JP3675667B2 - How to remove ammonia in waste water - Google Patents

How to remove ammonia in waste water Download PDF

Info

Publication number
JP3675667B2
JP3675667B2 JP11427199A JP11427199A JP3675667B2 JP 3675667 B2 JP3675667 B2 JP 3675667B2 JP 11427199 A JP11427199 A JP 11427199A JP 11427199 A JP11427199 A JP 11427199A JP 3675667 B2 JP3675667 B2 JP 3675667B2
Authority
JP
Japan
Prior art keywords
ammonia
water
treated
tower
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11427199A
Other languages
Japanese (ja)
Other versions
JP2000301137A (en
Inventor
利弘 小川
諄 結城
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP11427199A priority Critical patent/JP3675667B2/en
Publication of JP2000301137A publication Critical patent/JP2000301137A/en
Application granted granted Critical
Publication of JP3675667B2 publication Critical patent/JP3675667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、アンモニアを含有する排水からアンモニアを除去する方法であって、詳しくは、改良されたアンモニアストリッピング法に関するものである。
【0002】
【従来の技術】
アンモニアストリッピング法は、工場排水、都市上下水、湖沼水などを対象として、比較的高濃度のアンモニア含有排水や、濃度変動の大きいアンモニア含有排水の処理に適した除去方法である。同法は、被処理水のpHを上げてアンモニウムイオンを遊離のアンモニアに変換し、エアストリッピングにより該アンモニアを被処理水中から空気中に移動させて除去するものである。
従来、エアストリッピングを行う放散塔には、空気と被処理水の接触を充分に行わせるために、プラスチック製充填材等が充填されており、被処理水はpH調整後塔上部より散水され、充填材の間を水滴の形成とその破壊を繰り返しながら落下する。この間にこの水滴が空気と接触し、アンモニアをガスとして水中より空気中に散逸させる方法である。
【0003】
被処理水のpH調整は、水酸化ナトリウム、水酸化カルシウム、酸化カルシウム、水酸化マグネシウム、酸化マグネシウムなどのアルカリ源により行われ、通常は、比較的安価な水酸化カルシウム、酸化カルシウム、水酸化マグネシウム、酸化マグネシウムなどが使用されている。しかしながら、これらの安価なアルカリ源を使用すると、空気中の炭酸ガスや被処理水中に含有される硫酸塩と反応して、カルシウムやマグネシウムの炭酸塩または硫酸塩が生成するため、これらが上記放散塔内部において充填材間にスケールとして付着する結果、放散塔内部を閉塞させ、長期的な連続運転が阻害されるとともに、内部の清掃を頻繁に行うことが必要となる。
また、被処理排水中にアルカリによって沈殿を生じる物質、例えば、硫酸アルミニウム、水ガラス等が含まれる場合には、どのようなアルカリ源を使用しても充填層にスケールが付着して、前記問題が生じる虞がある。
【0004】
【発明が解決しようとする課題】
本発明は、添加するアルカリ源の種類によらず、また、アルカリによって沈殿を生じる物質が混入したアンモニア含有排水に対しても、放散塔を閉塞させることなく、長期的な連続運転が可能な排水中のアンモニアの除去方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明は、アンモニア含有排水にアルカリを添加し、これを放散塔においてアンモニア回収塔との間を循環する空気と接触させることにより被処理水中からアンモニアを空気中に移動させる方法において、前記放散塔の内部を空洞とするとともに、2以上の領域に区画し、前段領域で循環空気と接触させた処理水を抜き出して反応槽にてアンモニア変換反応を促進させた後、放散塔の後段領域に戻すことを手段とするものである。
前記領域は水平方向に延ばして形成し、被処理水を水平方向に噴霧することが好ましい。
【0006】
【発明の実施の形態】
本発明の好適な実施形態を示すフローチャートである図1により、本発明を具体的に説明する。
【0007】
図1には、本発明を実施するための主要な構成装置である、放散塔10、アンモニア回収塔20、反応槽30などが示されている。
放散塔10には、水平方向に延伸する領域11と、領域11の両端部において垂直上下方向に夫々屈曲した、導入領域12と排出領域13が形成されている。本実施形態において水平領域11は、11a、11b、11cの3つに区画され、各水平領域11a、11b、11cおよび導入領域12、排出領域13には被処理水を噴霧するためのノズル14が装備されている。従って、本実施形態では合計5つの領域が形成されている。放散塔10の内部は空洞とし、充填材は装備されていない。
放散塔10の水平領域11は、僅かに(1〜10度程度)傾斜させるとともに、各水平領域11a、11b、11cに堰15、15、15を設けて処理水を収集し易くなっている。
【0008】
アンモニア回収塔20は従来公知のものと同様であって、縦型塔内にラシヒリング21等が充填されており、放散塔10との間を空気が循環するようになっている。
【0009】
反応槽30a、30b、30c、30dは、導入領域12および各水平領域11a、11b、11cにおいて循環空気と接触した処理水を抜き出して、アンモニア変換反応を促進させるためのものであり、攪拌機31付きのものが好ましい。遊離のアンモニアに変換反応させた処理水はポンプ32a、32b、32c、32dにて夫々後段の領域、即ち、水平領域11a、11b、11cおよび排出領域13に戻される。
【0010】
アンモニアストリッピング法では、水中のアンモニアが全てアンモニア水等の遊離のアンモニアとして存在するのであれば、温度、pH、被処理水と循環空気量の重量比L/Gによりストリッピングに必要な充填層の高さが決定される。しかしながら、本発明方法では充填層を設けないので、その分の接触効率の低下をノズル噴霧により補っている。発明者等は、1回のノズル噴霧が充填層高1.5mに相当することを実験により確認した。
【0011】
また、アルカリ源に安価な水酸化マグネシウムや酸化マグネシウムなどを使用すると、遊離のアンモニアへの転換反応は5割程度しか進まない。但し、この遊離のアンモニアがストリッピングされれば、残りのアンモニウム塩とマグネシウムとの反応が進み、再びその半分が遊離のアンモニアになる。そこで、本発明方法では、アンモニウム塩とマグネシウムとの反応速度が、アンモニアの放散速度よりも遅いことに鑑み、放散塔を複数の領域に区画して、各領域間に反応槽を設けたものである。
【0012】
アンモニア含有排水はアルカリ添加により高pH値に調整され、この被処理水1は導入領域12のノズル14から放散塔10内に噴霧される。被処理水1は循環空気と接触し、導入領域12を降下後、ライン16aから抜き出され反応槽30aに導入される。反応槽30aにおいてアンモニアへの変換反応が進んだ被処理水1は、ポンプ32aにより水平領域11aに送られ、ノズル14から噴霧される。以下、被処理水1は水平領域11a、11b、11cおよび排出領域13にて空気と接触してアンモニアが放散され、排出領域13の排出ライン2から系外の図示してない排水処理設備に送られる。
【0013】
放散塔10内の温度は85℃〜95℃とすることが好ましい。このためには、空気を予熱する他、循環空気に水蒸気を吹き込んでもよい。また、被処理水1のpH値は排出領域13において9以上となるように、予め調整しておくことが望ましい。従って、導入領域12における被処理水1のpHは10.5以上とすることが好ましい。また、各反応槽30a、30b、30c、30dでアルカリを添加してpH調整してもよい。放散塔10内における被処理水と循環空気量の重量比L/Gは、1〜10とすることが好まく、特に1〜5程度とすることが好ましい。
【0014】
排出領域13に導入される循環空気は、放散塔10内を前記被処理水1と逆方向に流れた後、導入領域12の塔頂部からライン3を経て、アンモニア回収塔20の塔底部に戻される。この循環空気は、アンモニア回収塔20で硫酸を含む回収液と接触後、回収塔20の塔頂部から抜き出され、ライン4を介して前記排出領域13に戻される。アンモニア回収塔20にはライン5から硫酸が供給され、硫酸を含む回収液はポンプ22により回収塔20内を上から下に循環する。アンモニアを吸収して、硫酸アンモニウムを含む回収液の一部は、ライン6から分岐して系外の図示してない硫安回収設備に送られる。
【0015】
【実施例】
平均アンモニア濃度1500mg/l(最大3500mg/l)の工場排水について、図1に示すフローによりアンモニアストリッピング処理を行った。工場排水の組成を表1に、処理条件と結果を表2に夫々示す。
【0016】
【表1】
硫酸アンモニウム: 5800 mg/l (最大で 11600 mg/l)
硫酸ナトリウム : 1.5 〜2.5 重量%
硫酸 : 1700 mg/l
硫酸アルミニウム: 1800 mg/l
塩素 : 300 mg/l
その他固形分 : 少量
【0017】
【表2】

Figure 0003675667
【0018】
表2の結果から、実施例1〜実施例3のいずれも、アンモニアの高い除去率が得られたことが判る。また、各実施例共、放散塔の閉塞の心配もなく、3〜6ヵ月の連続運転が可能であった。
【0019】
【発明の効果】
請求項1記載の発明方法によれば、放散塔における閉塞の虞がなく、長期連続運転が可能である。また、98%以上の高いアンモニア除去率を得ることができる。従って、沈殿物を生成し易い物質を含むアンモニア含有排水のストリッピングに特に適している。
請求項2記載の発明方法によれば、前記効果に加えて、アンモニアの放散塔をコンパクトな装置で構成することができる。
【図面の簡単な説明】
【図1】本発明の好適な実施形態を示すフローチャートである。
【符号の説明】
10 放散塔
11 水平領域
12 導入領域
13 排出領域
14 ノズル
20 アンモニア回収塔
30 反応槽
32 ポンプ[0001]
[Industrial application fields]
The present invention relates to a method for removing ammonia from wastewater containing ammonia, and more particularly to an improved ammonia stripping method.
[0002]
[Prior art]
The ammonia stripping method is a removal method suitable for treating a relatively high concentration of ammonia-containing wastewater or ammonia-containing wastewater having a large concentration fluctuation, targeting factory wastewater, city water, lake water, and the like. In this method, the pH of water to be treated is raised to convert ammonium ions into free ammonia, and the ammonia is removed from the water to be treated by moving it to air by air stripping.
Conventionally, a stripping tower that performs air stripping is filled with a plastic filler or the like in order to sufficiently contact the air and the water to be treated, and the water to be treated is sprinkled from the top of the tower after pH adjustment, It falls while repeating the formation and destruction of water droplets between fillers. During this time, the water droplets come into contact with air, and ammonia is used as a gas to dissipate from the water into the air.
[0003]
The pH of the water to be treated is adjusted with an alkali source such as sodium hydroxide, calcium hydroxide, calcium oxide, magnesium hydroxide, magnesium oxide, and is usually relatively inexpensive calcium hydroxide, calcium oxide, magnesium hydroxide. Magnesium oxide and the like are used. However, if these inexpensive alkali sources are used, they react with carbon dioxide in the air or sulfate contained in the water to be treated to produce calcium or magnesium carbonates or sulfates. As a result of adhering as a scale between the packing materials inside the tower, it is necessary to block the inside of the diffusion tower, hinder long-term continuous operation, and to frequently clean the inside.
In addition, when the wastewater to be treated contains substances that cause precipitation due to alkali, such as aluminum sulfate, water glass, etc., the scale adheres to the packed bed no matter what alkali source is used, and the above problem May occur.
[0004]
[Problems to be solved by the invention]
The present invention does not depend on the type of alkali source to be added, and wastewater that can be continuously operated for a long time without clogging the diffusion tower, even for ammonia-containing wastewater mixed with substances that cause precipitation due to alkali. The present invention provides a method for removing ammonia therein.
[0005]
[Means for Solving the Problems]
The present invention provides a method for transferring ammonia from water to be treated into water by adding alkali to ammonia-containing wastewater and bringing it into contact with air circulating between the ammonia recovery tower and the ammonia recovery tower. The inside of the chamber is made hollow and divided into two or more regions, the treated water brought into contact with the circulating air in the former region is extracted to promote the ammonia conversion reaction in the reaction tank, and then returned to the latter region of the stripping tower. It is a means.
The region is preferably formed to extend in the horizontal direction, and the water to be treated is sprayed in the horizontal direction.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described with reference to FIG. 1 which is a flowchart showing a preferred embodiment of the present invention.
[0007]
FIG. 1 shows a stripping tower 10, an ammonia recovery tower 20, a reaction tank 30, and the like, which are main components for carrying out the present invention.
The diffusion tower 10 is formed with a region 11 extending in the horizontal direction, and an introduction region 12 and a discharge region 13 that are bent in the vertical vertical direction at both ends of the region 11. In the present embodiment, the horizontal region 11 is divided into three parts 11a, 11b, and 11c, and each horizontal region 11a, 11b, 11c, the introduction region 12, and the discharge region 13 are provided with nozzles 14 for spraying water to be treated. Equipped. Accordingly, a total of five regions are formed in the present embodiment. The inside of the stripping tower 10 is a cavity and is not equipped with a filler.
The horizontal region 11 of the stripping tower 10 is slightly inclined (about 1 to 10 degrees), and weirs 15, 15, and 15 are provided in the horizontal regions 11a, 11b, and 11c to easily collect treated water.
[0008]
The ammonia recovery tower 20 is the same as a conventionally known one, and a vertical tower is filled with Raschig rings 21 and the like, and air circulates between the diffusion tower 10.
[0009]
The reaction tanks 30a, 30b, 30c, and 30d are for extracting the treated water that has contacted the circulating air in the introduction region 12 and the horizontal regions 11a, 11b, and 11c, and promoting the ammonia conversion reaction. Are preferred. The treated water converted to free ammonia is returned to the subsequent regions, that is, the horizontal regions 11a, 11b, 11c and the discharge region 13 by the pumps 32a, 32b, 32c, 32d.
[0010]
In the ammonia stripping method, if all the ammonia in the water exists as free ammonia such as ammonia water, the packed bed required for stripping is determined by the temperature, pH, weight ratio L / G of the water to be treated and the amount of circulating air. Is determined. However, since the packed bed is not provided in the method of the present invention, the corresponding reduction in contact efficiency is compensated by nozzle spraying. The inventors confirmed by experiments that one nozzle spray corresponds to a packed bed height of 1.5 m.
[0011]
If inexpensive magnesium hydroxide or magnesium oxide is used as the alkali source, the conversion reaction to free ammonia proceeds only about 50%. However, if this free ammonia is stripped, the reaction between the remaining ammonium salt and magnesium proceeds and half of it again becomes free ammonia. Therefore, in the method of the present invention, considering that the reaction rate between the ammonium salt and magnesium is slower than the diffusion rate of ammonia, the diffusion tower is divided into a plurality of regions, and reaction vessels are provided between the regions. is there.
[0012]
The ammonia-containing wastewater is adjusted to a high pH value by adding an alkali, and the treated water 1 is sprayed into the diffusion tower 10 from the nozzle 14 in the introduction region 12. The water 1 to be treated comes into contact with the circulating air, descends the introduction region 12, and is extracted from the line 16a and introduced into the reaction tank 30a. The treated water 1 that has undergone the conversion reaction to ammonia in the reaction tank 30 a is sent to the horizontal region 11 a by the pump 32 a and sprayed from the nozzle 14. Hereinafter, the water 1 to be treated comes into contact with air in the horizontal regions 11a, 11b, 11c and the discharge region 13 to release ammonia, and is sent from the discharge line 2 in the discharge region 13 to a wastewater treatment facility (not shown) outside the system. It is done.
[0013]
The temperature in the stripping tower 10 is preferably 85 ° C to 95 ° C. For this purpose, in addition to preheating the air, water vapor may be blown into the circulating air. Moreover, it is desirable to adjust beforehand that the pH value of the to-be-treated water 1 is 9 or more in the discharge region 13. Accordingly, the pH of the water 1 to be treated in the introduction region 12 is preferably 10.5 or more. Moreover, you may adjust pH by adding an alkali with each reaction tank 30a, 30b, 30c, 30d. The weight ratio L / G of the water to be treated and the amount of circulating air in the stripping tower 10 is preferably 1 to 10, particularly preferably about 1 to 5.
[0014]
The circulating air introduced into the discharge area 13 flows in the stripping tower 10 in the direction opposite to the treated water 1 and then returns from the top of the introduction area 12 to the bottom of the ammonia recovery tower 20 via the line 3. It is. This circulating air is extracted from the top of the recovery tower 20 after coming into contact with the recovery liquid containing sulfuric acid in the ammonia recovery tower 20 and returned to the discharge region 13 via the line 4. Sulfuric acid is supplied to the ammonia recovery tower 20 from the line 5, and the recovery liquid containing sulfuric acid is circulated in the recovery tower 20 from the top to the bottom by the pump 22. A part of the recovered liquid containing ammonia and absorbing ammonium sulfate is branched from the line 6 and sent to an ammonium sulfate recovery facility (not shown) outside the system.
[0015]
【Example】
About the factory waste water of average ammonia concentration 1500mg / l (maximum 3500mg / l), the ammonia stripping process was performed by the flow shown in FIG. Table 1 shows the composition of industrial wastewater, and Table 2 shows the treatment conditions and results.
[0016]
[Table 1]
Ammonium sulfate: 5800 mg / l (up to 11600 mg / l)
Sodium sulfate: 1.5-2.5% by weight
Sulfuric acid: 1700 mg / l
Aluminum sulfate: 1800 mg / l
Chlorine: 300 mg / l
Other solid content: Small amount [0017]
[Table 2]
Figure 0003675667
[0018]
From the results of Table 2, it can be seen that in all of Examples 1 to 3, a high ammonia removal rate was obtained. In each Example, continuous operation for 3 to 6 months was possible without worrying about blocking of the diffusion tower.
[0019]
【The invention's effect】
According to the first aspect of the invention, there is no risk of blockage in the stripping tower, and long-term continuous operation is possible. Further, a high ammonia removal rate of 98% or more can be obtained. Therefore, it is particularly suitable for stripping ammonia-containing wastewater containing substances that easily generate precipitates.
According to the second aspect of the invention, in addition to the above effect, the ammonia diffusion tower can be constituted by a compact device.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a preferred embodiment of the present invention.
[Explanation of symbols]
10 Dispersion tower 11 Horizontal area 12 Introduction area 13 Discharge area 14 Nozzle 20 Ammonia recovery tower 30 Reaction tank 32 Pump

Claims (1)

アンモニア含有排水にアルカリを添加し、これを放散塔においてアンモニア回収塔との間を循環する空気と接触させることにより被処理水中からアンモニアを空気中に移動させる方法において、前記放散塔の内部を空洞とするとともに、水平方向に延びる2以上の領域に区画して各領域には噴霧ノズルを配備し、前段領域で被処理水を水平方向に噴霧させることにより循環空気と接触させた処理水を抜き出して反応槽にてアンモニア変換反応を促進させた後、放散塔の後段領域に戻し、水平方向に噴霧することを特徴とする排水中のアンモニアの除去方法。In the method of transferring ammonia from the water to be treated to the air by adding alkali to the ammonia-containing waste water and bringing it into contact with the air circulating between the ammonia recovery tower in the diffusion tower, the inside of the diffusion tower is hollow In addition, the spray water is divided into two or more regions extending in the horizontal direction, spray nozzles are provided in each region, and the treated water brought into contact with the circulating air is extracted by spraying the water to be treated in the horizontal direction in the previous stage region. after promoting the ammonia conversion reaction in a reaction vessel Te, to return to a subsequent stage region of the stripping column, a method for removing the ammonia in the waste water, characterized in that spraying in a horizontal direction.
JP11427199A 1999-04-21 1999-04-21 How to remove ammonia in waste water Expired - Lifetime JP3675667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11427199A JP3675667B2 (en) 1999-04-21 1999-04-21 How to remove ammonia in waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11427199A JP3675667B2 (en) 1999-04-21 1999-04-21 How to remove ammonia in waste water

Publications (2)

Publication Number Publication Date
JP2000301137A JP2000301137A (en) 2000-10-31
JP3675667B2 true JP3675667B2 (en) 2005-07-27

Family

ID=14633646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11427199A Expired - Lifetime JP3675667B2 (en) 1999-04-21 1999-04-21 How to remove ammonia in waste water

Country Status (1)

Country Link
JP (1) JP3675667B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025096B2 (en) * 2005-05-31 2012-09-12 富士化水工業株式会社 Ammonia-containing wastewater treatment method

Also Published As

Publication number Publication date
JP2000301137A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
US4689156A (en) Removal of ammonia from wastewater
KR20080035688A (en) Ammonium/ammonia removal from a stream
JP5347664B2 (en) Method and apparatus for treating fluorine-containing wastewater
US4059513A (en) Treatment of water to remove certain ions therefrom
JP3675667B2 (en) How to remove ammonia in waste water
JP4224817B2 (en) Method for treating 1,4-dioxane
JP2007175673A (en) Treatment method of ammonia-containing drain
JP2008000664A (en) Method for treating phosphorus-containing waste water
TW201940433A (en) Ammonia stripping treatment device for waste water containing acidic component and ammonia and method thereof wherein the amount of alkali added to waste water is reduced
US4652675A (en) Process and device for purifying benzoic acid
JP3238745B2 (en) Method of treating ammonium fluoride-containing water
JP2001038368A (en) Treatment of water containing fluorine
JPH03278882A (en) Method and apparatus for removing dissolved oxygen in water
US1924861A (en) Treatment of liquids
JP3266309B2 (en) Treatment method for acidic fluorine-containing water
KR101193925B1 (en) Method of neutralizing waste developing solution containing tetraalkylammonium hydroxide
JPH0783819B2 (en) Method and apparatus for treating wastewater containing fluoric and hydrogen peroxide and exhaust gas
JP2008279368A (en) Mechanism and method of treating waste water
US3753881A (en) Electrolytic process for destruction of odorous impurities
KR880004500A (en) Treatment method of contaminated phosphate solution
JPH11290870A (en) Treatment apparatus of ammonia-hydroperoxide mixed waste solution and treatment method using the same
JPS62502388A (en) How to purify flue gas
JP2003104721A (en) Apparatus and method for recovering ammonia
JP2004097901A (en) Purifying method for ammonia-containing wastewater and apparatus therefor
JP2008073690A (en) Treatment method and apparatus of fluorine-containing waste water

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term