JP3674300B2 - Semiconductor element inspection apparatus and inspection method - Google Patents

Semiconductor element inspection apparatus and inspection method Download PDF

Info

Publication number
JP3674300B2
JP3674300B2 JP08497298A JP8497298A JP3674300B2 JP 3674300 B2 JP3674300 B2 JP 3674300B2 JP 08497298 A JP08497298 A JP 08497298A JP 8497298 A JP8497298 A JP 8497298A JP 3674300 B2 JP3674300 B2 JP 3674300B2
Authority
JP
Japan
Prior art keywords
semiconductor element
electrode
anisotropic conductive
substrate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08497298A
Other languages
Japanese (ja)
Other versions
JPH11258268A (en
Inventor
武生 原
寿 小黒
良司 瀬高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP08497298A priority Critical patent/JP3674300B2/en
Publication of JPH11258268A publication Critical patent/JPH11258268A/en
Application granted granted Critical
Publication of JP3674300B2 publication Critical patent/JP3674300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • H05K3/326Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor the printed circuit having integral resilient or deformable parts, e.g. tabs or parts of flexible circuits

Description

【0001】
【発明の属する技術分野】
本発明は、BGA等の電極がバンプ形状を有する半導体素子を検査対象とした半導体素子検査装置に関するものである。さらに詳しくは、半導体素子の電気的性能を異方導電性シートを介在させて検査する際に、柔軟性を有する基板を介在させることにより被検査半導体素子の電極と異方導電性シートの導電部との高精度な位置合せ、ならびに被検査半導体素子の電極の変形の低減が可能な半導体素子検査装置に関するものである。
【0002】
【従来の技術】
一般に、機器の小型化、高性能化に伴い、半導体素子の電極数は増加し、その電極ピッチも微細化する傾向にある。また、BGA等のようにその裏面にバンプ形状の電極が形成されたパッケージLSIは、機器に実装する上において、その専有面積を小さくできるためその重要性が高まってきた。
一方、異方導電性シートは、厚さ方向にのみ導電性を示すもの、または加圧されたときに厚さ方向にのみ導電性を示す多数の加圧導電性導電部を有するものなどであり、種々の構造のものがあり、例えば特公昭56−48951号公報、特開昭51−93393号公報、特開昭53−147772号公報、特開昭54−146873号公報などにより知られている。
かかる異方導電性シートは、回路基板等の電気検査の際に電極を傷つけることなく、確実な電気的接続を達成できる点で有効であり、実用化されている。
【0003】
【発明が解決しようとする課題】
しかし、上記、異方導電性シートを用いて、微細な電極ピッチを有するBGA等の半導体素子の電気検査を行う場合、その半導体素子の微細かつ高密度な電極と異方導電性シートの導電部との位置合わせが重要であり、電極間のピッチが微細かつ高密度になるほどその重要性が増す。また、半導体素子の電極が微細になるほど電極の検査工程での加圧による変形が著しくなる傾向にあり、バーンイン試験等の高温下の試験では試験中の電極部の変形が、試験後の実装工程に影響を与える場合もあり、これらの点でも技術的な対応が求められてきている。
しかし、従来においては、例えばその半導体素子の外形を元に位置決め板等で位置を規制しても、素子製造時に生ずる外形の微妙な寸法バラツキ、そり、電極位置のずれ等により、半導体素子の電極部と異方導電性シートの導電部との電気的接続が十分に確保できるように確実な位置合わせを行うことは困難であった。また、従来においては、例えば粒径の小さいハンダボールを電極とする半導体素子を高温下で上面から加圧した状態で検査した場合、ハンダボールの先端が平坦化し、総厚が変わることにより試験後の実装の際に障害をきたす例も現れてきた。
【0004】
本発明は以上のような問題点を解決するものであって、その目的は、検査対象であるBGA等の半導体素子の電極間隔のピッチが微細であっても、また半導体素子の外形に多少の寸法バラツキ、そり、電極位置のずれ等があっても、半導体素子の電極部と異方導電性シートの導電部との電気的接続が確保され、半導体電極が微細で検査時の加圧により変形を起こしやすいものであってもその変形を十分に低減できる半導体素子検査装置を提供するものである。
【0005】
【課題を解決するための手段】
すなわち本発明は、検査対象半導体素子と電気的検査装置の間に、異方導電性シートを介在させて当該半導体素子の電気的検査を行う電気的検査装置であって、前記異方導電性シートと検査対象半導体素子との間に柔軟性有する基板を介在させ、該基板には検査対象半導体素子の各被検査電極に対応した位置に電極径より小さな径の開口部を設け、かつ開口部の内部および必要に応じて開口部周辺が導電材料で被覆されており、前記異方導電性シートはシートの厚さ方向に電気的に導通性を有することを特徴とする半導体素子検査装置を提供するものである。また、上記半導体素子検査装置において、検査対象半導体素子の被検査電極が該素子平面より突出した形状を有し、該電極の一部がが基板の開口部に挿入され、異方導電性シートの導電部と圧接される機構を有する半導体素子検査装置を提供するものである。
また、本発明は、上記の半導体素子検査装置を用いて、半導体素子の電気的特性を検査する検査方法を提供するものである。
【0006】
【発明の実施の形態】
本発明において、柔軟性を有する基板は、検査対象半導体素子の各被検査電極に対応した位置に電極径より小さな径の開口部を設け、かつ開口部の内部および必要に応じて開口部周辺が導電材料で被覆されている。
該基板の開口部は、検査対象半導体素子を異方導電性シートを介在させて電気的検査を行う際に、検査対半導体素子の電極の一部が該開口部に挿入され、異方導電性シートの導電部と接合もしくは圧接されるものである。
また、該絶縁性シートの開口部は異方導電性シートと一体的に配置して用いるが、その状態で基板と異方導電性シートとが接合されていてもよい。
異方導電性シートとしては、その全面が厚さ方向に電気的に導通性のものでもよいし、部分的に厚さ方向に電気的に導通性のものでもよい。好ましいのは、基板の各開口部に対応する位置に、各々厚さ方向に電気的に導通性の導電部を有する異方導電性シートである。
【0007】
本発明の柔軟性を有する基板によれば、位置決めピン等を利用することにより、基板の開口部が異方導電性シートの導電部と同一位置に配置することができる。このように配置した基板の異方導電性シートとは反対側の面に、被検査半導体素子が設置される。
本発明の対象となる半導体素子は、フリップチップ等のベアチップLSI,BGA等のパッケージLSI,MCM等の複数の半導体素子が搭載されたモジュール基板、回路基板等であり、特に、その電極が素子平面から突出しているバンプ状のものに対して効果的である。さらに、バンプはボール形状、円柱形状、角柱形状のものが特に好ましい。
このような電極が半導体素子平面から突出している被検査半導体素子であると、該突出電極の各々を基板の対応する各開口部に挿入することにより,半導体素子の電極部と異方導電性シートの導電部とを正確に位置決めすることができる。そしてこの状態で半導体素子の電気検査で通常行われる程度の加圧を行えば、半導体素子の電極と異方導電性シートの導電部との電気的接続が確保できる。
また、半導体素子のバンプ状の電極の径は柔軟性を有する基板の開口部の径より大きいため、挿入された電極はその先端が異方導電性シートにふれないため、その変形は十分に低減できる。
【0008】
また、本発明の柔軟性を有する基板は、透明であっても不透明であってもよいが、半導体素子の電極部を開口部に挿入する際に目視で確認できる点で透明である方が好ましい。
また、本発明の基板と異方導電性シートとは、別々に製造して組み合わせてもよいし、あらかじめ両者を一体化して製造してもよいが、両者の位置合わせが正確にでき、位置合わせの手間を省ける点で、一体化されていることが好ましい。両者を一体化するためには、それぞれを成形した後に、両者の接合する面にシランカップリング剤等の接合剤を塗布し加熱する方法、基板の存在下に異方導電性シートを製造する方法等が挙げられる。
【0009】
本発明に用いる異方導電性シートは、本発明の基板の開口部に対応する部分(導電部)の表面が、シート平面上に突起を有していてもよいし、平面でもよいし、またへこんで凹部となっていてもよい。
また、本発明に用いる異方導電性シートは、絶縁性で弾性を有する高分子物質中に導電性粒子が充填され、厚さ方向に電気的に導通しているものが好ましく、特に、弾性を有する高分子物質で構成された絶縁部中に、導電性粒子が密に充填されて構成された複数の導電部が形成され、シートの厚さ方向に電気的に導通しているものが好ましい。
該導電部は異方導電性シートの全面に密に配置されていてもよいが、隣接したもの同士の電気的ショートを防止し、確実な導通を得られる点で、基板の開口部に対応した位置に基板の開口径より大きな径で柱状に配置したものが好ましい。
【0010】
上記異方導電性シートの導電部を構成する導電粒子としては、例えばニッケル、鉄、コバルトなどの磁性を示す金属粒子もしくはこれらの合金の粒子、またはこれらの粒子に金、銀、パラジウム、ロジウムなどの導電性のよい金属のメッキを施したもの、非磁性金属粒子もしくはガラスビーズなどの無機質粒子またはポリマー粒子にニッケル、コバルトなどの導電性磁性体のメッキを施したものなどを挙げることができる。 これらの中ではニッケル粒子の表面に金や銀のメッキを施した粒子が好ましい。
【0011】
絶縁部を構成する絶縁性で弾性を有する高分子物質としては、架橋構造を有する高分子物質が好ましい。かかる架橋構造を有する高分子物質を得るために用いることができる高分子材料としては、シリコーンゴム、ポリブタジエン、天然ゴム、ポリイソプレン、スチレンーブタジエン共重合体ゴム、アクリロニトリルーブタジエン共重合体ゴム、エチレンープロピレン共重合体ゴム、ウレタンゴム、ポリエステル系ゴム、クロロプレンゴム、エピクロルヒドリンゴムなどを挙げることができる。これらの中では、成形性、電気特性の点でシリコーンゴムが好ましい。
異方導電性シートは、上記成形材料を用いて形成した層の厚さ方向に平行磁場をかけて、その磁力によって導電粒子を移動させながら、硬化することによって製造することができる。
【0012】
以下、図面によって本発明を具体的に説明する。
図1は本発明の絶縁性シートを用いた半導体素子検査装置およびそこに検査対象半導体素子を装着した具体的構成例を示すものである。
検査対象のパッケージLSI1の電極1aは、パッケージLSI1の面から突出しており、基板2の開口部2aに挿入されている。一方、異方導電性シート3は、厚さ方向に電気的に導電性の導電部を複数有し、その導電部3aが基板の開口部2aに対応した位置となるように位置決めピン4で位置を規制されている。
検査対象のパッケージLSI1の電極1aと基板の開口部内部の導電部2aと異方導電性シートの導電部3aとは、加圧板5を介して十分な電気的接続を得る程度に加圧接触されており、異方導電性シートの導電部と対応した位置から配線を引き出した基板6を介して、パッケージLSIの各電極は外部の電気的検査測定機に接続されている。
【0013】
柔軟性を有する基板1の厚さは、実用的に好ましくは0.01−1mm、より好ましくは0.05−0.8mm、さらに好ましくは0.1−0.5mm程度の厚みで用いられる。この厚さは、検査対象IC基板の電極の突出高さを考慮して設定することができる。
基板の材質は、例えばポリイミド樹脂、エポキシ樹脂等の熱硬化性樹脂や、例えばポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂などのポリエステル樹脂、塩化ビニル樹脂、ポリスチレン樹脂、ポリアクリロニトリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリブタジエン樹脂、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリアミド、ポリオキシメチレン等の熱可塑性樹脂などが用いられる。
これらの中では、耐熱性、寸法安定性の点で熱硬化性樹脂が好ましく、特にポリイミド樹脂が好ましい。
【0014】
基板の開口部は、その内部が導電材料で被覆されているものであり、好ましくはさらに開口部周辺の表面も導電材料で被覆されているものである。
かかる開口部は、例えば上記基板材料からなるシートの所定位置に穴を開け、その内部や開口部周辺を導電材料で被覆することにより製造することができる。
開口部の穴あけは、NC(Numerical Control)制御のドリル穴あけ装置やレーザー加工装置を用いて行うことができる。 また、多数のピンを有する金型を用いて成形することによっても製造できる。
基板の開口部の形状は、電極部の形状に合わせて円形であっても角形であってもまた異形のものであってもよいが、通常、円形とすることが好ましい。また、開口部は、回路基板の各電極に対応した位置に開ける必要がある。例えばBGAの場合、その電極位置に対応して図2のように格子状(グリッド)に配列して開けるのが好ましい。
上記開口部の内部や開口部周辺を導電材料で被覆する方法としては、メッキ、エッチング等の方法で行うことができる。導電材料としては、金、銀、銅、パラジウム、ロジウムなどの導電性のよい金属が好ましく用いられるが、他にニッケル、アルミニウム、鉄、コバルトなどを用いても良く、またこれらの合金を用いてもよい。
【0015】
被検査対象半導体素子と絶縁シートおよび/または異方導電性シートとの位置合わせは、上記開口部を有する基板のみでも可能であるが、例えば図4に示されるような位置合わせ板7などを併用することができる。
【0016】
以下、本発明の実施例を説明するが、本発明はこれらの実施例に限定されるものではない。
【実施例】
実施例1
厚さ0.2mmの両面銅貼りフィルムに、NC制御のドリル穴あけ装置で、検査対象パッケージLSIの球状(径0.3mm、厚み0.25mm)のバンプ(0.5mmピッチ)に対応した位置に0.2mm径の穴を多数開け、金メッキ処理をすることにより、図2に示すように開口部の内部側および開口部周辺の表面に金属皮膜を被覆した。
なお、基板の4隅には位置決めピン用のガイド穴を4点設け、位置決めならびに電極の変形を低減するための柔軟性を持った基板を製造した。
【0017】
次に、熱硬化型シリコーンゴムに平均粒径40μmの金メッキしたニッケルよりなる導電性磁性体粒子を12体積%となる割合で混合して成形材料を調製した。
この成形材料を金型のキャビティ内(厚み0.25mm)に層状に配置した。この金型は、各々電磁石で構成される上型と下型よりなり、上型と下型には、それぞれ検査対象パッケージLSIの電極位置に対応したパターンの強磁性体部分と、それ以外の非磁性体部分を有し成形材料と接する磁極板が設けられている。
また、上記の上下の磁極板は、上記イミドフィルムの4隅のガイド穴に相当する位置にガイドピンをたてることにより位置合わせを行った。
この状態で上型と下型とを電磁石の間に挟み、異方導電性シート材料層の厚さ方向に平行磁場を作用させて、導電性粒子を金型内の強磁性体部分に集め、かつ磁場方向に並べさせた。この状態で、圧力を加えながら100℃、1時間かけて異方導電性シート材料を硬化させて異方導電性シートを製造した。
上記のように成形金型の4隅にガイドピンをたてることにより、4隅に位置合わせ用のガイド穴を有する異方導電性シートが得られた。
【0018】
上記のようにして得られた基板および異方導電性シートを用いて、図1に示した構成とし、無作為に抽出した100個のパッケージLSIについて電気検査を行なった。
パッケージLSIの各電極の間隔のピッチは0.5mmと微細で、ICパッケージには若干のそり等が見られていたが、位置合わせが容易かつ正確であり、対象としたパッケージLSI全数の電気検査を精度よく行うことができた。
【0019】
実施例2
被検査物として、0.3mm径のハンダボールを電極とし、電極間隔が0.5mmピッチのマトリクス状の電極を有するBGAを用い、実施例1と同様にして125℃の高温下に上記構成の検査装置を投入し、高温下での電気検査を行なった。
その結果、無作為に抽出した10個のパッケージすべてについて電気検査を精度よく行なうことができた。また、試験後の被検査物の電極には側面にわずかな圧痕は見られるもののハンダボールの外径ならびに高さには6%以上の変化は見られなかった。
【0020】
【発明の効果】
本発明の半導体素子検査装置よれば、半導体素子の各電極部を柔軟性を持った基板の開口部に挿入することにより正確に位置決めができ、さらに位置決めピン等を利用することにより、半導体素子の電極部と異方導電性シートの導電部とを正確に対応させることができ、この状態で半導体素子に加圧を行えば、半導体素子の電極と異方導電性シートの導電部との電気的接続が確保できる。
このため微細かつ高密度の半導体素子電極であっても、精度よく電気的検査装置(治具)との導通ができ、効率よく半導体素子の検査ができる。
また、本発明の構成にすることにより、高温下での試験においても半導体素子のバンプ状の電極の変形を大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明の半導体素子検査装置の構成の一例を示す説明図である。
【図2】本発明に用いる柔軟性をもった基板の平面図の一例である。
【図3】本発明に用いる基板の開口部の断面図の一例である。
【図4】本発明の半導体素子検査装置の構成の一例を示す説明図である。
【符号の説明】
1 検査対象のパッケージLSI
1a 電極
2 基板
2a 開口部
2b 導電材料被覆
3 異方導電性シート
3a 導電部
4 位置決めピン
5 加圧板
6 基板
7 位置合わせ板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor element inspection apparatus in which a semiconductor element having an electrode such as a BGA having a bump shape is inspected. More specifically, when inspecting the electrical performance of a semiconductor element through an anisotropic conductive sheet, the electrode of the semiconductor element to be inspected and the conductive portion of the anisotropic conductive sheet are interposed by interposing a flexible substrate. And a semiconductor element inspection apparatus capable of reducing deformation of electrodes of a semiconductor element to be inspected.
[0002]
[Prior art]
In general, with the miniaturization and high performance of equipment, the number of electrodes of a semiconductor element increases and the electrode pitch tends to become finer. Further, a package LSI having a bump-shaped electrode formed on the back surface thereof such as a BGA has become more important because it can reduce the area occupied by the package LSI.
On the other hand, the anisotropic conductive sheet is one that exhibits conductivity only in the thickness direction, or one that has a number of pressure-conducting conductive portions that exhibit conductivity only in the thickness direction when pressed. There are various structures, for example, known from Japanese Patent Publication No. 56-48951, Japanese Patent Publication No. 51-93393, Japanese Patent Publication No. 53-147772, Japanese Patent Publication No. 54-146873, etc. .
Such an anisotropic conductive sheet is effective in that a reliable electrical connection can be achieved without damaging an electrode during electrical inspection of a circuit board or the like, and has been put into practical use.
[0003]
[Problems to be solved by the invention]
However, when performing electrical inspection of a semiconductor element such as a BGA having a fine electrode pitch using the anisotropic conductive sheet, the fine and high-density electrodes of the semiconductor element and the conductive portion of the anisotropic conductive sheet are used. And the importance increases as the pitch between the electrodes becomes finer and higher in density. Also, as the electrode of the semiconductor element becomes finer, deformation due to pressurization in the electrode inspection process tends to become more prominent. In high-temperature tests such as burn-in test, the deformation of the electrode part under test is the mounting process after the test. There are also cases in which technical effects are required in these respects.
However, conventionally, for example, even if the position is regulated by a positioning plate or the like based on the outer shape of the semiconductor element, the electrode of the semiconductor element may be caused by subtle dimensional variations in the outer shape, warpage, electrode position deviation, etc. that occur during element manufacture. It has been difficult to perform reliable alignment so that the electrical connection between the portion and the conductive portion of the anisotropic conductive sheet can be sufficiently secured. Conventionally, for example, when a semiconductor element having a solder ball having a small particle diameter as an electrode is inspected under pressure from the upper surface at a high temperature, the tip of the solder ball is flattened, and the total thickness changes. There have also been some cases of obstacles in the implementation of.
[0004]
The present invention solves the above-described problems, and the object of the present invention is to reduce the outer shape of the semiconductor element even if the pitch between the electrodes of the semiconductor element such as BGA to be inspected is fine. Even if there is dimensional variation, warpage, displacement of electrode position, etc., the electrical connection between the electrode part of the semiconductor element and the conductive part of the anisotropic conductive sheet is ensured, and the semiconductor electrode is fine and deformed by pressurization during inspection It is an object of the present invention to provide a semiconductor element inspection apparatus capable of sufficiently reducing the deformation even if it is likely to cause the problem.
[0005]
[Means for Solving the Problems]
That is, the present invention is an electrical inspection apparatus for performing an electrical inspection of a semiconductor element with an anisotropic conductive sheet interposed between the semiconductor element to be inspected and the electrical inspection apparatus, and the anisotropic conductive sheet A flexible substrate is interposed between the inspection target semiconductor element and the inspection target semiconductor element. The substrate is provided with an opening having a diameter smaller than the electrode diameter at a position corresponding to each inspection target electrode of the inspection target semiconductor element. Provided is a semiconductor element inspection apparatus characterized in that the inside and, if necessary, the periphery of the opening are covered with a conductive material, and the anisotropic conductive sheet is electrically conductive in the thickness direction of the sheet. Is. In the semiconductor element inspection apparatus, the inspection target electrode of the semiconductor element to be inspected has a shape protruding from the element plane, and a part of the electrode is inserted into the opening of the substrate. A semiconductor element inspection apparatus having a mechanism in pressure contact with a conductive portion is provided.
The present invention also provides an inspection method for inspecting the electrical characteristics of a semiconductor element using the semiconductor element inspection apparatus.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the flexible substrate is provided with an opening having a diameter smaller than the electrode diameter at a position corresponding to each electrode to be inspected of the semiconductor element to be inspected, and the inside of the opening and the periphery of the opening as necessary. It is covered with a conductive material.
When an electrical inspection is performed on the semiconductor element to be inspected with an anisotropic conductive sheet interposed, a part of the electrode of the semiconductor element to be inspected is inserted into the opening, and the opening of the substrate is anisotropically conductive. It is joined or pressure-contacted with the conductive part of the sheet.
Moreover, although the opening part of this insulating sheet is arrange | positioned and used integrally with an anisotropic conductive sheet, the board | substrate and an anisotropic conductive sheet may be joined in the state.
As the anisotropic conductive sheet, the entire surface thereof may be electrically conductive in the thickness direction, or may be partially electrically conductive in the thickness direction. Preferable is an anisotropic conductive sheet having electrically conductive portions in the thickness direction at positions corresponding to the respective openings of the substrate.
[0007]
According to the flexible board | substrate of this invention, the opening part of a board | substrate can be arrange | positioned in the same position as the electroconductive part of an anisotropic conductive sheet by utilizing a positioning pin etc. FIG. The semiconductor element to be inspected is installed on the surface of the substrate arranged in this manner opposite to the anisotropic conductive sheet.
The semiconductor element targeted by the present invention is a bare chip LSI such as flip chip, a package LSI such as BGA, a module substrate on which a plurality of semiconductor elements such as MCM are mounted, a circuit board, and the like. This is effective for bumps protruding from the surface. Furthermore, it is particularly preferable that the bump has a ball shape, a cylindrical shape, or a prism shape.
When such an electrode is a semiconductor element to be inspected projecting from the semiconductor element plane, each of the projecting electrodes is inserted into a corresponding opening of the substrate, whereby the electrode part of the semiconductor element and the anisotropic conductive sheet The conductive portion can be accurately positioned. In this state, if the pressurization that is normally performed in the electrical inspection of the semiconductor element is performed, electrical connection between the electrode of the semiconductor element and the conductive portion of the anisotropic conductive sheet can be secured.
In addition, since the diameter of the bump-shaped electrode of the semiconductor element is larger than the diameter of the opening of the flexible substrate, the tip of the inserted electrode does not touch the anisotropic conductive sheet, and its deformation is sufficiently reduced. it can.
[0008]
Further, the flexible substrate of the present invention may be transparent or opaque, but is preferably transparent in that it can be visually confirmed when the electrode portion of the semiconductor element is inserted into the opening. .
In addition, the substrate of the present invention and the anisotropic conductive sheet may be separately manufactured and combined, or may be manufactured by integrating both in advance, but both can be accurately aligned and aligned. It is preferable that they are integrated from the standpoint of saving the trouble. In order to integrate both, after forming each, the method of apply | coating bonding agents, such as a silane coupling agent, to the surface which both join, and heating, The method of manufacturing an anisotropically conductive sheet in presence of a board | substrate Etc.
[0009]
In the anisotropic conductive sheet used in the present invention, the surface of the portion (conductive portion) corresponding to the opening of the substrate of the present invention may have a protrusion on the plane of the sheet, may be a plane, It may be recessed to form a recess.
Further, the anisotropic conductive sheet used in the present invention is preferably one in which a conductive material is filled in an insulating and elastic polymer material and is electrically conductive in the thickness direction, and particularly has elasticity. It is preferable that a plurality of conductive parts constituted by densely filling conductive particles are formed in an insulating part made of a high-molecular substance having electrical conductivity in the thickness direction of the sheet.
The conductive portion may be densely arranged on the entire surface of the anisotropic conductive sheet, but it corresponds to the opening of the substrate in that an electrical short between adjacent ones can be prevented and reliable conduction can be obtained. Those arranged in a columnar shape with a diameter larger than the opening diameter of the substrate are preferable.
[0010]
As the conductive particles constituting the conductive portion of the anisotropic conductive sheet, for example, metal particles exhibiting magnetism such as nickel, iron, cobalt or the like, particles of these alloys, or gold, silver, palladium, rhodium, etc. Examples thereof include those obtained by plating with a metal having good conductivity, and those obtained by plating inorganic particles such as nonmagnetic metal particles or glass beads or polymer particles with a conductive magnetic material such as nickel or cobalt. In these, the particle | grains which plated gold or silver on the surface of a nickel particle are preferable.
[0011]
As the insulating and elastic polymer material constituting the insulating portion, a polymer material having a crosslinked structure is preferable. Examples of the polymer material that can be used to obtain the polymer substance having such a crosslinked structure include silicone rubber, polybutadiene, natural rubber, polyisoprene, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, ethylene -Propylene copolymer rubber, urethane rubber, polyester rubber, chloroprene rubber, epichlorohydrin rubber and the like. Among these, silicone rubber is preferable in terms of moldability and electrical characteristics.
The anisotropic conductive sheet can be produced by applying a parallel magnetic field in the thickness direction of the layer formed using the molding material and curing the conductive particles while moving the magnetic particles by the magnetic force.
[0012]
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 shows a semiconductor device inspection apparatus using an insulating sheet of the present invention and a specific configuration example in which a semiconductor element to be inspected is mounted.
The electrode 1 a of the package LSI 1 to be inspected protrudes from the surface of the package LSI 1 and is inserted into the opening 2 a of the substrate 2. On the other hand, the anisotropic conductive sheet 3 has a plurality of electrically conductive portions in the thickness direction, and is positioned by the positioning pins 4 so that the conductive portions 3a are positioned corresponding to the openings 2a of the substrate. Is regulated.
The electrode 1a of the package LSI 1 to be inspected, the conductive portion 2a inside the opening of the substrate, and the conductive portion 3a of the anisotropic conductive sheet are pressed and contacted to the extent that sufficient electrical connection is obtained via the pressure plate 5. Each electrode of the package LSI is connected to an external electrical inspection / measuring instrument through a substrate 6 from which wiring is drawn out from a position corresponding to the conductive portion of the anisotropic conductive sheet.
[0013]
The thickness of the flexible substrate 1 is practically preferably 0.01-1 mm, more preferably 0.05-0.8 mm, and still more preferably about 0.1-0.5 mm. This thickness can be set in consideration of the protruding height of the electrode of the inspection target IC substrate.
The material of the substrate is, for example, a thermosetting resin such as polyimide resin or epoxy resin, polyester resin such as polyethylene terephthalate resin or polybutylene terephthalate resin, vinyl chloride resin, polystyrene resin, polyacrylonitrile resin, polyethylene resin, polypropylene resin, Thermoplastic resins such as acrylic resin, polybutadiene resin, polyphenylene ether, polyphenylene sulfide, polyamide, and polyoxymethylene are used.
In these, a thermosetting resin is preferable at the point of heat resistance and dimensional stability, and a polyimide resin is especially preferable.
[0014]
The inside of the opening of the substrate is covered with a conductive material, and preferably the surface around the opening is also covered with a conductive material.
Such an opening can be manufactured, for example, by making a hole at a predetermined position of a sheet made of the above-mentioned substrate material and covering the inside or the periphery of the opening with a conductive material.
Drilling of the opening can be performed using a NC (Numerical Control) controlled drilling device or a laser processing device. Moreover, it can also manufacture by shape | molding using the metal mold | die which has many pins.
The shape of the opening of the substrate may be circular, rectangular or irregular depending on the shape of the electrode portion, but it is usually preferable to be circular. Moreover, it is necessary to open an opening part in the position corresponding to each electrode of a circuit board. For example, in the case of BGA, it is preferable that the openings are arranged in a grid pattern (grid) as shown in FIG.
As a method of covering the inside of the opening and the periphery of the opening with a conductive material, a method such as plating or etching can be used. As the conductive material, a metal having good conductivity such as gold, silver, copper, palladium, rhodium is preferably used. In addition, nickel, aluminum, iron, cobalt, etc. may be used, and these alloys may be used. Also good.
[0015]
The alignment of the semiconductor element to be inspected and the insulating sheet and / or the anisotropic conductive sheet is possible only with the substrate having the opening, but for example, the alignment plate 7 as shown in FIG. can do.
[0016]
Examples of the present invention will be described below, but the present invention is not limited to these examples.
【Example】
Example 1
Using a NC drill drilling device on a double-sided copper-coated film with a thickness of 0.2mm, at a position corresponding to the bump (0.5mm pitch) of the spherical (diameter 0.3mm, thickness 0.25mm) of the package LSI to be inspected A number of holes with a diameter of 0.2 mm were formed and gold plating was performed to coat a metal film on the inner side of the opening and the surface around the opening as shown in FIG.
In addition, four guide holes for positioning pins were provided at the four corners of the substrate to manufacture a flexible substrate for reducing positioning and electrode deformation.
[0017]
Next, a molding material was prepared by mixing thermosetting silicone rubber with conductive magnetic particles made of gold-plated nickel having an average particle size of 40 μm at a ratio of 12% by volume.
This molding material was disposed in layers in the cavity of the mold (thickness: 0.25 mm). This mold is composed of an upper mold and a lower mold each composed of an electromagnet. The upper mold and the lower mold each have a ferromagnetic portion having a pattern corresponding to the electrode position of the package LSI to be inspected and other non-molds. A magnetic pole plate having a magnetic part and in contact with the molding material is provided.
The upper and lower magnetic pole plates were aligned by placing guide pins at positions corresponding to the guide holes at the four corners of the imide film.
In this state, the upper mold and the lower mold are sandwiched between electromagnets, a parallel magnetic field is applied in the thickness direction of the anisotropic conductive sheet material layer, and the conductive particles are collected in the ferromagnetic portion in the mold. And they were arranged in the direction of the magnetic field. In this state, the anisotropic conductive sheet material was cured by applying pressure at 100 ° C. for 1 hour to produce an anisotropic conductive sheet.
By forming guide pins at the four corners of the molding die as described above, an anisotropic conductive sheet having alignment guide holes at the four corners was obtained.
[0018]
Using the substrate and anisotropic conductive sheet obtained as described above, electrical inspection was performed on 100 packaged LSIs having the configuration shown in FIG. 1 and randomly extracted.
The pitch between the electrodes of the package LSI is as small as 0.5 mm, and some warpage etc. was seen in the IC package. However, the alignment is easy and accurate, and an electrical inspection of the total number of target package LSIs Was able to be performed accurately.
[0019]
Example 2
As an object to be inspected, a BGA having a solder ball having a diameter of 0.3 mm as an electrode and a matrix electrode having a pitch of 0.5 mm between the electrodes is used. An inspection device was inserted and an electrical inspection was performed at a high temperature.
As a result, it was possible to conduct an electrical inspection with high accuracy for all ten randomly extracted packages. In addition, although the electrode of the object to be inspected after the test had slight indentation on the side surface, the outer diameter and height of the solder ball did not change by more than 6%.
[0020]
【The invention's effect】
According to the semiconductor element inspection apparatus of the present invention, accurate positioning can be performed by inserting each electrode portion of the semiconductor element into the opening of the flexible substrate, and further, by using a positioning pin or the like, The electrode portion can be accurately associated with the conductive portion of the anisotropic conductive sheet, and if the semiconductor element is pressed in this state, the electrical connection between the electrode of the semiconductor element and the conductive portion of the anisotropic conductive sheet Connection can be secured.
For this reason, even if it is a fine and high-density semiconductor element electrode, it can conduct | electrically_connect with an electrical inspection apparatus (jig) with a sufficient precision, and can test | inspect a semiconductor element efficiently.
Further, by adopting the configuration of the present invention, the deformation of the bump-like electrode of the semiconductor element can be greatly reduced even in a test at a high temperature.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of a configuration of a semiconductor element inspection apparatus of the present invention.
FIG. 2 is an example of a plan view of a flexible substrate used in the present invention.
FIG. 3 is an example of a cross-sectional view of an opening of a substrate used in the present invention.
FIG. 4 is an explanatory diagram showing an example of a configuration of a semiconductor element inspection apparatus of the present invention.
[Explanation of symbols]
1 Package LSI to be inspected
1a Electrode 2 Substrate 2a Opening 2b Conductive material coating 3 Anisotropic conductive sheet 3a Conductive part 4 Positioning pin 5 Pressure plate 6 Substrate 7 Positioning plate

Claims (4)

検査対象半導体素子と電気的検査装置の間に、異方導電性シートを介在させて当該素子の電気的検査を行う電気的検査装置であって、
前記異方導電性シートと検査対象半導体素子との間に柔軟性を有する基板を介在させ、該基板には検査対象半導体素子の各被検査電極に対応した位置に電極径より小さな径の開口部を設け、かつ開口部の内部および必要に応じて開口部周辺が導電材料で被覆されており、前記異方導電性シートはシートの厚さ方向に電気的に導通性を有することを特徴とする半導体素子検査装置。
An electrical inspection device that performs electrical inspection of the element by interposing an anisotropic conductive sheet between the semiconductor element to be inspected and the electrical inspection device,
A flexible substrate is interposed between the anisotropic conductive sheet and the semiconductor element to be inspected, and an opening having a diameter smaller than the electrode diameter is provided in the substrate at a position corresponding to each electrode to be inspected. And the inside of the opening and, if necessary, the periphery of the opening are covered with a conductive material, and the anisotropic conductive sheet is electrically conductive in the thickness direction of the sheet. Semiconductor element inspection equipment.
前記異方導電性シートは、シートの厚さ方向に電気的に導通性の複数の導電部が前記基板の開口部と対応するように配置されてなることを特徴とする請求項1記載の半導体素子検査装置。2. The semiconductor according to claim 1, wherein the anisotropic conductive sheet is arranged such that a plurality of electrically conductive portions in the thickness direction of the sheet correspond to the openings of the substrate. Element inspection device. 検査対象半導体素子の被検査電極が、該素子平面より突出した形状を有し、該電極の一部が基板の開口部に挿入され、異方導電性シートの導電部と圧接される機構を有する請求項1の半導体素子検査装置。The electrode to be inspected of the semiconductor element to be inspected has a shape protruding from the plane of the element, and a part of the electrode is inserted into the opening of the substrate and has a mechanism that is pressed against the conductive part of the anisotropic conductive sheet. The semiconductor device inspection apparatus according to claim 1. 請求項1記載の半導体素子検査装置を用いて、半導体素子の電気的特性を検査する検査方法。An inspection method for inspecting electrical characteristics of a semiconductor element using the semiconductor element inspection apparatus according to claim 1.
JP08497298A 1998-03-16 1998-03-16 Semiconductor element inspection apparatus and inspection method Expired - Lifetime JP3674300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08497298A JP3674300B2 (en) 1998-03-16 1998-03-16 Semiconductor element inspection apparatus and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08497298A JP3674300B2 (en) 1998-03-16 1998-03-16 Semiconductor element inspection apparatus and inspection method

Publications (2)

Publication Number Publication Date
JPH11258268A JPH11258268A (en) 1999-09-24
JP3674300B2 true JP3674300B2 (en) 2005-07-20

Family

ID=13845552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08497298A Expired - Lifetime JP3674300B2 (en) 1998-03-16 1998-03-16 Semiconductor element inspection apparatus and inspection method

Country Status (1)

Country Link
JP (1) JP3674300B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6367763B1 (en) * 2000-06-02 2002-04-09 Wayne K. Pfaff Test mounting for grid array packages
US7309244B2 (en) 2003-06-12 2007-12-18 Jsr Corporation Anisotropic conductive connector device and production method therefor and circuit device inspection device
JP4507644B2 (en) * 2003-06-12 2010-07-21 Jsr株式会社 Anisotropic conductive connector device, manufacturing method thereof, and circuit device inspection device
JP4065898B2 (en) * 2006-01-30 2008-03-26 アルプス電気株式会社 Connection board
JP2007227341A (en) * 2006-01-30 2007-09-06 Alps Electric Co Ltd Guide member, connecting board with guide member, and method for manufacturing guide member
US8237461B2 (en) 2007-07-24 2012-08-07 Advantest Corporation Contactor, probe card, and method of mounting contactor
TWI490508B (en) * 2012-12-17 2015-07-01 Princo Corp Flexible testing device and testing method thereof

Also Published As

Publication number Publication date
JPH11258268A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
JP5050856B2 (en) Method for manufacturing anisotropic conductive connector
US7309244B2 (en) Anisotropic conductive connector device and production method therefor and circuit device inspection device
JP4734706B2 (en) Electrical resistance measuring connector, circuit board electrical resistance measuring device and measuring method
KR20010085477A (en) IC socket for surface-mounting semiconductor device
US20090015281A1 (en) Method of positioning an anisotropic conductive connector, method of positioning the anisotropic conductive connector and a circuit board for inspection, anisotropic conductive connector, and probe card
JP2000241498A (en) Semiconductor element connecting device, and semiconductor element inspection device and its method
JP3674300B2 (en) Semiconductor element inspection apparatus and inspection method
JPH11160396A (en) Electrical inspection apparatus
JP4507644B2 (en) Anisotropic conductive connector device, manufacturing method thereof, and circuit device inspection device
JP2000292484A (en) Semiconductor element-connecting apparatus, semiconductor element-inspecting apparatus and inspection method
JP2001068179A (en) Anisotropic conductive connection member
JPH10197599A (en) Inspection device for semiconductor devices
JP2001093599A (en) Anisotropic electrical connector and checker including same
JPH10197591A (en) Circuit board inspection device
JP2001083209A (en) Connector for semiconductor device, method and apparatus for inspecting semiconductor device
JP2000003741A (en) Connector and circuit board inspecting device using the same
JP3111688B2 (en) Manufacturing method of circuit board inspection adapter device, circuit board inspection method and inspection device
JPH069378Y2 (en) Conductive elastomer composite sheet
JP2001091579A (en) Sheet-like connector, manufacturing method thereof, semiconductor device connecting apparatus and inspecting apparatus
WO2007026663A1 (en) Circuit board inspection instrument, circuit board inspection method, and anisotropic conductivity connector
JP2004227828A (en) Testing device of anisotropic conductive connector device and circuit device
JPH09223860A (en) Circuit board device for inspection
JPH10339744A (en) Circuit board for check and circuit board device for check
JP3360679B2 (en) Circuit board inspection adapter device, circuit board inspection method and inspection device
JP2004227829A (en) Anisotropic conductive sheet and its manufacturing method as well as testing device of circuit device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term