプリング荷重は1.59MPa〜3.59MPaに規制する必要があるということができる。
【0023】
4.弾性体の厚みについての検討
ついで、スプリング荷重が2.50MPaとなるように形成したコイルばね36を用いて、厚みがそれぞれ0.30mm、0.35mm、0.40mm(上記電池D)、0.45mm、0.50mm、0.55mm、0.60mmとなるように弾性体34をそれぞれ形成し、さらに、これらの弾性体33と鋼板34をラミネート加工して一体化させて弁部材を形成し、これらの弁部材とコイルばね36とを用いて封口体30をそれぞれ作製した。
【0024】
ついで、このように作製した封口体をそれぞれ用いて、上述のようにニッケル−カドミウム蓄電池H,I,D,J,K,L,Mをそれぞれ作製した。ついで、これらの各電池H,I,D,J,K,L,Mを100個ずつ用意し、各電池H,I,D,J,K,L,Mを短絡状態にして、長期間(例えば、365日間)放置した後、液漏れが生じた個数(漏液の発生割合)および弾性体33が封口板31に固着した個数(弾性体の固着割合)を測定すると、下記の表2に示すような結果となった。
【0025】
なお、厚みが0.30mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いたニッケル−カドミウム蓄電池を電池Hとし、0.35mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いたニッケル−カドミウム蓄電池を電池Iとし、0.40mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いたニッケル−カドミウム蓄電池を電池Dとし、0.45mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いたニッケル−カドミウム蓄電池を電池Jとし、0.50mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いたニッケル−カドミウム蓄電池を電池Kとし、0.55mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いたニッケル−カドミウム蓄電池を電池Lとし、0.60mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いたニッケル−カドミウム蓄電池を電池Mとした。
【0026】
【表2】
Figure 0003676180
【0027】
上記表2から明らかなように、厚みが0.30mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いた電池Hに漏液が発生し、また厚みが0.55mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いた電池Lおよび厚みが0.60mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いた電池Mに弾性体の固着が発生してことが分かる。
【0028】
一方、厚みが0.35mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いた電池I、厚みが0.40mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いた電池D、厚みが0.45mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いた電池J、厚みが0.50mmの弾性体33と鋼板34とのラミネート材からなる弁部材を用いた電池Kにおいては、漏液や弾性体の固着が発生しなかった。このことから、弾性体33の厚みは0.35mm〜0.50mmに規制する必要があるということができる。
【0029】
上述したように、本発明においては、弁部材を弾性体33と鋼板34とのラミネート材により構成し、かつ鋼板34がコイルばね(押圧部材)36により押圧されるように配置しているので、コイルばね(押圧部材)36の押圧力を鋼板34を介して確実に弾性体33に付与することができるようになる。これにより、電池内が所定圧よりも低い場合は弁部材が作動しなくなり、所定圧に達したら弁部材は確実に作動するようになって、液漏れが生じなくて安全性に優れた密閉型アルカリ蓄電池が得られるようになる。
【0030】
なお、上述した実施の形態においては、正極キャップ33を正極外部端子とし、外装缶10の底部を負極外部端子としたが、この逆であってもよい。また、上述した実施の形態においては、本発明をニッケル−カドミウム蓄電池に適用する例について説明したが、ニッケル−カドミウム蓄電池以外に、ニッケル−水素蓄電池などの密閉型アルカリ蓄電池、あるいは非水電解液蓄電池等にも本発明が好適に適用できる。
【図面の簡単な説明】
【図1】 本発明のニッケル−カドミウム蓄電池の全体構造を示す部分破断図である。
【図2】 図1に示す封口体を拡大して示す断面図である。
【符号の説明】
10…外装缶、11…環状溝部、12…開口端縁、20…渦巻状電極群、21…正極集電リード、30…封口体、31…封口板、32…弁孔、33…正極キャップ、34…弾性体(弁部材)、35…鋼板(弁部材)、36…コイルばね(押圧部材)、37…絶縁ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealed alkaline storage battery provided with a safety valve mechanism, and more particularly to an improvement of the safety valve mechanism.
[0002]
[Prior art]
In a sealed storage battery such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery, when the battery is overcharged or overdischarged, oxygen gas or hydrogen gas may be abnormally generated inside the battery. For this reason, in this type of battery, when the internal pressure of the battery exceeds a predetermined pressure due to the occurrence of a gas abnormality, the gas is released to the outside of the battery, and when the internal pressure of the battery drops below the predetermined pressure due to gas release, the inside of the battery is sealed again. A returnable safety valve mechanism is incorporated.
[0003]
Such a return-type safety valve mechanism includes a valve member that closes a valve hole provided in a sealing plate, and a pressing member such as a spring that urges the valve member with a predetermined pressing force. The pressing force of the pressing member is adjusted so that the valve member operates when the pressure is reached. As a result, when the battery internal pressure is in a steady state, the valve member is inoperative and closes the valve hole to seal the inside of the battery, and when the battery internal pressure exceeds a predetermined pressure, the valve member is activated to operate the valve member and the valve. A gap is formed between the holes and the generated gas is discharged outside the battery.
[0004]
[Problems to be solved by the invention]
However, even if the pressing force of the pressing member is adjusted so that the valve member operates when the inside of the battery exceeds a predetermined pressure, the pressing force decreases due to deterioration of the pressing member and the inside of the battery is kept at the predetermined pressure. The valve member may be actuated before reaching, or the valve member may be fixed to the valve hole due to deterioration of the valve member and the valve member may not operate even when the battery internal pressure reaches a predetermined pressure.
[0005]
Here, if the pressing force of a pressing member such as a spring that urges the valve member with a predetermined pressing force is too low, the contact force between the valve member and the valve hole is insufficient, and the inside of the battery reaches the predetermined pressure. Previously (even if the internal pressure of the battery is equal to or lower than the predetermined pressure), the valve member is actuated to cause a problem that the electrolyte filled in the electricity leaks from the valve hole. In addition, when the valve member is fixed to the valve hole, even if the inside of the battery reaches a predetermined pressure (even if the internal pressure of the battery exceeds the predetermined pressure), the valve member does not operate and the generated gas is discharged outside the battery. Since it cannot be discharged, the internal pressure rises abnormally, causing the problem that the bottom of the outer can or the sealing plate protrudes outward.
[0006]
The present invention has been made to solve the above problems, and as a safety valve mechanism in which the pressing member can press the valve member with a predetermined pressure, when the inside of the battery is lower than the predetermined pressure, the valve member is An object of the present invention is to provide a sealed alkaline storage battery that does not operate and ensures that a valve member operates reliably when a predetermined pressure is reached, and that does not cause liquid leakage and is excellent in safety.
[0007]
[Problems to be solved by the invention]
In order to achieve the above object, the sealed alkaline storage battery of the present invention is configured such that the valve member is made of a laminate material of an elastic body and a steel plate, and the elastic body is disposed so as to close the valve hole, and the steel plate is pressed. The elastic body is formed of ethylene-propylene trimer (EPDM) and is pressed by the member. The contact surface between the valve member and the sealing plate provides the biasing force that the pressing member applies to the valve member. The thickness of the elastic body is 0.35 to 0.50 mm.
[0008]
When the valve member is composed of a laminate material of an elastic body and a steel plate, and the steel plate of the laminate material is arranged to be pressed by the pressing member, the pressing force of the pressing member is reliably applied to the elastic body via the steel plate. Will be able to. As a result, when the inside of the battery is lower than the predetermined pressure, the valve member does not operate, and when the predetermined pressure is reached, the valve member operates reliably, so that no leakage occurs and the sealed type is excellent in safety. An alkaline storage battery can be obtained.
[0009]
In this case, if the urging force applied by the pressing member to the valve member is less than 1.59 MPa on the contact surface between the valve member and the sealing plate, the valve member operates to leak even if the inside of the battery is lower than the predetermined pressure. the resulting, also, since the swell the battery not be actuated and the valve member reaching 3.59MPa greater and within the cell to a predetermined pressure, the biasing force of the pressing member applied to the valve member, the valve member and the sealing plate it is necessary to 1.59~3.59MPa at the contact surface. Further, if the thickness of the elastic body is less than 0.35 mm, the valve member operates to cause leakage even if the inside of the battery is lower than the predetermined pressure, and if it is greater than 0.50 mm, the elastic member and the valve hole are fixed. Since the valve member does not operate even when the inside of the battery reaches a predetermined pressure, the thickness of the elastic body needs to be 0.35 to 0.50 mm.
[0010]
The elastic body is preferably made of a material that has a predetermined elasticity, can maintain the elasticity for a long period of time, and has little deterioration, and such a material is an ethylene-propylene trimer (ethylene-propylene). propylene terpolymer (EPDM) is preferred. Further, as the pressing member, it is desirable to use a coil spring that has excellent elasticity and can apply a predetermined pressing force to the valve member and has a simple structure.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment in which the present invention is applied to a nickel-cadmium storage battery will be described with reference to FIGS. 1 is a partially cutaway view showing the overall structure of the nickel-cadmium storage battery of the present invention, and FIG. 2 is an enlarged cross-sectional view of the sealing body shown in FIG.
[0012]
1. Nickel-cadmium storage battery The nickel-cadmium storage battery of this embodiment is obtained by applying a positive electrode active material slurry composed of a positive electrode active material mainly composed of nickel hydroxide and a binder to both surfaces of an electrode plate core made of punching metal. Then, after drying, it is cut into a predetermined shape to produce a nickel positive electrode plate. Also, a positive electrode active material slurry composed of a negative electrode active material mainly composed of cadmium hydroxide and a binder is applied to both surfaces of an electrode plate core made of punching metal, and after drying, the slurry is cut into a predetermined shape and cadmium. A negative electrode plate is produced.
[0013]
Subsequently, a separator is interposed between the nickel positive electrode plate and the cadmium negative electrode plate to form a spiral electrode group 20, and a positive electrode core body exposed on the upper surface of the spiral electrode group 20 is formed. While the positive electrode current collector lead 21 is welded, a negative electrode current collector lead (not shown) is welded to the negative electrode core exposed on the lower surface of the spiral electrode group 20. Next, the spiral electrode group 20 is inserted and housed in a bottomed cylindrical outer can 10 in which nickel is plated on iron (the outer surface of the bottom surface serves as a negative electrode external terminal).
[0014]
Thereafter, a sealing body 30 including a sealing plate 31 and a positive electrode cap 33 is prepared. After spot welding the positive electrode current collecting lead 21 extending from the positive electrode to the bottom surface of the sealing plate 31 of the sealing body 30, the sealing plate 31 is provided. A ring-shaped insulating gasket 37 is attached to the outer peripheral portion. Next, after drawing the upper outer peripheral portion of the outer can 10 to form the annular groove portion 11, an insulating gasket 37 is placed on the annular groove portion 11, and the opening edge 12 of the outer can 10 is inward. The battery was sealed by caulking and a nickel-cadmium storage battery as shown in FIG. 1 was assembled.
[0015]
2. As shown in an enlarged view in FIG. 2, the sealing body sealing body 30 includes a sealing plate 31 whose central portion protrudes downward and a positive electrode cap 33 whose central portion protrudes upward. A valve hole 32 is provided at the center of the portion protruding downward from the sealing plate 31, and an exhaust opening 33 a is provided at the side wall of the portion protruding above the positive electrode cap 33. And in the space formed by the center part protruded below the sealing plate 31 and the center part protruded above the positive electrode cap 33, the safety valve mechanism which operates when the battery internal pressure increases is incorporated. The positive electrode cap 33 also serves as a positive electrode external terminal.
[0016]
The safety valve mechanism includes a valve member obtained by laminating an elastic body 33 and a steel plate 34 and a pressing member including a coil spring 36. The elastic member 33 of the valve member is arranged so as to close the valve hole 32 provided in the sealing plate 31, and this elastic member 33 is formed in the valve hole by the urging force of the coil spring 36 of the pressing member via the steel plate 34. It is urged in the direction of closing 32.
[0017]
Here, the elastic body 33 is formed by molding a molding material mainly composed of ethylene-propylene terpolymer (EPDM) into a disk shape so as to have a predetermined thickness. Further, the steel plate 34 is formed by punching and forming a steel plate made of iron or stainless steel plate having a thickness of 0.30 mm plated with nickel or the like into a disk shape. And these elastic bodies 33 and the steel plate 34 are laminated and integrated, and the valve member is formed.
The coil spring 36 is formed by coiling a wire having a predetermined wire diameter (for example, a steel wire or a stainless wire) so that a predetermined pressing force (biasing force) can be applied to the valve member. .
[0018]
3. Next, the elastic member 33 having a thickness of 0.40 mm was used to laminate and integrate the elastic member 33 and the steel plate 34 to form a valve member. On the other hand, using wire rods having different wire diameters, the coil spring 36 is adjusted so that the spring loads are 1.00 MPa, 1.59 MPa, 2.00 MPa, 2.50 MPa, 3.00 MPa, 3.59 MPa, and 4.50 MPa, respectively. Each was formed. Sealing bodies 30 were produced using these valve members and the coil spring 36, respectively.
[0019]
Subsequently, the nickel-cadmium storage batteries A, B, C, D, E, F, and G were respectively manufactured as described above using the sealing bodies thus manufactured. Next, 100 batteries A, B, C, D, E, F, and G are prepared, and the batteries A, B, C, D, E, F, and G are short-circuited for a long time (for example, 365 days), the number of liquid leaks (occurrence ratio of liquid leakage) and the number of elastic bodies 33 fixed to the sealing plate 31 (adhesion ratio of elastic bodies) were measured and shown in Table 1 below. The result was as follows.
[0020]
A nickel-cadmium storage battery using a coil spring (pressing member) 36 having a spring load of 1.00 MPa is referred to as battery A, and a nickel-cadmium storage battery using a 1.59 MPa coil spring (pressing member) 36 is referred to as battery B. , A nickel-cadmium storage battery using a 2.00 MPa coil spring (pressing member) 36 is referred to as battery C, and a nickel-cadmium storage battery using a 2.50 MPa coil spring (pressing member) 36 is referred to as battery D, 3.00 MPa. The nickel-cadmium accumulator using the coil spring (pressing member) 36 is referred to as battery E, the nickel-cadmium accumulator using the 3.59 MPa coil spring (pressing member) 36 is referred to as battery F, and the coil spring (4.50 MPa) ( The battery G was a nickel-cadmium storage battery using the pressing member 36.
[0021]
[Table 1]
Figure 0003676180
[0022]
As apparent from Table 1 above, leakage occurs in the battery A using the coil spring (pressing member) 36 having a spring load of 1.00 MPa, and the coil spring (pressing member) 36 having a spring load of 4.50 MPa. It can be seen that the elastic body adheres to the battery G using the. On the other hand, in the battery B having a spring load of 1.59 MPa, the battery C having a 2.00 MPa, the battery D having a 2.50 MPa, the battery E having a 3.00 MPa, and the battery F having a 3.59 MPa, leakage of liquid or sticking of an elastic body is caused. Did not occur. From this, it can be said that the spring load by the coil spring (pressing member) 36 needs to be regulated to 1.59 MPa to 3.59 MPa.
[0023]
4). Next, the coil spring 36 formed so that the spring load is 2.50 MPa is used, and the thicknesses are 0.30 mm, 0.35 mm, 0.40 mm (the battery D), 0. Each of the elastic bodies 34 is formed to be 45 mm, 0.50 mm, 0.55 mm, and 0.60 mm, and these elastic bodies 33 and the steel plate 34 are laminated and integrated to form a valve member. Sealing bodies 30 were produced using these valve members and the coil spring 36, respectively.
[0024]
Next, nickel-cadmium storage batteries H, I, D, J, K, L, and M were respectively prepared as described above using the sealing bodies thus prepared. Next, 100 batteries H, I, D, J, K, L, and M are prepared, and the batteries H, I, D, J, K, L, and M are short-circuited for a long time ( For example, after standing for 365 days, the number of liquid leaks (occurrence ratio of liquid leakage) and the number of elastic bodies 33 fixed to the sealing plate 31 (adhesion ratio of elastic bodies) were measured. The result was as shown.
[0025]
A nickel-cadmium storage battery using a valve member made of a laminate material of an elastic body 33 having a thickness of 0.30 mm and a steel plate 34 is referred to as a battery H, and a laminate material of the elastic body 33 having a thickness of 0.35 mm and the steel plate 34 is used. Nickel-cadmium storage battery using a valve member is battery I, nickel-cadmium storage battery using a valve member made of a laminate material of 0.40 mm elastic body 33 and steel plate 34 is battery D, and 0.45 mm elastic body. A nickel-cadmium storage battery using a valve member made of a laminate material of 33 and a steel plate 34 is used as a battery J, and a nickel-cadmium storage battery using a valve member made of a laminate material of a 0.50 mm elastic body 33 and a steel plate 34 is used. Nickel-cadmium storage using battery K and a valve member made of a laminate material of 0.55 mm elastic body 33 and steel plate 34 The pond a battery L, nickel was used valve member made of a laminated material of the elastic member 33 and the steel sheet 34 of 0.60 mm - cadmium storage batteries and battery M.
[0026]
[Table 2]
Figure 0003676180
[0027]
As apparent from Table 2 above, leakage occurs in the battery H using the valve member made of a laminate material of the elastic body 33 and the steel plate 34 having a thickness of 0.30 mm, and the elastic body has a thickness of 0.55 mm. The battery L using the valve member made of a laminate material of 33 and the steel plate 34 and the battery M using the valve member made of the laminate material of the elastic member 33 and the steel plate 34 having a thickness of 0.60 mm are fixed. I understand that.
[0028]
On the other hand, a battery I using a valve member made of a laminate material of an elastic body 33 and a steel plate 34 having a thickness of 0.35 mm, and a valve member made of a laminate material of the elastic body 33 and a steel plate 34 having a thickness of 0.40 mm are used. Battery D, battery J using a valve member made of a laminate material of an elastic body 33 and a steel plate 34 having a thickness of 0.45 mm, valve member made of a laminate material of the elastic body 33 and a steel plate 34 having a thickness of 0.50 mm In the battery K using the battery, no leakage or elastic sticking occurred. From this, it can be said that the thickness of the elastic body 33 needs to be regulated to 0.35 mm to 0.50 mm.
[0029]
As described above, in the present invention, the valve member is composed of a laminate material of the elastic body 33 and the steel plate 34, and the steel plate 34 is arranged to be pressed by the coil spring (pressing member) 36. The pressing force of the coil spring (pressing member) 36 can be reliably applied to the elastic body 33 via the steel plate 34. As a result, when the inside of the battery is lower than the predetermined pressure, the valve member does not operate, and when the predetermined pressure is reached, the valve member operates reliably, so that no leakage occurs and the sealed type is excellent in safety. An alkaline storage battery can be obtained.
[0030]
In the above-described embodiment, the positive electrode cap 33 is the positive electrode external terminal and the bottom of the outer can 10 is the negative electrode external terminal. Moreover, in embodiment mentioned above, although the example which applies this invention to a nickel cadmium storage battery was demonstrated, in addition to a nickel cadmium storage battery, sealed alkaline storage batteries, such as a nickel hydride storage battery, or a nonaqueous electrolyte storage battery The present invention can be suitably applied to the above.
[Brief description of the drawings]
FIG. 1 is a partially cutaway view showing the overall structure of a nickel-cadmium storage battery of the present invention.
FIG. 2 is an enlarged cross-sectional view of the sealing body shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Exterior can, 11 ... Annular groove part, 12 ... Opening edge, 20 ... Spiral electrode group, 21 ... Positive electrode current collection lead, 30 ... Sealing body, 31 ... Sealing plate, 32 ... Valve hole, 33 ... Positive electrode cap, 34 ... Elastic body (valve member), 35 ... Steel plate (valve member), 36 ... Coil spring (pressing member), 37 ... Insulating gasket

Claims (2)

開口部を備えた円筒状外装缶と、この開口部を封口する封口板と端子キャップとからなる封口体とを備えるとともに、前記封口板に設けられた弁孔を塞ぐ弾性を有する弁部材と、前記端子キャップに係止されて前記弁部材に付勢力を付与する押圧部材とを備えた密閉型アルカリ蓄電池であって、
前記弁部材は弾性体と鋼板とのラミネート材により構成されて、前記弾性体が前記弁孔を塞ぐように配置されるとともに、前記鋼板が前記押圧部材により押圧されるように配置されており、
前記弾性体はエチレン−プロピレン三量体(EPDM)により形成されており、
前記押圧部材が前記弁部材に付与する付勢力を前記弁部材と前記封口板との接触面で1.59〜3.59MPaにするとともに、
前記弾性体の厚みを0.35〜0.50mmにしたことを特徴とする密閉型アルカリ蓄電池。
A cylindrical outer can having an opening, a sealing member made of a sealing plate and a terminal cap for sealing the opening, and a valve member having elasticity for closing a valve hole provided in the sealing plate; A sealed alkaline storage battery comprising a pressing member that is locked to the terminal cap and applies a biasing force to the valve member;
The valve member is composed of a laminate material of an elastic body and a steel plate, the elastic body is arranged so as to close the valve hole, and the steel plate is arranged to be pressed by the pressing member,
The elastic body is formed of ethylene-propylene trimer (EPDM),
While the urging force that the pressing member applies to the valve member is 1.59 to 3.59 MPa on the contact surface between the valve member and the sealing plate,
A sealed alkaline storage battery, wherein the elastic body has a thickness of 0.35 to 0.50 mm.
前記押圧部材はコイルばねであることを特徴とする請求項1に記載の密閉型アルカリ蓄電池。The sealed alkaline storage battery according to claim 1 , wherein the pressing member is a coil spring.
JP2000094295A 2000-03-30 2000-03-30 Sealed alkaline storage battery Expired - Lifetime JP3676180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000094295A JP3676180B2 (en) 2000-03-30 2000-03-30 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094295A JP3676180B2 (en) 2000-03-30 2000-03-30 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2001283809A JP2001283809A (en) 2001-10-12
JP3676180B2 true JP3676180B2 (en) 2005-07-27

Family

ID=18609364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094295A Expired - Lifetime JP3676180B2 (en) 2000-03-30 2000-03-30 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3676180B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134085A (en) * 2000-10-24 2002-05-10 Daito Polymer Kogyo Kk Sealing plate safety valve and enclosed type secondary battery using it
JP4797319B2 (en) * 2003-07-01 2011-10-19 パナソニック株式会社 Sealed alkaline storage battery
JP4967219B2 (en) * 2004-01-30 2012-07-04 株式会社Gsユアサ Sealed storage battery
CN202042536U (en) * 2010-04-23 2011-11-16 比亚迪股份有限公司 Explosion-proof battery structure and power battery adopting same
CA2876695C (en) * 2012-06-13 2020-08-25 Allison Transmission, Inc. Energy storage system for hybrid electric vehicle
CN106972121A (en) * 2017-05-21 2017-07-21 合肥国轩高科动力能源有限公司 Power lithium cell safety explosion-proof apron

Also Published As

Publication number Publication date
JP2001283809A (en) 2001-10-12

Similar Documents

Publication Publication Date Title
US8048558B2 (en) Cylindrical nickel-zinc cell with negative can
US9627657B2 (en) Cylindrical alkaline storage battery
JP4259890B2 (en) Sealed storage battery
US4822377A (en) Method for sealing an electrochemical cell employing an improved reinforced cover assembly
WO2017168963A1 (en) Nickel-hydrogen battery
JP3676180B2 (en) Sealed alkaline storage battery
JP2001023680A (en) Battery having winding structure electrode body
US11038238B2 (en) Alkaline secondary battery
EP1132982B1 (en) Vent device for sealed alkaline storage battery
JP3846154B2 (en) Battery can, manufacturing method thereof and battery
JP5110889B2 (en) Nickel metal hydride secondary battery
WO2020171112A1 (en) Alkaline secondary battery
JP2002141028A (en) Sealed cell and manufacturing method of the same
JP3209440B2 (en) Alkaline storage battery
JP2003068268A (en) Closed type storage battery
JP5137438B2 (en) Cylindrical battery
JP3596954B2 (en) Method of manufacturing prismatic battery
US20240313333A1 (en) Sealing body for cylindrical storage battery and cylindrical storage battery using same
JP3670357B2 (en) Cylindrical battery
JP3973115B2 (en) Battery having an electrode body with a wound structure
JP3605451B2 (en) Method of manufacturing prismatic battery
JP2004259624A (en) Battery
JP4112854B2 (en) Square battery and manufacturing method thereof
JP2022124195A (en) alkaline storage battery
JP3004350B2 (en) Sealed battery safety valve device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R151 Written notification of patent or utility model registration

Ref document number: 3676180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

EXPY Cancellation because of completion of term