JP3673632B2 - Non-uniformity inspection method and apparatus for translucent material, and transparent substrate - Google Patents

Non-uniformity inspection method and apparatus for translucent material, and transparent substrate Download PDF

Info

Publication number
JP3673632B2
JP3673632B2 JP36111397A JP36111397A JP3673632B2 JP 3673632 B2 JP3673632 B2 JP 3673632B2 JP 36111397 A JP36111397 A JP 36111397A JP 36111397 A JP36111397 A JP 36111397A JP 3673632 B2 JP3673632 B2 JP 3673632B2
Authority
JP
Japan
Prior art keywords
light
translucent substrate
substrate
uniformity
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36111397A
Other languages
Japanese (ja)
Other versions
JPH11190700A (en
Inventor
勝 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP36111397A priority Critical patent/JP3673632B2/en
Publication of JPH11190700A publication Critical patent/JPH11190700A/en
Application granted granted Critical
Publication of JP3673632B2 publication Critical patent/JP3673632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フォトマスク用透明基板、液晶ディスプレイ用透明基板などの透光性物質の光学的な不均一性(欠陥)を、高精度、高速度に検出できるようにした透光性物質の不均一性検査方法及びその装置、並びに不均一検査の対象となる透明基板に関するものである。
【0002】
【従来の技術】
半導体集積回路、フォトマスクなどの製造工程において、微細パターンの形成には、フォトリソグラフィー法が用いられている。例えば、半導体集積回路を製造する際には、高精度に研磨されて鏡面仕上げされた透明基板上に遮光性膜(例えばクロム膜)によりパターンが形成されたフォトマスクを用いてパターンを転写している。このパターンの原盤とも言えるフォトマスクについての検査方法は、特開昭58―162038号公報に記載の面状態検査装置にみられるように、パターン面の微小な領域に光を集め、パターン面からの反射出力、透過出力を比較する方法が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、近年においてはパターンの高密度化に伴い、上記方法のようにパターン面の検査のみならず、高精度に研磨されて鏡面仕上げされた透明基板そのものの微小な欠陥も欠陥検出の対象となっている。また、上述した方法では、パターン面の微小な領域に光を集めることから、検査領域が広い範囲にわたっている場合には何らかの手段を用いて光を走査する必要があり、検査領域の面積に比例して検査時間がかかることと、欠陥の有無によってパターン自体及び透明基板に対する反射光・透過光の光量の変化があまり大きくなく、透明基板の微細な欠陥検出への適用は困難であった。
【0004】
そこで、このような問題点を解決するために、本発明者は、透光性物質の光学的な不均一性を高感度、高速度に検出できる透光性物質の不均一性検査方法及びその装置を先に提案した(特願平9―192763)。
【0005】
この発明は、鏡面仕上げされた表面を有する透光性物質の不均一部分の有無を検査するものであって、前記透光性物質の光路が光学的に均一の場合には前記表面で全反射が起こるように透光性物質内に光を導入し、透光性物質内に導入され伝播する光の光路中に不均一部分が存在するときに、前記表面から光が漏出することから透光性物質の不均一性を検出することを特徴とする。
【0006】
即ち、透光性物質内に導入した光が表面で全反射を繰り返し透光性物質内部に閉じ込められるようにし、透光性物質に表面の傷等の不均一部分があると全反射条件が満足されず、透光性物質表面から光が漏れ出すことから不均一性を検出している。このように、物理的な臨界現象である幾何光学的な全反射を利用しているため、不均一性が劇的なコントラストで現れ、微小な傷等を高感度で検出できる。
【0007】
前記発明では、例えば、図7(a)に示すように、透光性物質としての透明基板1に対し、その一辺のC面(面取り部)からレーザー光Lを導入している。ところで、レーザーから出射される通常のレーザー光は、ビーム径が1mm、ビームの拡がり角が1mrad程度であり、レーザーから出て、途中、ミラー等の光学系を経て透明基板1に到達したときには、ビーム径は2mm程度になっている。一方、レーザー光Lの導入面となるC面の幅は、例えば、透明基板1がフォトマスク用ガラス基板(ガラスサブストレート)の場合、0.1mm〜0.6mm程度である。
【0008】
このため、図7(a)、(b)に示すように、透明基板1に照射したレーザー光Lのうち、C面に入射する一部のレーザー光L(図7(b)の斜線部)だけしか透明基板1内に導入できず、残りの大部分のレーザー光Lは無駄になり、検査に有効に利用できなかった。また、透明基板1内に導入できなかった大部分のレーザー光Lは、透明基板1の主表面Hや端面Tで反射され、不均一性(欠陥)の検出光を検出する検出系に入射し、欠陥検出光のコントラストを低下させる原因ともなってしまう。
【0009】
これを改善するために、平行なレーザー光Lを集光レンズを用いて集光してC面に照射することが考えられるが、こうすると、透明基板1に導入された光が基板1内で焦点を結んだ後、発散光となるため、透明基板1の表面で全反射を繰り返して基板1内に閉じ込められる条件を満足する光がほとんど存在しなくなってしまい、効果的な検査ができない。また、C面の幅を広くして、透明基板1内に光を導入し易くする方法も考えられるが、この方法では、光を基板1内に導入することはできるが、導入した光は基板1表面で全反射されて導入したC面側に戻ってくるが、戻ってきた光がすぐにC面から出ていってしまって、光を基板1内に閉じ込めることが困難である。
【0010】
そこで、本発明は、上記問題点を解決すべく、透光性物質への照射光を有効に透光性物質内に導入でき、透光性物質に存在する微細な不均一性(欠陥)を高精度・高速度に検出できる透光性物質の不均一性検査方法及びその装置、並びにこれら検査に好適な透明基板を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る透光性基板の不均一性検査方法は、鏡面仕上げされた少なくとも一対の主表面及び一対の端面を有する透光性基板の不均一性を検査する透光性基板の不均一性検査方法であって、前記透光性基板は、この透光性基板にレーザー光を導入したときにその光路が光学的に均一の場合に、そのレーザー光を前記主表面及び端面の間で全反射を繰り返してほぼ透光性基板内に閉じ込められたような状態にできるものであり、前記透光性基板に、この透光性基板の光路が光学的に均一の場合に、前記主表面及び端面の間で全反射を繰り返して透光性基板内にほぼ閉じ込められたような状態になるようにレーザー光を導入し、前記透光性基板に導入され伝播するレーザー光の光路中に不均一部分が存在するときに、前記導入したレーザー光の一部が前記透光性基板の主表面又は端面で全反射することなく、外部に漏出することを利用し、前記漏出光を検出することによって前記透光性基板の不均一性を検査するものであり、前記透光性基板は、レーザー光を導入するための導入面を有し、この導入面は、この導入面から導入されるレーザー光を集光して縮小すると共にほぼ平行光となるように凹断面状に形成されていることを特徴とする。
【0012】
透光性物質に表面の傷、クラック等の不均一部分がなければ、透光性物質内に導入した光は表面で全反射されて外部へは漏出しないが、不均一部分があると全反射条件が満足されず、透光性物質表面から光が漏れ出す。このように、物理的な臨界現象である幾何光学的な全反射を利用しているため、検査対象である透光性物質の不均一部分と均一部分における光(検査光)に対する応答も臨界的であり、不均一性が劇的なコントラストで現れる。また、透光性物質表面の不均一性のみならず、内部の気泡、異物等による欠陥、あるいはガラスの脈理等に特徴的な、透過率は同じで屈折率だけが違う欠陥の検出に関しても、異物等のあるところや屈折率の違うところでは本来均一ならば通る光路(経路)を外れ、透光性物質外部へ漏れ出すことになるため検出可能になる。
【0013】
上記の原理に基づいて透光性物質の不均一性を検査するのであるが、本発明では、透光性物質の導入面の大きさに対応させて透光性物質への導入光を集光して縮小すると共に、集光され縮小された導入光(集束光)が凹断面状に形成した導入面によって透光性物質内にほぼ平行光となって導入されるようにしたので、透光性物質への導入光が透光性物質の導入面より大きなビーム径などを有していても、導入面の大きさに合わせた断面形状の平行光として、導入光の殆どを有効に透光性物質内に導入することができる。
【0014】
また、本発明にかかる透光性基板の不均一性検査装置は、鏡面仕上げされた少なくとも一対の主表面及び一対の端面を有する透光性基板の不均一性を検査する透光性基板の不均一性検査方法であって前記透光性基板は、この透光性基板にレーザー光を導入したときにその光路が光学的に均一の場合に、そのレーザー光を前記主表面及び端面の間で全反射を繰り返してほぼ透光性基板内に閉じ込められたような状態にできるものであり、前記透光性基板に、この透光性基板の光路が光学的に均一の場合に、前記主表面及び端面の間で全反射を繰り返して透光性基板内にほぼ閉じ込められたような状態になるようにレーザー光を導入し、前記透光性基板に導入され伝播するそれぞれのレーザー光の光路中に不均一部分が存在するときに、前記導入したレーザー光の一部が前記透光性基板の主表面又は端面で全反射することなく、外部に漏出することを利用し、前記漏出光を検出することによって前記透光性基板の不均一性を検査するものであり、前記透光性基板にレーザー光を導入するための導入面に対し、導入面の大きさに対応させて導入するレーザー光を縮小し且つほぼ平行光として入射するようにしたことを特徴とする。
【0015】
透光性物質に光を導入するための平面状の導入面に対し、導入面の大きさに対応させて導入光を縮小し且つほぼ平行光として入射するようにしたので、透光性物質への導入光が透光性物質の導入面より大きなビーム径などを有していても、導入面の大きさに合わせた断面形状の平行光として照射でき、導入光の殆どをそのまま有効に透光性物質内に導入することができる。
【0017】
また、本発明に係る透光性物質の不均一性の検査装置は、上記不均一性の検査方法を実施するためのもので、鏡面仕上げされた少なくとも一対の主表面及び一対の端面を有する透光性基板の不均一性を検査する透光性基板の不均一性検査装置であって、前記透光性基板は、この透光性基板にレーザー光を導入したときにその光路が光学的に均一の場合に、そのレーザー光を前記主表面及び端面の間で全反射を繰り返してほぼ透光性基板内に閉じ込められたような状態にできるものであり、前記透光性基板に、この透光性基板の光路が光学的に均一の場合に、前記主表面及び端面の間で全反射を繰り返して透光性基板内にほぼ閉じ込められたような状態になるようにレーザー光を導入する照射手段と、前記透光性基板に導入され伝播するレーザー光の光路中に不均一部分が存在するときに、前記導入したレーザー光の一部が前記透光性基板の主表面又は端面で全反射することなく、外部に漏出することを利用し、前記漏出光を検出する光検出手段と、前記透光性基板にレーザー光を導入するための導入面に対し、この導入面の大きさに対応させて導入するレーザー光を縮小し且つほぼ平行光として入射するようにする光学系とを有することを特徴とする。
【0018】
また、本発明の透明基板は、上記検査方法及び装置に好適なもので、鏡面仕上げされた表面を有する透明基板であって、前記透明基板の光路が光学的に均一の場合には前記表面で全反射を繰り返して伝播するように透明基板内に光を導入するために、凹断面状の導入面が形成されているものである。
【0019】
なお、上記検査装置において、透光性物質に対する光の入射角度を変化させる角度調整手段を設けるのが望ましい。入射角度が違う光は、透光性物質内を全反射しながら伝播する経路が少しずつ異なるので、透光性物質の隅々まで漏れなく光が行き渡るようになる。また、透光性物質の表面への光の入射位置を移動させる移動手段を設けるのが望ましい。移動手段で光の入射位置を移動させると、透光性物質の全域に迅速に且つ漏れなく光を走査できる。また、透光性物質の表面から全反射することなく漏出する光を検出する検出手段を設けるのが望ましい。検出手段を設けると、透光性物質の不均一性の検査を自動化でき、検査時間を短縮できると共に、検査の信頼性を向上できる。
【0020】
【発明の実施の形態】
以下に本発明の実施の形態を図面を用いて説明する。図1は本発明に係る透光性物質の不均一性検査装置の一実施形態を示す概略構成図である。
【0021】
図1において、1は検査対象である光学ガラス等からなる四角形平板の透明基板である。透明基板1は、図2に示すように、主表面(表面及び裏面)Hと端面(側面)Tとを有し、主表面H及び端面Tは鏡面研磨されている。透明基板1の各辺(一辺aを除き)は、主表面H及び端面Tに対して45度をなすように平面研削され面取りされたC面となっている。なお、透明基板1内に導入された光が透明基板1の表面で何回も全反射を繰り返して基板1内に閉じ込めるようにするためには、C面の幅は小さい程好ましく、0.4mm以下、より好ましくは0.2mm以下とするのがよい。しかし、極端に小さく(0.1mm未満に)すると、鏡面研磨時に基板端部に欠けが生じるので、好ましくない。
【0022】
透明基板1は、その表面での全反射が阻害されず且つ漏出光の検査を容易とするために、フォルダー(図示せず)によってできるだけ接触部分を少なくして水平に保持されている。
【0023】
この透明基板1に対して、不均一性を検査するためのレーザー光を透明基板1内に導入するための照射手段が設けられている。照射手段は、レーザー光Lを出射するレーザー2と、レーザー光Lを透明基板1の一辺aの導入面6に対し所定角度で照射するためのミラー3、4とを有する。
【0024】
ミラー3、4は、透明基板1に対する入射角度を変動調整するための角度調整手段5を備えており、透明基板1内に導入されるレーザー光が全反射を起こす範囲内で入射角度を変動させて入射できるようになっている。また、上記フォルダーに保持された透明基板1をその一辺a(導入面6)の方向に水平に移動するための駆動手段(図示せず)が設けられており、この駆動手段によって透明基板1を移動することにより、透明基板1の一辺a(導入面6)に沿ってレーザー光が走査される構成となっている。
【0025】
透明基板1の一辺aは、レーザー光を透明基板1内に導入するための導入面6であり、導入面6は、図2、図3に示すように、断面が円弧形状に窪んだ溝状に形成されている。導入光6の加工は、例えば、図3に示すように、水平に設置された透明基板1の一辺に沿って円柱状の砥石7の軸を配設し、砥石7をその軸まわりに回転しながら下降することによって形成できる。
【0026】
この導入面6とミラー5との間に、図1、図2に示すように、レーザー光Lを集光する集光レンズ8が設けられている。集光レンズ8は、図2または図4に示すように、ミラー5で反射されてきた円形状断面のレーザー光Lを、導入面6の幅方向に集光して楕円状断面のレーザー光L1とする円柱レンズである。導入面6に照射される楕円状断面のレーザー光L1の短軸方向の長さは、図4に示すように、導入面6の幅にほぼ一致するように集光レンズ8によって集束される。この導入面6の幅方向に集束されたレーザー光L1を、図2に示すように、透明基板1内に平行なレーザー光L2として導入するために、円弧状断面の導入面6の曲率が設定されている。
【0027】
透明基板1の下方には、透明基板1から漏出する光を検出するための検出手段が設けられている。検出手段は、CCD10と、基板1から漏出した光をCCD10に結像する結像レンズ9とを有する。なお、透明基板1から漏出した光を検出する光センサーとしては、CCDに限らず、フォトマルチプライヤー等を用いてもよい。CCD10には、検出した光の情報(光量、強度分布など)を解析して、透明基板1の不均一性の種類(表面部の傷やクラック、内部の脈理や気泡)や大きさ、不均一部分の位置を求める画像処理装置11が接続されている。
【0028】
次に、上記検査装置による透明基板1の不均一性検査方法を述べる。まず、レーザー2から出射されたレーザー光Lを、ミラー3、4で反射して透明基板1の導入面6へと照射する。レーザー2として、ビーム径が0.7mm、ビームの広がり角が1mrad、レーザーパワーが0.5mW、波長が543.5nmのHe−Neレーザーを使用した。集光レンズ8の入射時において、円形状断面のレーザー光Lのビーム径は、約2mmであり、この円形状断面のレーザー光Lを、集光レンズ8で導入面6の幅方向に集光して楕円状断面のレーザー光L1に縮小変形し、楕円状断面のレーザー光L1の短軸寸法が導入面6の幅(0.4mm)にほぼ一致するようにする。導入面6は、その幅方向に所定曲率で円弧状に湾曲した断面形状となっているので、導入面6の幅方向に発散作用を持ち、導入面6の幅方向に集束されて入射したレーザー光L1は、楕円状断面の平行光のレーザー光L2となって透明基板1内に導入され伝播する。
【0029】
このように、導入面6の幅よりもビーム径が大きなレーザー光Lを、導入面6の形状に合わせた断面形状の平行光として透明基板1内に導入できるので、基板1へのレーザー光(導入光)の大部分を基板1内に有効に導入でき、しかも基板1内に導入されるレーザー光がほぼ平行光なので、導入された多くの光は、基板1表面での全反射条件を良く満足し、基板1内に良好に閉じ込められる。また、基板1への導入光のうち多くの光が有効に基板1内に閉じ込められて利用され、導入されずに基板1表面で反射されたり、基板1内に導入されても基板1表面からすぐに透過したりして、検出手段に入射してしまう光の光量が少なくなり、不均一性の検出光のコントラストを増大できる。
【0030】
透明基板1内に入射した平行なレーザー光L2は、図2に示すように、透明基板1の主表面H及び端面Tで全反射を繰り返しながら伝播し、基板1を一辺aと直交する一辺bに沿って切断したような一平面状(薄板状)の領域内に、レーザー光L2がほぼ閉じ込められたような状態となる。この際、レーザー光L2の入射角度を角度調整手段5を用いて基板1の表面で全反射を満足する範囲内で連続的に変化させているので、入射角度の変化に応じて基板1内を通過する光線軌跡も少しずつずれ、レーザー光L2は基板1内の上記一平面状の照射領域の全域を漏れなく覆い尽くすように伝播する。
【0031】
透明基板1に傷・クラックなどの表面部の不均一や脈理・気泡などの内部の不均一が存在すると、表面部の不均一部分で全反射されずに透明基板1表面から光が漏れ出し、また、基板1内部の不均一部分で光の光路(軌道)が均一なときの光路から外れるので、基板1の表面で全反射条件が満足されずに外部に光が漏れ出す。この漏れ出た光が結像レンズ9でCCD10に結像されて検出される。こうして、基板1を主表面H側(検出手段側)からみて、1ライン状の照射領域の検査ができる。この1ライン状の検査工程を、駆動手段によって透明基板1を一辺a(導入面6)の方向に順次移動させて、レーザー光を透明基板1の一辺a(導入面6)に沿って走査することにより、透明基板1の全域の不均一性の検査ができる。
【0032】
図5には、他の実施形態として、透明基板1の平面状に研削されたC面を導入面とし、レーザー光Lを縮径した平行光としてC面に導入する実施形態を示す。レーザーから出射された円形状断面のレーザー光Lを凸レンズ12で集光し、この集束されたレーザー光L3を、凸レンズ12の焦点の手前に設置した凹レンズ13によって平行光のレーザー光L4(数mradの拡がりを持つ)に戻して、C面にほぼ垂直に入射するようにしている。円形状断面のレーザー光L4の直径がC面の幅にほぼ一致するように、使用する凸レンズ12や凹レンズ13の焦点距離などを定める。
【0033】
図6には、透明基板1のコーナー部から光を導入し、基板1の全域に光を伝播させるようにした他の実施形態を示す。この実施形態では、基板1のコーナー部のコーナー面(導入面)14を球面状に窪ませて凹レンズの機能を持たせ、このコーナー面14に凸レンズ15で集光したレーザー光を照射している。凸レンズ15でコーナー面14の大きさに集束されたレーザー光は、コーナー面14によって平行光に戻されて基板1内に導入される。
【0034】
なお、上記実施形態では、透明基板の導入面への導入光を集束などする光学系として、レンズを用いたが、凹面ミラー、凸面ミラー等のミラーを用いて導入光を集束、発散させるように構成してもよい。また、透明基板の導入面への導入光を集束・発散などする光学系として、ズームレンズを用いれば、導入面の曲率や大きさなどに対応させて導入光を調整できるので好ましい。
【0035】
上述した実施形態の検査方法を用いることによって、欠陥を持った透明基板を迅速・適切に排除することができ、透明基板の生産性を向上することができる。なお、表面上の傷などの欠陥を持ったガラス製の透明基板を再度精密に鏡面研磨、洗浄処理を行うことによって、各種用途の仕様の範囲に入る基板とすることができる。
【0036】
また、上記実施形態では、鏡面仕上げされた表面を有する透光性物質として、ガラス製の透明基板を挙げたが、ガラスに限らず、アクリル樹脂等の光学プラスチック、水晶等の光学結晶など、検査光が透過できる材質ならばどのようなものでもよい。
【0037】
また、上記実施形態では、鏡面仕上げされた表面を有する透明基板を挙げたが、これに限らず、一部又は全面が鏡面仕上げされていない表面を有する透明基板であっても構わない(但し、上記実施形態において導入面を凹断面状とするときは、鏡面仕上げされていることが好ましい。)。その場合、鏡面仕上げされていない表面上にマッチングオイル等の液体を塗布することによって、その表面があたかも鏡面仕上げされている表面(液体の自由表面)となるので、本発明の検査方法、検査装置によって不均一部分を検査することができる。
上述の透明基板の全面が鏡面仕上げされていない場合とは、例えば、透明基板内部の不均一性(脈理、気泡、異物等)のみを検査する場合などをいう。この場合、内部に不均一な部分が存在すると、致命的な欠陥となる、例えば位相シフトマスク用ガラス基板の場合、鏡面仕上げする前の段階で検査することで、不良品を除外することができるので、製造コストも安く済む。
【0038】
更に、透光性物質の形状は、四角形(矩形)や円形等の基板に限らず、ブロック形状や曲面を有するものでもよい。また、基板としては、フォトマスク(位相シフトマスク)用ガラス基板、液晶用ガラス基板、情報記録用ガラス基板(磁気ディスク、光ディスク等)など各種基板の検査に適用可能である。情報記録用ガラス基板は円盤状なので、実際に検査を行う場合には、研磨された外周あるいは内周端面(例えば面取り部)からレーザー光を入射させて行う。なお、基板両面の検査が必要な場合には、基板の両面側にそれぞれ検出手段を設け、基板両面の検査を一度に行うようにしてもよい。
【0039】
また、上記実施形態では、レーザーとして、気体レーザー(He‐Neレーザー)を用いたが、これに限らず半導体レーザー等の可視域のレーザー、あるいは、透光性物質に対して吸収が少ないものであれば、紫外域のエキシマレーザーや、赤外域のNd‐YAGレーザー、CO2 レーザー等を検査用光源として使用することができる。特に、紫外域のレーザー(例えばエキシマレーザーやYAGレーザーの高調波等)を用いた場合、基板表面に付着している異物等を蒸発,蒸散等の作用により取り除くことが期待できるので好ましい。
【0040】
また、上記実施形態では、基板に対する入射角度を変化させる角度調整手段5をレーザー2と透明基板1との間にあるミラー3、4に設けた例を挙げたが、透明基板に対するレーザー光の入射角度を変化させることができれば、どのようなような構成でもよく、レーザー自体に角度調整手段を設けたりしてもよい。あるいは、例えば、Arレーザーのマルチラインを用いて、透明基板等の導入面に、同時に複数の波長のレーザー光を同一方向から入射し、波長による屈折率の相違によって、透明基板等に導入された光が異なる入射角で入射されるように構成してもよい。また、レーザー光の導光を、上記実施形態のようにミラーではなく、光ファイバーを用いて導光するようにしてもよい。
【0041】
また、図1(ないし図5)に示す実施形態では、透明基板1の一辺a(導入面)からレーザー光Lを導入した例を挙げたが、これに限らず、透明基板1の一辺bを導入面とし一辺bから光を導入させたり、辺aと辺bとから2方向より光を導入させて検査を行ってもよい。2方向から光を導入して検査すると、方向性を有する欠陥の検出などに有効であり、より高精度の検査ができるので好ましい。
【0042】
【発明の効果】
以上詳述したように、本発明によれば、透光性物質の導入面の大きさに対応させて、導入光を縮小し、ほぼ平行光として透光性物質内に導入されるようにしたので、導入光の殆どを不均一性の検査光として有効に利用することができる。また、透光性物質への導入光のうち多くの光を有効に透光性物質内に閉じ込めて利用でき、一方、導入されずに透光性物質表面で反射され、不均一性の検出光を検出する検出手段に入射してしまう光の光量を低減できるため、不均一性の検出光のコントラストを増大でき、微細な不均一性の検出をより高精度に行うことができる。
【図面の簡単な説明】
【図1】本発明に係る透光性物質の不均一性検査装置の一実施形態を示す概略構成図である。
【図2】図1の透明基板への光の導入及び透明基板内の光の伝播の様子を拡大して示す断面図である。
【図3】透明基板に円弧状断面の導入面を形成する方法の一例を示す斜視図である。
【図4】集光レンズによって円弧状断面の導入面に、レーザー光を集光する一実施形態を示す斜視図である。
【図5】透明基板の平面状の導入面に、レーザー光を入射する他の実施形態を示す断面図である。
【図6】透明基板のコーナー部からレーザー光を導入する他の実施形態を示す斜視図である。
【図7】透明基板の導入面に、導入面より大きな径を有するレーザー光を導入したときの様子を説明するための図である。
【符号の説明】
1 透明基板
2 レーザー
3、4 ミラー
5 角度調整手段
6 導入面
8 集光レンズ
12 凸レンズ
13 凹レンズ
15 凸レンズ
L レーザー光
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a non-transparent material that can detect optical non-uniformities (defects) of a transparent material such as a transparent substrate for a photomask and a transparent substrate for a liquid crystal display with high accuracy and high speed. The present invention relates to a uniformity inspection method and apparatus, and a transparent substrate to be subjected to non-uniformity inspection.
[0002]
[Prior art]
In the manufacturing process of a semiconductor integrated circuit, a photomask, and the like, a photolithography method is used for forming a fine pattern. For example, when manufacturing a semiconductor integrated circuit, a pattern is transferred using a photomask in which a pattern is formed by a light-shielding film (for example, a chromium film) on a transparent substrate that has been polished with high precision and mirror-finished. Yes. An inspection method for a photomask, which can be said to be a master of this pattern, collects light in a very small area of the pattern surface as seen in the surface state inspection apparatus described in Japanese Patent Application Laid-Open No. 58-162038. A method for comparing reflected output and transmitted output is known.
[0003]
[Problems to be solved by the invention]
However, in recent years, with the increase in pattern density, not only the inspection of the pattern surface as in the above method, but also the minute defect of the transparent substrate itself that has been polished and mirror-finished with high accuracy becomes the object of defect detection. ing. In the above-described method, since light is collected in a minute area of the pattern surface, it is necessary to scan the light using some means when the inspection area covers a wide range, which is proportional to the area of the inspection area. Therefore, the inspection time is long, and the change in the amount of reflected / transmitted light with respect to the pattern itself and the transparent substrate is not so large depending on the presence or absence of defects, so that it is difficult to apply to the detection of minute defects on the transparent substrate.
[0004]
Therefore, in order to solve such problems, the present inventor has developed a non-uniformity inspection method for a translucent substance that can detect optical nonuniformity of the translucent substance with high sensitivity and high speed, and the method thereof. The device was previously proposed (Japanese Patent Application No. 9-192863).
[0005]
The present invention inspects for the presence or absence of a non-uniform portion of a translucent material having a mirror-finished surface. When the optical path of the translucent material is optically uniform, the surface is totally reflected. When light is introduced into the light-transmitting material so that the light is introduced, and there is a non-uniform portion in the optical path of the light introduced and propagated in the light-transmitting material, the light is leaked from the surface. It is characterized by detecting non-uniformity of a sex substance.
[0006]
In other words, the light introduced into the translucent material repeats total reflection on the surface and is confined inside the translucent material, and if the translucent material has uneven portions such as scratches on the surface, the total reflection condition is satisfied. However, non-uniformity is detected because light leaks from the surface of the translucent material. In this way, since geometric optical total reflection, which is a physical critical phenomenon, is used, non-uniformity appears with dramatic contrast, and minute scratches and the like can be detected with high sensitivity.
[0007]
In the said invention, as shown to Fig.7 (a), the laser beam L is introduce | transduced from the C surface (chamfering part) of the one side with respect to the transparent substrate 1 as a translucent substance, for example. By the way, a normal laser beam emitted from a laser has a beam diameter of 1 mm and a beam divergence angle of about 1 mrad. When the laser beam is emitted from the laser and reaches the transparent substrate 1 through an optical system such as a mirror, The beam diameter is about 2 mm. On the other hand, when the transparent substrate 1 is a glass substrate for photomask (glass substrate), the width of the C surface serving as the introduction surface of the laser light L is, for example, about 0.1 mm to 0.6 mm.
[0008]
For this reason, as shown in FIGS. 7A and 7B, of the laser light L irradiated to the transparent substrate 1, a part of the laser light L incident on the C plane (shaded portion of FIG. 7B). However, most of the remaining laser light L was wasted and could not be used effectively for inspection. In addition, most of the laser light L that could not be introduced into the transparent substrate 1 is reflected by the main surface H and the end surface T of the transparent substrate 1 and is incident on a detection system that detects non-uniformity (defect) detection light. As a result, the contrast of the defect detection light is lowered.
[0009]
In order to improve this, it is conceivable that the parallel laser light L is condensed using a condensing lens and irradiated onto the C surface. In this case, the light introduced into the transparent substrate 1 is absorbed in the substrate 1. After focusing, the light becomes divergent light, so that there is almost no light that satisfies the condition of being confined in the substrate 1 by repeating total reflection on the surface of the transparent substrate 1, and effective inspection cannot be performed. In addition, a method of increasing the width of the C surface and facilitating the introduction of light into the transparent substrate 1 can be considered, but in this method, the light can be introduced into the substrate 1, but the introduced light is transmitted to the substrate. Although the light is totally reflected on one surface and returns to the introduced C-plane side, the returned light immediately exits from the C-plane, and it is difficult to confine the light in the substrate 1.
[0010]
Therefore, in order to solve the above problems, the present invention can effectively introduce the irradiation light to the translucent substance into the translucent substance, and eliminate the fine non-uniformity (defect) existing in the translucent substance. It is an object of the present invention to provide a non-uniformity inspection method and apparatus for a translucent substance that can be detected with high accuracy and high speed, and a transparent substrate suitable for these inspections.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a non-uniformity inspection method for a translucent substrate according to the present invention inspects nonuniformity of a translucent substrate having at least a pair of main surfaces and a pair of end surfaces that are mirror-finished. A method for inspecting a non-uniformity of a light-transmitting substrate, wherein the light-transmitting substrate has an optically uniform optical path when laser light is introduced into the light-transmitting substrate. The total reflection between the main surface and the end surface can be repeated to make it almost confined in the translucent substrate, and the optical path of the translucent substrate is optically uniform in the translucent substrate. In this case, the laser beam is introduced so as to be almost confined in the translucent substrate by repeating total reflection between the main surface and the end surface, and is introduced into the translucent substrate and propagates. When there is a non-uniform part in the laser beam path By utilizing the fact that a part of the introduced laser light leaks outside without being totally reflected by the main surface or end face of the translucent substrate, the leakage of the translucent substrate is detected by detecting the leaked light. The translucent substrate has an introduction surface for introducing laser light, and the introduction surface reduces the laser light introduced from the introduction surface by condensing the laser light. In addition, it is characterized in that it is formed in a concave cross section so as to be substantially parallel light.
[0012]
If the translucent material does not have non-uniform portions such as scratches and cracks on the surface, the light introduced into the translucent material is totally reflected on the surface and does not leak to the outside, but if there is a non-uniform portion, it is totally reflected. The conditions are not satisfied, and light leaks from the surface of the translucent material. In this way, since geometric optical total reflection, which is a physical critical phenomenon, is used, the response to light (inspection light) in the non-uniform part and uniform part of the translucent material to be inspected is also critical. And non-uniformity appears with dramatic contrast. In addition to the non-uniformity of the surface of the translucent material, it is also related to the detection of defects with the same transmittance but different refractive index, which are characteristic of internal defects such as bubbles and foreign matter, or glass striae. In a place where there is a foreign substance or a place where the refractive index is different, if it is essentially uniform, the light path (path) that passes through will be removed, and it will leak out of the translucent substance, so that it can be detected.
[0013]
Based on the above principle, the non-uniformity of the translucent material is inspected. In the present invention, the light introduced into the translucent material is condensed according to the size of the introduction surface of the translucent material. In addition, the introduction light (focused light) that is condensed and reduced is introduced into the translucent substance as almost parallel light by the introduction surface formed in a concave cross section. Even if the light introduced into the light-transmitting substance has a beam diameter larger than that of the translucent material introduction surface, most of the light introduced is effectively transmitted as parallel light with a cross-sectional shape that matches the size of the introduction surface. It can be introduced into the sex substance.
[0014]
In addition, the non-uniformity inspection apparatus for a translucent substrate according to the present invention is the non-uniformity of the translucent substrate for inspecting the non-uniformity of the translucent substrate having at least a pair of mirror-finished main surfaces and a pair of end surfaces. A method for inspecting uniformity , wherein the light-transmitting substrate has a light path between the main surface and the end face when the light path is optically uniform when laser light is introduced into the light-transmitting substrate. When the optical path of the translucent substrate is optically uniform with the translucent substrate, the main reflection can be achieved. Laser light is introduced so as to be totally confined in the translucent substrate by repeating total reflection between the surface and the end surface, and the optical paths of the respective laser beams introduced and propagated in the translucent substrate When there are non-uniform portions in the Non-uniformity of the translucent substrate by detecting the leaked light by utilizing a part of the laser beam leaked outside without being totally reflected by the main surface or end face of the translucent substrate The laser beam to be introduced is reduced in accordance with the size of the introduction surface with respect to the introduction surface for introducing the laser beam into the translucent substrate and is incident as almost parallel light. It is characterized by that.
[0015]
The introduction light is reduced in accordance with the size of the introduction surface with respect to the planar introduction surface for introducing light into the translucent material, and is incident as almost parallel light. Even if the introduced light has a beam diameter larger than that of the translucent material introduction surface, it can be irradiated as parallel light having a cross-sectional shape that matches the size of the introduction surface, and most of the introduced light is effectively transmitted as it is. It can be introduced into the sex substance.
[0017]
A non-uniformity inspection apparatus for a translucent substance according to the present invention is for carrying out the non-uniformity inspection method , and has a mirror-finished at least pair of main surfaces and a pair of end surfaces. An apparatus for inspecting non-uniformity of a light-transmitting substrate for inspecting non-uniformity of a light-transmitting substrate, wherein the light-transmitting substrate has an optical path optically introduced when laser light is introduced into the light-transmitting substrate. When uniform, the laser beam can be made to be in a state where it is confined within the light-transmitting substrate by repeating total reflection between the main surface and the end surface. Irradiation that introduces laser light so that when the optical path of the optical substrate is optically uniform, total reflection is repeated between the main surface and the end face so that the optical substrate is almost confined in the transparent substrate. Means and a laser which is introduced into the translucent substrate and propagates Utilizing the fact that when there is a non-uniform portion in the optical path of the light, a part of the introduced laser light leaks outside without being totally reflected by the main surface or end surface of the translucent substrate, The light detection means for detecting the leaked light and the introduction surface for introducing the laser light into the translucent substrate reduce the laser light introduced corresponding to the size of the introduction surface and make it almost parallel light And an optical system that makes the light incident.
[0018]
The transparent substrate of the present invention is suitable for the inspection method and apparatus described above, and is a transparent substrate having a mirror-finished surface. When the optical path of the transparent substrate is optically uniform, In order to introduce light into the transparent substrate so as to propagate the total reflection repeatedly, an introduction surface having a concave cross section is formed.
[0019]
In the inspection apparatus, it is desirable to provide an angle adjusting means for changing the incident angle of light with respect to the translucent substance. Since light having different incident angles propagates little by little while being totally reflected in the translucent material, the light reaches all corners of the translucent material without leakage. In addition, it is desirable to provide moving means for moving the light incident position on the surface of the translucent substance. When the incident position of the light is moved by the moving means, the light can be scanned quickly and without leaking over the entire area of the translucent material. Further, it is desirable to provide a detection means for detecting light leaking from the surface of the translucent substance without being totally reflected. Providing the detection means can automate the inspection of the non-uniformity of the translucent substance, shorten the inspection time, and improve the reliability of the inspection.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of a non-uniformity inspection apparatus for translucent substances according to the present invention.
[0021]
In FIG. 1, reference numeral 1 denotes a rectangular flat plate transparent substrate made of optical glass or the like to be inspected. As shown in FIG. 2, the transparent substrate 1 has a main surface (front surface and back surface) H and an end surface (side surface) T, and the main surface H and the end surface T are mirror-polished. Each side (excluding one side a) of the transparent substrate 1 is a C-surface that is chamfered by chamfering so as to form 45 degrees with respect to the main surface H and the end surface T. In order to confine light introduced into the transparent substrate 1 into the substrate 1 by repeating total reflection several times on the surface of the transparent substrate 1, the width of the C surface is preferably as small as 0.4 mm. In the following, it is more preferable that the thickness is 0.2 mm or less. However, if it is extremely small (less than 0.1 mm), chipping occurs at the edge of the substrate during mirror polishing, which is not preferable.
[0022]
The transparent substrate 1 is held horizontally with as few contacts as possible by a folder (not shown) so that total reflection on the surface is not hindered and leakage light can be easily inspected.
[0023]
The transparent substrate 1 is provided with irradiation means for introducing laser light for inspecting non-uniformity into the transparent substrate 1. The irradiation means includes a laser 2 that emits a laser beam L, and mirrors 3 and 4 for irradiating the laser beam L to the introduction surface 6 on one side a of the transparent substrate 1 at a predetermined angle.
[0024]
The mirrors 3 and 4 are provided with an angle adjusting means 5 for adjusting the incident angle with respect to the transparent substrate 1, and the incident angle is varied within a range where the laser light introduced into the transparent substrate 1 causes total reflection. Can be incident. In addition, driving means (not shown) for horizontally moving the transparent substrate 1 held in the folder in the direction of one side a (introduction surface 6) is provided. By moving, the laser beam is scanned along one side a (introduction surface 6) of the transparent substrate 1.
[0025]
One side a of the transparent substrate 1 is an introduction surface 6 for introducing laser light into the transparent substrate 1, and the introduction surface 6 has a groove shape whose cross section is recessed in an arc shape as shown in FIGS. Is formed. For example, as shown in FIG. 3, the processing of the introduction light 6 is performed by arranging an axis of a cylindrical grindstone 7 along one side of the transparent substrate 1 installed horizontally, and rotating the grindstone 7 about the axis. It can be formed by descending.
[0026]
As shown in FIGS. 1 and 2, a condensing lens 8 that condenses the laser light L is provided between the introduction surface 6 and the mirror 5. As shown in FIG. 2 or FIG. 4, the condensing lens 8 condenses the laser light L having a circular cross section reflected by the mirror 5 in the width direction of the introduction surface 6 and condensing the laser light L having an elliptical cross section. 1 is a cylindrical lens. The length in the minor axis direction of the laser beam L 1 having an elliptical cross section irradiated on the introduction surface 6 is focused by the condenser lens 8 so as to substantially match the width of the introduction surface 6 as shown in FIG. . In order to introduce the laser beam L 1 focused in the width direction of the introduction surface 6 as a parallel laser beam L 2 into the transparent substrate 1 as shown in FIG. 2, the curvature of the introduction surface 6 having an arc-shaped cross section is introduced. Is set.
[0027]
Below the transparent substrate 1, detection means for detecting light leaking from the transparent substrate 1 is provided. The detection means includes a CCD 10 and an imaging lens 9 that forms an image on the CCD 10 with light leaked from the substrate 1. The optical sensor that detects the light leaking from the transparent substrate 1 is not limited to the CCD, and a photomultiplier or the like may be used. The CCD 10 analyzes the detected light information (light quantity, intensity distribution, etc.) to determine the type of non-uniformity (scratches and cracks on the surface, internal striae and bubbles), size, and non-uniformity of the transparent substrate 1. An image processing apparatus 11 for obtaining the position of the uniform portion is connected.
[0028]
Next, a method for inspecting the non-uniformity of the transparent substrate 1 using the above inspection apparatus will be described. First, the laser beam L emitted from the laser 2 is reflected by the mirrors 3 and 4 and applied to the introduction surface 6 of the transparent substrate 1. As the laser 2, a He—Ne laser having a beam diameter of 0.7 mm, a beam divergence angle of 1 mrad, a laser power of 0.5 mW, and a wavelength of 543.5 nm was used. When the condenser lens 8 is incident, the laser beam L having a circular cross section has a beam diameter of about 2 mm. The laser light L having the circular cross section is condensed by the condenser lens 8 in the width direction of the introduction surface 6. Then, the laser beam L 1 is contracted and deformed to have an elliptical cross section so that the minor axis dimension of the laser light L 1 having an elliptical section substantially matches the width (0.4 mm) of the introduction surface 6. Since the introduction surface 6 has a cross-sectional shape curved in an arc shape with a predetermined curvature in the width direction, it has a diverging action in the width direction of the introduction surface 6 and is focused and incident in the width direction of the introduction surface 6. The light L 1 is introduced into the transparent substrate 1 and propagated as parallel laser light L 2 having an elliptical cross section.
[0029]
In this way, the laser beam L having a beam diameter larger than the width of the introduction surface 6 can be introduced into the transparent substrate 1 as parallel light having a cross-sectional shape that matches the shape of the introduction surface 6. Most of the introduced light) can be effectively introduced into the substrate 1 and the laser light introduced into the substrate 1 is almost parallel light, so that many of the introduced lights have good conditions for total reflection on the surface of the substrate 1. Satisfied and well confined in the substrate 1. Further, a lot of light introduced into the substrate 1 is effectively confined in the substrate 1 and used, and is reflected on the surface of the substrate 1 without being introduced, or is introduced into the substrate 1 from the surface of the substrate 1. The amount of light that is immediately transmitted or incident on the detection means is reduced, and the contrast of the non-uniform detection light can be increased.
[0030]
As shown in FIG. 2, the parallel laser light L 2 incident on the transparent substrate 1 propagates while repeating total reflection on the main surface H and the end surface T of the transparent substrate 1, and passes through the substrate 1 on a side orthogonal to the side a. The laser light L 2 is almost confined in a single flat (thin plate) region cut along b. At this time, since the incident angle of the laser light L 2 is continuously changed within the range satisfying the total reflection on the surface of the substrate 1 using the angle adjusting means 5, the inside of the substrate 1 is changed according to the change of the incident angle. The beam trajectory passing through the beam also shifts little by little, and the laser beam L 2 propagates so as to cover the entire area of the one-dimensional irradiation region in the substrate 1 without omission.
[0031]
If the transparent substrate 1 has surface irregularities such as scratches or cracks, or internal irregularities such as striae or bubbles, light leaks from the surface of the transparent substrate 1 without being totally reflected by the uneven portions of the surface. In addition, since the light path (orbit) of the light is not uniform at the non-uniform portion inside the substrate 1, light leaks to the outside without satisfying the total reflection condition on the surface of the substrate 1. The leaked light is imaged on the CCD 10 by the imaging lens 9 and detected. In this way, when the substrate 1 is viewed from the main surface H side (detection means side), it is possible to inspect a one-line irradiation region. In this one-line inspection process, the transparent substrate 1 is sequentially moved in the direction of one side a (introduction surface 6) by the driving means, and laser light is scanned along one side a (introduction surface 6) of the transparent substrate 1. Thus, the nonuniformity of the entire area of the transparent substrate 1 can be inspected.
[0032]
FIG. 5 shows an embodiment in which, as another embodiment, a C-plane ground into a transparent substrate 1 is used as an introduction surface, and laser light L is introduced into the C-plane as parallel light with a reduced diameter. The laser light L has been circular cross section emitted from the laser is condensed by the convex lens 12, the laser beam L 3 which is the focused laser beam L 4 of the parallel light by the concave lens 13 installed in front of the focal point of the convex lens 12 ( (It has a spread of several mrad) and is incident on the C plane almost perpendicularly. The focal lengths of the convex lens 12 and the concave lens 13 to be used are determined so that the diameter of the laser beam L 4 having a circular cross section substantially matches the width of the C surface.
[0033]
FIG. 6 shows another embodiment in which light is introduced from a corner portion of the transparent substrate 1 and light is propagated throughout the entire area of the substrate 1. In this embodiment, the corner surface (introduction surface) 14 at the corner portion of the substrate 1 is recessed into a spherical shape to have a function of a concave lens, and the corner surface 14 is irradiated with laser light condensed by the convex lens 15. . The laser light focused to the size of the corner surface 14 by the convex lens 15 is returned to parallel light by the corner surface 14 and introduced into the substrate 1.
[0034]
In the above embodiment, a lens is used as an optical system for focusing the light introduced to the introduction surface of the transparent substrate. However, the introduction light is converged and diverged using a mirror such as a concave mirror or a convex mirror. It may be configured. In addition, it is preferable to use a zoom lens as an optical system that focuses and diverges light introduced to the introduction surface of the transparent substrate, because the introduction light can be adjusted according to the curvature and size of the introduction surface.
[0035]
By using the inspection method of the above-described embodiment, it is possible to quickly and appropriately eliminate defective transparent substrates and improve the productivity of transparent substrates. Note that a glass transparent substrate having defects such as scratches on the surface can be mirror-polished and cleaned again to obtain a substrate that falls within the range of specifications for various applications.
[0036]
Moreover, in the said embodiment, although the transparent substrate made from glass was mentioned as a translucent substance which has the mirror-finished surface, not only glass but optical plastics, such as an acrylic resin, optical crystals, such as a crystal | crystallization, test | inspections Any material that can transmit light may be used.
[0037]
Moreover, in the said embodiment, although the transparent substrate which has the surface by which mirror finishing was given was mentioned, it is not restricted to this, You may be a transparent substrate which has the surface by which part or the whole surface is not mirror finishing (however, In the above embodiment, when the introduction surface has a concave cross-sectional shape, it is preferably mirror-finished.) In that case, by applying a liquid such as matching oil onto a surface that is not mirror-finished, the surface becomes a surface that is mirror-finished (liquid free surface). Can inspect non-uniform portions.
The case where the entire surface of the transparent substrate is not mirror-finished means, for example, a case where only the non-uniformity (streaks, bubbles, foreign matters, etc.) inside the transparent substrate is inspected. In this case, if there is a non-uniform portion inside, it becomes a fatal defect. For example, in the case of a glass substrate for phase shift mask, defective products can be excluded by inspecting at the stage before mirror finishing. Therefore, the manufacturing cost can be reduced.
[0038]
Furthermore, the shape of the translucent substance is not limited to a square (rectangular) or circular substrate, but may be a block shape or a curved surface. The substrate can be applied to inspection of various substrates such as a photomask (phase shift mask) glass substrate, a liquid crystal glass substrate, and an information recording glass substrate (magnetic disk, optical disk, etc.). Since the information recording glass substrate is disk-shaped, when actually inspecting, laser light is incident from a polished outer peripheral or inner peripheral end surface (for example, a chamfered portion). When inspection on both sides of the substrate is necessary, detection means may be provided on both sides of the substrate, respectively, so that inspection on both sides of the substrate is performed at once.
[0039]
In the above embodiment, a gas laser (He-Ne laser) is used as the laser. However, the laser is not limited to this, and a laser in the visible region such as a semiconductor laser or a light-transmitting substance has little absorption. If so, an ultraviolet excimer laser, an infrared Nd-YAG laser, a CO2 laser, or the like can be used as an inspection light source. In particular, it is preferable to use an ultraviolet laser (for example, an excimer laser or a YAG laser harmonic) because foreign substances adhering to the substrate surface can be expected to be removed by an action such as evaporation or transpiration.
[0040]
In the above embodiment, the angle adjusting means 5 for changing the incident angle with respect to the substrate is provided on the mirrors 3 and 4 between the laser 2 and the transparent substrate 1. As long as the angle can be changed, any configuration may be used, and angle adjusting means may be provided in the laser itself. Alternatively, for example, by using a multi-line of Ar laser, laser light of a plurality of wavelengths is simultaneously incident on the introduction surface of the transparent substrate or the like from the same direction, and is introduced into the transparent substrate or the like due to a difference in refractive index depending on the wavelength You may comprise so that light may inject with a different incident angle. Further, the laser light may be guided using an optical fiber instead of a mirror as in the above embodiment.
[0041]
In the embodiment shown in FIG. 1 (or FIG. 5), the example in which the laser beam L is introduced from one side a (introduction surface) of the transparent substrate 1 has been described. The inspection may be performed by introducing light from one side b as the introduction surface or by introducing light from two directions from side a and side b. It is preferable to inspect by introducing light from two directions because it is effective for detecting a directional defect and the like, and a highly accurate inspection can be performed.
[0042]
【The invention's effect】
As described above in detail, according to the present invention, the introduction light is reduced in accordance with the size of the introduction surface of the translucent substance, and is introduced into the translucent substance as almost parallel light. Therefore, most of the introduced light can be effectively used as non-uniform inspection light. In addition, a large amount of light introduced into the translucent material can be effectively confined in the translucent material, and reflected from the surface of the translucent material without being introduced. Therefore, the contrast of the non-uniformity detection light can be increased, and the fine non-uniformity can be detected with higher accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a non-uniformity inspection apparatus for translucent substances according to the present invention.
2 is an enlarged cross-sectional view showing a state of light introduction into the transparent substrate of FIG. 1 and light propagation in the transparent substrate.
FIG. 3 is a perspective view showing an example of a method of forming an introduction surface having an arc-shaped cross section on a transparent substrate.
FIG. 4 is a perspective view showing an embodiment in which laser light is condensed on an introduction surface having an arcuate cross section by a condensing lens.
FIG. 5 is a cross-sectional view showing another embodiment in which laser light is incident on a planar introduction surface of a transparent substrate.
FIG. 6 is a perspective view showing another embodiment in which laser light is introduced from a corner portion of a transparent substrate.
FIG. 7 is a view for explaining a state when laser light having a larger diameter than the introduction surface is introduced into the introduction surface of the transparent substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Laser 3, 4 Mirror 5 Angle adjustment means 6 Introduction surface 8 Condensing lens 12 Convex lens 13 Concave lens 15 Convex lens L Laser light

Claims (5)

鏡面仕上げされた少なくとも一対の主表面及び少なくとも一対の端面を有する透光性基板の不均一性を検査する透光性基板の不均一性検査方法であって
前記透光性基板は、この透光性基板にレーザー光を導入したときにその光路が光学的に均一の場合に、そのレーザー光を前記主表面及び端面の間で全反射を繰り返してほぼ透光性基板内に閉じ込められたような状態にできるものであり、
前記透光性基板に、この透光性基板の光路が光学的に均一の場合に、前記主表面及び端面の間で全反射を繰り返して透光性基板内にほぼ閉じ込められたような状態になるようにレーザー光を導入し、
前記透光性基板に導入され伝播するレーザー光の光路中に不均一部分が存在するときに、前記導入したレーザー光の一部が前記透光性基板の主表面又は端面で全反射することなく、外部に漏出することを利用し、前記漏出光を検出することによって前記透光性基板の不均一性を検査するものであり、
前記透光性基板は、レーザー光を導入するための導入面を有し、この導入面は、この導入面から導入されるレーザー光を集光して縮小すると共にほぼ平行光となるように凹断面状に形成されていることを特徴とする透光性基板の不均一性検査方法。
A method for inspecting non-uniformity of a translucent substrate for inspecting non-uniformity of a translucent substrate having at least a pair of mirror-finished main surfaces and at least a pair of end surfaces ,
When the optical path is optically uniform when laser light is introduced into the translucent substrate, the translucent substrate repeats total reflection between the main surface and the end surface and substantially transmits the laser light. It can be in a state of being confined in the optical substrate,
When the optical path of the translucent substrate is optically uniform, the translucent substrate repeats total reflection between the main surface and the end surface and is almost confined in the translucent substrate. Introduce laser light so that
When there is a non-uniform portion in the optical path of the laser beam introduced and propagated into the translucent substrate, a part of the introduced laser beam is not totally reflected at the main surface or end surface of the translucent substrate. Inspecting the non-uniformity of the light-transmitting substrate by detecting the leaked light by utilizing leakage to the outside,
The translucent substrate has an introduction surface for introducing laser light, and the introduction surface is recessed so as to condense and reduce the laser light introduced from the introduction surface to be substantially parallel light. A method for inspecting non-uniformity of a light-transmitting substrate, characterized by being formed in a cross-sectional shape.
鏡面仕上げされた少なくとも一対の主表面及び少なくとも一対の端面を有する透光性基板の不均一性を検査する透光性基板の不均一性検査方法であって
前記透光性基板は、この透光性基板にレーザー光を導入したときにその光路が光学的に均一の場合に、そのレーザー光を前記一対の主表面及び一対の端面の間で全反射を繰り返してほぼ透光性基板内に閉じ込められたような状態にできるものであり、
前記透光性基板に、この透光性基板の光路が光学的に均一の場合に、前記主表面及び端面の間で全反射を繰り返して透光性基板内にほぼ閉じ込められたような状態になるようにレーザー光を導入し、
前記透光性基板に導入され伝播するレーザー光の光路中に不均一部分が存在するときに、前記導入したレーザー光の一部が前記透光性基板の主表面又は端面で全反射することなく、外部に漏出することを利用し、前記漏出光を検出することによって前記透光性基板の不均一性を検査するものであり、
前記透光性基板にレーザー光を導入するための導入面に対し、導入面の大きさに対応させて導入するレーザー光を縮小し且つほぼ平行光として入射するようにしたことを特徴とする透光性基板の不均一性検査方法。
A method for inspecting non-uniformity of a translucent substrate for inspecting non-uniformity of a translucent substrate having at least a pair of mirror-finished main surfaces and at least a pair of end surfaces ,
When the light path is optically uniform when laser light is introduced into the light transmissive substrate, the light transmissive substrate totally reflects the laser light between the pair of main surfaces and the pair of end surfaces. Repeatedly, it can be in a state where it is almost confined in a translucent substrate,
When the optical path of the translucent substrate is optically uniform, the translucent substrate repeats total reflection between the main surface and the end surface and is almost confined in the translucent substrate. Introduce laser light so that
When there is a non-uniform portion in the optical path of the laser beam introduced and propagated into the translucent substrate, a part of the introduced laser beam is not totally reflected at the main surface or end surface of the translucent substrate. Inspecting the non-uniformity of the light-transmitting substrate by detecting the leaked light by utilizing leakage to the outside,
A laser beam introduced into the translucent substrate for introducing the laser beam is reduced in size so as to correspond to the size of the introduction surface and is incident as substantially parallel light. Non-uniformity inspection method for optical substrates.
前記導入面は、前記透光性基板の主表面と端面とが交差する各辺に形成された面取り面であることを特徴とする請求項1又は2記載の透光性基板の不均一性検査方法。The non-uniformity inspection of a translucent substrate according to claim 1, wherein the introduction surface is a chamfered surface formed on each side where a main surface and an end surface of the translucent substrate intersect. Method. 鏡面仕上げされた少なくとも一対の主表面及び少なくとも一対の端面を有する透光性基板の不均一性を検査する透光性基板の不均一性検査装置であって
前記透光性基板は、この透光性基板にレーザー光を導入したときにその光路が光学的に均一の場合に、そのレーザー光を前記主表面及び端面の間で全反射を繰り返してほぼ透光性基板内に閉じ込められたような状態にできるものであり、
前記透光性基板に、この透光性基板の光路が光学的に均一の場合に、前記主表面及び端面の間で全反射を繰り返して透光性基板内にほぼ閉じ込められたような状態になるようにレーザー光を導入する照射手段と、
前記透光性基板に導入され伝播するレーザー光の光路中に不均一部分が存在するときに、前記導入したレーザー光の一部が前記透光性基板の主表面又は端面で全反射することなく、外部に漏出することを利用し、前記漏出光を検出する光検出手段と、
前記透光性基板にレーザー光を導入するための導入面に対し、この導入面の大きさに対応させて導入するレーザー光を縮小し且つほぼ平行光として入射するようにする光学系とを有することを特徴とする透光性基板の不均一性検査装置。
A non-uniformity inspection apparatus for a translucent substrate for inspecting non-uniformity of a translucent substrate having at least a pair of main surfaces and at least a pair of end surfaces mirror-finished ,
When the optical path is optically uniform when laser light is introduced into the translucent substrate, the translucent substrate repeats total reflection between the main surface and the end surface and substantially transmits the laser light. It can be in a state of being confined in the optical substrate,
When the optical path of the translucent substrate is optically uniform, the translucent substrate repeats total reflection between the main surface and the end surface and is almost confined in the translucent substrate. An irradiation means for introducing a laser beam,
When there is a non-uniform portion in the optical path of the laser beam introduced and propagated into the translucent substrate, a part of the introduced laser beam is not totally reflected at the main surface or end surface of the translucent substrate. A light detecting means for detecting the leaked light by making use of leaking to the outside;
An optical system for reducing the laser light to be introduced in accordance with the size of the introduction surface and making it incident as substantially parallel light with respect to the introduction surface for introducing the laser light into the translucent substrate. A non-uniformity inspection apparatus for a light-transmitting substrate.
鏡面仕上げされた少なくとも一対の主表面及び少なくとも一対の端面を有する透光性基板であって、A translucent substrate having at least a pair of mirror-finished main surfaces and at least a pair of end faces,
前記透光性基板は、この透光性基板にレーザー光を導入したときにその光路が光学的に均一の場合に、そのレーザー光を前記主表面及び端面の間で全反射を繰り返して伝播するように、透光性基板内にレーザー光を導入するために、凹面形状の導入面が形成されていることを特徴とする透光性基板。When the optical path is optically uniform when laser light is introduced into the translucent substrate, the translucent substrate propagates the laser light by repeating total reflection between the main surface and the end surface. Thus, in order to introduce a laser beam into the translucent substrate, a concave introduction surface is formed.
JP36111397A 1997-12-26 1997-12-26 Non-uniformity inspection method and apparatus for translucent material, and transparent substrate Expired - Fee Related JP3673632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36111397A JP3673632B2 (en) 1997-12-26 1997-12-26 Non-uniformity inspection method and apparatus for translucent material, and transparent substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36111397A JP3673632B2 (en) 1997-12-26 1997-12-26 Non-uniformity inspection method and apparatus for translucent material, and transparent substrate

Publications (2)

Publication Number Publication Date
JPH11190700A JPH11190700A (en) 1999-07-13
JP3673632B2 true JP3673632B2 (en) 2005-07-20

Family

ID=18472258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36111397A Expired - Fee Related JP3673632B2 (en) 1997-12-26 1997-12-26 Non-uniformity inspection method and apparatus for translucent material, and transparent substrate

Country Status (1)

Country Link
JP (1) JP3673632B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003012408A1 (en) * 2001-07-30 2003-02-13 Nippon Sheet Glass Co., Ltd. Optical condensation sensor and controller employing the same
JP4721259B2 (en) * 2004-08-30 2011-07-13 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
JP2006214818A (en) * 2005-02-02 2006-08-17 Sharp Corp Flaw detecting method of optical component and flaw detector
CN1841189A (en) * 2005-03-30 2006-10-04 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, mask manufacturing method, mask blank glass substrate, mask blank, and mask
JP4979941B2 (en) 2005-03-30 2012-07-18 Hoya株式会社 Manufacturing method of glass substrate for mask blanks, manufacturing method of mask blanks
JP5046394B2 (en) * 2007-08-07 2012-10-10 Hoya株式会社 Mask blank substrate manufacturing method, mask blank manufacturing method, mask manufacturing method, and mask blank substrate

Also Published As

Publication number Publication date
JPH11190700A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
KR100606460B1 (en) Method of checking unevenness of light-transmitting substance, apparatus therefor, and method of sorting transparent substrates
JP3422935B2 (en) Inspection method and apparatus for non-uniformity of translucent substance and method for selecting transparent substrate
US7180586B2 (en) System for detection of wafer defects
JP3673626B2 (en) Non-uniformity inspection method and apparatus for translucent material
JP6488298B2 (en) Multi-spot lighting with improved detection sensitivity
JPH10160683A (en) Foreign object inspection method and device
JPS58120155A (en) Detecting device for extraneous substance on reticle
JP3673649B2 (en) Non-uniformity inspection method and inspection apparatus for translucent material
US10345246B2 (en) Dark field wafer nano-defect inspection system with a singular beam
JP3673632B2 (en) Non-uniformity inspection method and apparatus for translucent material, and transparent substrate
JP3673631B2 (en) Non-uniformity inspection method and apparatus for translucent material
JP5028437B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, and manufacturing method of photomask for exposure
JP4260555B2 (en) Method for determining local structure in optical crystal
US6555273B2 (en) Glass substrate for an electron device, photomask blank and photomask using the same
JPH11258172A (en) Method and apparatus for inspection of heterogeneity of translucent substance
JP3042225B2 (en) Surface condition inspection method and surface condition inspection device using the same
JP4100514B2 (en) Manufacturing method of glass substrate for electronic device, manufacturing method of photomask blank, and manufacturing method of photomask
JPH10293103A (en) Method and equipment for optical measurement and optical measuring equipment for patterned substrate
JPS632324B2 (en)
JP2010160450A (en) Method of manufacturing glass substrate for mask blanks, method of manufacturing mask blank, and method of manufacturing photomask for exposure
JPH11183392A (en) Heterogeneity inspecting method of light transmissive material and its device
JPH10221266A (en) Foreign matter inspection method for exposure mask
JP2006313107A (en) Inspection device, inspection method, and method of manufacturing pattern substrate using them
CN117760341A (en) Flatness detection device and method
JPS6023298B2 (en) Defect inspection equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees