JP2006214818A - Flaw detecting method of optical component and flaw detector - Google Patents

Flaw detecting method of optical component and flaw detector Download PDF

Info

Publication number
JP2006214818A
JP2006214818A JP2005026645A JP2005026645A JP2006214818A JP 2006214818 A JP2006214818 A JP 2006214818A JP 2005026645 A JP2005026645 A JP 2005026645A JP 2005026645 A JP2005026645 A JP 2005026645A JP 2006214818 A JP2006214818 A JP 2006214818A
Authority
JP
Japan
Prior art keywords
optical component
light
defect
detection
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005026645A
Other languages
Japanese (ja)
Inventor
Koji Minami
功治 南
Tomoyuki Miyake
知之 三宅
Kanefumi Hirano
兼史 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005026645A priority Critical patent/JP2006214818A/en
Publication of JP2006214818A publication Critical patent/JP2006214818A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw detecting method of an optical component capable of detecting the flaw of the optical component, which is constituted by laminating a plurality of layers having light perviousness, without being restricted by the size of the optical component, and a flaw detector. <P>SOLUTION: Detecting light 38 is emitted from a light source 36 that is made to enter one surface part 35a of the optical component 35 from the light source 36, on the basis of the refractive indexes of the respective layers of the optical component 35 by a prism 32, to decide the waveguide route of the detecting light 38. By using this method, the detecting light 38 can be made to enter so as to induce a multiple bonds by at least one of the respective layers of the optical component 35, and a part of the detecting light 38 is guided to the layer of which the flaw should be detected to detect the flaw 45. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、透光性を有する複数の層が積層されて構成される光学部品の欠陥を検出する光学部品の欠陥検出方法および欠陥検出装置に関する。   The present invention relates to an optical component defect detection method and a defect detection device for detecting a defect of an optical component configured by laminating a plurality of layers having translucency.

図7は、第1の従来技術の透明基板の欠陥検出装置1を示す斜視図である。レーザ2から発せられるレーザ光2aは、複数のミラー3および集光レンズ4を介して透明基板5の端面に導かれ、透明基板5の厚み方向両端面にて繰返し反射される。透明基板5に欠陥が有る場合、欠陥に起因して光が散乱して、透明基板5の外方に散乱光が出射される。この散乱光は、結像レンズ6によってCCD7に導かれ、CCD7が受光した光の光量に基づいて、欠陥の有無が判定される(たとえば特許文献1参照)。   FIG. 7 is a perspective view showing a transparent substrate defect detection apparatus 1 according to the first prior art. Laser light 2 a emitted from the laser 2 is guided to the end surface of the transparent substrate 5 through the plurality of mirrors 3 and the condenser lens 4, and is repeatedly reflected at both end surfaces in the thickness direction of the transparent substrate 5. When the transparent substrate 5 has a defect, the light is scattered due to the defect, and the scattered light is emitted to the outside of the transparent substrate 5. The scattered light is guided to the CCD 7 by the imaging lens 6, and the presence or absence of a defect is determined based on the amount of light received by the CCD 7 (see, for example, Patent Document 1).

図8は、第2の従来技術の欠陥検出装置10の制御系を概略示すブロック図である。この検出装置10では、検査対象11の薄膜部12が非常に薄いので、疑似表面波を用いて検査される。発せられるレーザビーム13は、プリズム14によって結晶基板11の内部に導入され、導入面の反対側に導かれ、多層膜12の表面すれすれを進む疑似表面波となる。この疑似表面波が欠陥付近を通ると、回折光または散乱光が発生し、その回折光または散乱光が受光素子15によって検出される。したがって受光素子15が検出する光量によって、欠陥の有無が判定される(たとえば特許文献2参照)。   FIG. 8 is a block diagram schematically showing a control system of the defect detection apparatus 10 of the second prior art. In this detection apparatus 10, since the thin film portion 12 of the inspection object 11 is very thin, it is inspected using a pseudo surface wave. The emitted laser beam 13 is introduced into the inside of the crystal substrate 11 by the prism 14, guided to the opposite side of the introduction surface, and becomes a pseudo surface wave that advances the surface of the multilayer film 12. When the pseudo surface wave passes near the defect, diffracted light or scattered light is generated, and the diffracted light or scattered light is detected by the light receiving element 15. Therefore, the presence / absence of a defect is determined by the amount of light detected by the light receiving element 15 (see, for example, Patent Document 2).

図9は、第3の従来技術の欠陥検出装置に用いられるプリズムカプラ21と基板との関係を示す正面図である。プリズムカプラ21は、基板上に、順次、光導波路層22、ギャップ調整層23、高屈折率層24が積層され、高屈折率の表面部に高屈折率層24の屈折率よりも屈折率の高い高屈折率プリズム25が形成されて構成される。よって、プリズムカプラ21に光26を入射させると、高屈折率層24とギャップ調整層23との間の境界面に発生するエバネッセント波を介して、光導波路層22の導波モード光が入射光および出射光と結合する(たとえば特許文献3参照)。   FIG. 9 is a front view showing the relationship between the prism coupler 21 and the substrate used in the third conventional defect detection apparatus. In the prism coupler 21, an optical waveguide layer 22, a gap adjusting layer 23, and a high refractive index layer 24 are sequentially stacked on a substrate, and the refractive index of the surface portion of the high refractive index is higher than that of the high refractive index layer 24. A high high refractive index prism 25 is formed. Therefore, when the light 26 is incident on the prism coupler 21, the waveguide mode light of the optical waveguide layer 22 is incident on the incident light via the evanescent wave generated at the interface between the high refractive index layer 24 and the gap adjusting layer 23. And it couple | bonds with emitted light (for example, refer patent document 3).

特開平11−190700号公報Japanese Patent Laid-Open No. 11-190700 特開昭64−23144号公報JP-A 64-23144 特開平2−213808号公報JP-A-2-213808

第1の従来技術では、光学部品が積層型光学部品であると、欠陥を検出しようとする積層型光学部品を構成する層に層内不均一性がある場合、光の多重結合が起こり、光の減衰率が高くなるので長距離伝搬することはできない。したがって光学部品の端面から光を入射する第1の従来の技術では、光学部品の表面積つまりサイズが大きくなればなる程、前記端面から離隔する光学部品の中央付近を検査することができないという問題がある。   In the first prior art, when the optical component is a laminated optical component, if there is non-uniformity in the layers constituting the laminated optical component for which a defect is to be detected, multiple coupling of light occurs, Since the attenuation rate of the antenna increases, it cannot propagate over a long distance. Therefore, in the first conventional technique in which light is incident from the end face of the optical component, there is a problem that as the surface area, that is, the size of the optical component increases, the vicinity of the center of the optical component separated from the end face cannot be inspected. is there.

第2の従来技術のように、光学部品の端面以外から、欠陥を検出するべき対象物に光を導入して、疑似表面波を発生させて欠陥検出を行う方法では、ある程度の厚さを持つ層を積層した積層型光学部品の検査においては、疑似表面波では検査対象領域が最上層の表面部しかなくなり、他の層を含めた積層型光学部品の内部を検査することができないという問題がある。   As in the second prior art, a method for detecting defects by introducing light into an object to be detected from other than the end face of the optical component to generate a pseudo surface wave has a certain thickness. In the inspection of a laminated optical component in which layers are laminated, there is a problem in that the surface to be inspected is only the uppermost surface portion in the pseudo surface wave, and the inside of the laminated optical component including other layers cannot be inspected. is there.

第3の従来技術は、光導波路デバイスに用いるプリズム結合技術でも、第2の従来技術と同様に、光を積層型光学部品に導入できる技術の1つだが、プリズムと導光させたい層との間にある層、たとえば空気の厚さサブミクロン以下の層である場合にのみ起る、エバネセント波の染み出し効果を用いて、光を導光させる技術である。したがって第2の従来の技術と同様に、導光部がデバイスの表面近くにしかない光導波路デバイスのような薄膜デバイスにしか適用することができず、積層型光学部品の内部の欠陥を検出することができない。   The third conventional technique is one of the techniques that can introduce light into a laminated optical component as well as the second conventional technique in the prism coupling technique used for the optical waveguide device. This is a technique for guiding light by using an evanescent wave oozing effect that occurs only when the layer is in between, for example, a layer having a thickness of air of sub-micron or less. Therefore, as in the second conventional technique, the present invention can be applied only to a thin film device such as an optical waveguide device in which the light guide portion is only near the surface of the device, and it detects a defect inside the laminated optical component. I can't.

また第2および第3の従来の技術では、光学部品の表面がフィルムで保護されたような状態で、フィルム越しに欠陥検出を行う場合でも、エバネセント波による光結合、および疑似表面波も利用することができない。したがって表面がフィルムで保護された光学部品の欠陥を検出することができないという問題がある。   Further, in the second and third conventional techniques, even when the defect is detected through the film in a state where the surface of the optical component is protected by the film, the optical coupling by the evanescent wave and the pseudo surface wave are also used. I can't. Therefore, there is a problem that the defect of the optical component whose surface is protected by the film cannot be detected.

したがって本発明の目的は、透光性を有する複数の層が積層されて構成される光学部品の欠陥を、光学部品のサイズに拘束されることなく検出することができる光学部品の欠陥検出方法および欠陥検出装置を提供することである。   Accordingly, an object of the present invention is to provide an optical component defect detection method capable of detecting a defect of an optical component formed by laminating a plurality of layers having translucency without being restricted by the size of the optical component, and It is to provide a defect detection apparatus.

本発明は、複数の層が積層される光学部品の欠陥を検出する方法において、
前記各層の屈折率に基づいて、光学部品の一表面部から検出用光を入射させて、検出用光の導波経路を確定する導波経路確定工程を有することを特徴とする光学部品の欠陥検出方法である。
The present invention provides a method for detecting a defect in an optical component in which a plurality of layers are stacked.
An optical component defect comprising a waveguide path determining step for determining a waveguide path of detection light by making detection light incident from one surface portion of the optical component based on the refractive index of each layer It is a detection method.

本発明に従えば、前記各層の屈折率に基づいて、光学部品の一表面部から検出用光を入射させて、検出用光の導波経路を確定する。これによって光学部品を構成する各層のうちの少なくとも1つの層で、多重結合を誘導するように、検出用光を入射させることができる。したがって検出用光の光学部品の入射角が、途中の境界で全反射されない角度で入射しても、多重結合の作用によって、検出用光の一部が全反射による導波経路を取る別の導光に変化するという現象を生じさせることができる。換言すると、検出用光の一部を多重結合の作用によって、入射したときの導波経路と、別の導光に変化させることができる。これによって検出用光の一部を欠陥検出すべき層に導くことができる。   According to the present invention, based on the refractive index of each layer, detection light is incident from one surface portion of the optical component, and the waveguide path of the detection light is determined. As a result, the detection light can be incident on at least one of the layers constituting the optical component so as to induce multiple coupling. Therefore, even if the incident angle of the optical component for the detection light is incident at an angle that is not totally reflected at the intermediate boundary, a part of the detection light is guided by another guide that takes a waveguide path due to total reflection due to multiple coupling. The phenomenon of changing to light can be caused. In other words, a part of the detection light can be changed to a light guide path different from the incident light path by the action of multiple coupling. As a result, part of the detection light can be guided to the layer where the defect is to be detected.

また本発明は、前記導波経路確定工程は、光源から光結合手段を介して前記一表面部に検出用光を入射させる段階を有することを特徴とする。   In the invention, it is preferable that the waveguide path determination step includes a step of causing detection light to be incident on the one surface portion from a light source through an optical coupling unit.

本発明に従えば、導波経路確定工程は、光源から光結合手段を介して前記一表面部に検出用光を入射させる段階を有する。したがって検出用光の光量を、空気を介して光学部品に入射させるよりも、光結合手段を介して入射させることによって減衰量を少なくすることができる。   According to the present invention, the waveguide path determination step includes a step of causing detection light to enter the one surface portion from the light source via the optical coupling means. Therefore, the amount of attenuation can be reduced by making the amount of light for detection incident through the optical coupling means rather than entering the optical component through air.

また本発明は、前記導波経路確定工程は、光学部品にて多重結合を誘導する段階を有することを特徴とする。   According to the present invention, the waveguide path determination step includes a step of inducing multiple coupling by an optical component.

本発明に従えば、導波経路確定工程は、光学部品にて多重結合を誘導する段階を有するので、前述したように光学部品の一表面部から入射される検出用光を光学部品の内部に確実に導くことができる。   According to the present invention, the waveguide path determination step includes the step of inducing multiple coupling by the optical component, so that the detection light incident from one surface portion of the optical component is introduced into the optical component as described above. Can be guided reliably.

また本発明は、前記導波経路確定工程は、光学部品にてリーキー波を誘導する段階を有することを特徴とする。   In the invention, it is preferable that the waveguide path determination step includes a step of inducing a leaky wave with an optical component.

本発明に従えば、導波経路確定工程は、光学部品にてリーキー波を誘導する段階を有する。これによって光結合手段と光学部品との間に空隙ができた場合であっても、検出用光が光結合手段の底面で全反射されない角度で容易に光学部品の内部に入射させることができる。また光学部品内部に入った検出用光は、全反射はしないで伝搬する光であるリーキー波から、全反射をしながら欠陥検出するべき層を導光する光にも一部変化するので、光結合手段と光学部品との間に空隙が生じた場合でも光学部品の内部の検出用光を導くことができ、欠陥を検出することができる。   According to the present invention, the waveguide path determination step includes a step of inducing a leaky wave in the optical component. Thus, even when a gap is formed between the optical coupling means and the optical component, the detection light can be easily incident on the inside of the optical component at an angle that is not totally reflected by the bottom surface of the optical coupling means. In addition, the detection light that enters the optical component also changes from the leaky wave that propagates without total reflection to the light that guides the layer to be detected while performing total reflection. Even when a gap is generated between the coupling means and the optical component, the detection light inside the optical component can be guided and a defect can be detected.

さらに本発明は、前記光学部品の一表面部に対し、前記光源を相対変位させる相対変位工程をさらに有することを特徴とする。   Furthermore, the present invention further includes a relative displacement step of relatively displacing the light source with respect to one surface portion of the optical component.

本発明に従えば、光学部品の一表面部に対し、前記光源を相対変位させる相対変位工程をさらに有する。これによって多重結合性が強く導光距離が短い光学部品であっても、検出用光の光学部品内への入射位置が制限されないので、欠陥検出可能な範囲を順次、変位させることができ、大形の光学部品の欠陥も検出することができる。   According to the invention, there is further provided a relative displacement step of relatively displacing the light source with respect to one surface portion of the optical component. As a result, even if the optical component has a strong multi-coupling property and a short light guide distance, the incident position of the light for detection into the optical component is not limited. Defects in the shape of optical components can also be detected.

さらに本発明は、複数の層が積層される光学部品の欠陥を検出する装置において、
光源と、
前記各層の屈折率に基づいて、光源から光学部品の一表面部に検出用光を入射させて、検出用光の導波経路を確定する導波経路確定手段とを有することを特徴とする光学部品の欠陥検出装置である。
Furthermore, the present invention provides an apparatus for detecting a defect in an optical component in which a plurality of layers are stacked.
A light source;
An optical system comprising: a waveguide path determining unit that determines the waveguide path of the detection light by causing detection light to enter the surface of the optical component from the light source based on the refractive index of each layer. This is a component defect detection apparatus.

本発明に従えば、光源から検出用光を出射して、導波路確定手段によって、光学部品の各層の屈折率に基づいて、光源から光学部品の一表面部に検出用光を入射させて、検出用光の導波経路を確定する。これによって光学部品を構成する各層のうちの少なくとも1つの層で、多重結合を誘導するように、検出用光を入射させることができる。したがって検出用光の光学部品の入射角が、途中の境界で全反射されない角度で入射しても、多重結合の作用によって、検出用光の一部が全反射による導波経路を取る別の導光に変化するという現象を生じさせることができる。換言すると、検出用光の一部を多重結合の作用によって、入射したときの導波経路と、別の導光に変化させることができる。これによって検出用光の一部を欠陥検出すべき層に導くことができる。   According to the present invention, the detection light is emitted from the light source, and the detection light is incident on the one surface portion of the optical component from the light source based on the refractive index of each layer of the optical component by the waveguide determining unit. Determine the waveguide path of the detection light. As a result, the detection light can be incident on at least one of the layers constituting the optical component so as to induce multiple coupling. Therefore, even if the incident angle of the optical component for the detection light is incident at an angle that is not totally reflected at the intermediate boundary, a part of the detection light is guided by another guide that takes a waveguide path due to total reflection due to multiple coupling. The phenomenon of changing to light can be caused. In other words, a part of the detection light can be changed to a light guide path different from the incident light path by the action of multiple coupling. As a result, part of the detection light can be guided to the layer where the defect is to be detected.

さらに本発明は、前記導波経路確定手段は、光結合手段を含み、
光源から検出用光は、光結合手段を介して光学部品に入射させることを特徴とする。
Further, according to the present invention, the waveguide path determination means includes an optical coupling means,
The detection light from the light source is incident on the optical component through the optical coupling means.

本発明に従えば、光源から検出用光は、光結合手段を介して光学部品に入射させるので、検出用光の光量を、空気を介して光学部品に入射させるよりも、減衰量を少なくすることができる。したがって必要な光量を容易に確保することができる。   According to the present invention, since the detection light from the light source is incident on the optical component via the optical coupling means, the amount of light of the detection light is less attenuated than that on the optical component via the air. be able to. Therefore, it is possible to easily secure the necessary light quantity.

さらに本発明は、前記光学部品の一表面部に対し、前記光源および導波経路確定手段を相対変位させる相対変位手段をさらに有することを特徴とする。   Furthermore, the present invention is characterized by further comprising a relative displacement means for relatively displacing the light source and the waveguide path determining means with respect to one surface portion of the optical component.

本発明に従えば、相対変位手段によって、光学部品の一表面部に対し、前記光源および導波経路確定手段を相対変位させる。これによって多重結合性が強く導光距離が短い光学部品であっても、検出用光の光学部品内への入射位置が制限されないので、欠陥検出可能な範囲を順次、変位させることができ、大形の光学部品の欠陥も検出することができる。   According to the present invention, the light source and the waveguide path determining means are relatively displaced with respect to one surface portion of the optical component by the relative displacement means. As a result, even if the optical component has a strong multi-coupling property and a short light guide distance, the incident position of the light for detection into the optical component is not limited. Defects in the shape of optical components can also be detected.

本発明によれば、光学部品の一表面部にフィルムが設けられても、光学部品の内部に検出用光を導くことができる。また積層構造の光学部品であっても、内部の層に検出用光を導いて光学部品の欠陥を検出することができる。   According to the present invention, even if a film is provided on one surface portion of an optical component, detection light can be guided to the inside of the optical component. Even in the case of an optical component having a laminated structure, a defect in the optical component can be detected by guiding detection light to the inner layer.

また検出用光は、光学部品の一表面部から入射されるので、多重結合によって光の減衰率が高く光学部品の全体に検出用光を導くことができなくても、入射させる位置を変えることによって、光学部品全体の欠陥を検出することができる。したがって大きいサイズの光学部品であっても、不都合なく欠陥を検出することができる。つまり光学部品のサイズに拘束されることなく当該光学部品の欠陥を検出することができる。よって本欠陥検出方法の汎用性を高めることが可能となる。   Also, since the detection light is incident from one surface part of the optical component, the incident position is changed even if the light attenuation rate is high due to multiple coupling and the detection light cannot be guided to the entire optical component. Thus, it is possible to detect a defect in the entire optical component. Therefore, even a large-sized optical component can detect a defect without inconvenience. That is, the defect of the optical component can be detected without being restricted by the size of the optical component. Therefore, the versatility of this defect detection method can be improved.

また本発明によれば、検出用光の光量を、空気を介して光学部品に入射させるよりも、光結合手段を介して入射させることによって減衰量を少なくすることができる。また光結合手段を介して入射させることによって、簡便に導波経路を確定することができ、本発明を簡単な構成で実現することができる。したがって本欠陥検出方法の再現性を簡便化することができ、その作業工数の低減を図ることが可能となる。   Further, according to the present invention, the amount of attenuation can be reduced by making the light amount of the detection light incident through the optical coupling means rather than entering the optical component through the air. Further, by making the light incident through the optical coupling means, the waveguide path can be determined easily, and the present invention can be realized with a simple configuration. Therefore, the reproducibility of the present defect detection method can be simplified, and the number of work steps can be reduced.

さらに本発明によれば、光学部品にて多重結合を誘導する段階を有するので、前述したように光学部品の一表面部から入射される検出用光を光学部品の内部に確実に導くことができる。   Furthermore, according to the present invention, since the optical component includes the step of inducing multiple coupling, the detection light incident from one surface portion of the optical component can be reliably guided to the inside of the optical component as described above. .

さらに本発明によれば、光結合手段と光学部品との間に空隙ができた場合であっても、容易に光学部品の内部に検出用光を入射させることができる。また光学部品内部に入った検出用光は、全反射はしないで伝搬する光であるリーキー波から、全反射をしながら欠陥検出するべき層を導光する光にも一部変化するので、光結合手段と光学部品との間に空隙が生じた場合でも光学部品の内部の検出用光を導くことができ、欠陥を検出することができる。これによって光結合手段と光学部品との間に空隙を開けて、相対的な変位を容易にすることができる。   Furthermore, according to the present invention, even when a gap is formed between the optical coupling means and the optical component, the detection light can be easily incident on the inside of the optical component. In addition, the detection light that enters the optical component also changes from the leaky wave that propagates without total reflection to the light that guides the layer to be detected while performing total reflection. Even when a gap is generated between the coupling means and the optical component, the detection light inside the optical component can be guided and a defect can be detected. As a result, a gap can be opened between the optical coupling means and the optical component to facilitate relative displacement.

さらに本発明によれば、多重結合性が強く導光距離が短い光学部品であっても、検出用光の光学部品内への入射位置が制限されないので、欠陥検出可能な範囲を順次、変位させることができ、大形の光学部品の欠陥も検出することができる。   Further, according to the present invention, even if the optical component has a high multi-coupling property and a short light guide distance, the incident position of the detection light into the optical component is not limited, so that the defect detectable range is sequentially displaced. And defects in large optical components can also be detected.

さらに本発明によれば、光学部品の一表面部にフィルムが設けられても、光学部品の内部に検出用光を導くことができる。また積層構造の光学部品であっても、内部の層に検出用光を導いて光学部品の欠陥を検出することができる。   Furthermore, according to this invention, even if a film is provided in one surface part of an optical component, the light for a detection can be guide | induced to the inside of an optical component. Even in the case of an optical component having a laminated structure, a defect in the optical component can be detected by guiding detection light to the inner layer.

また検出用光は、光学部品の一表面部から入射されるので、多重結合によって光の減衰率が高く光学部品の全体に検出用光を導くことができなくても、入射させる位置を変えることによって、光学部品全体の欠陥を検出することができる。したがって大きいサイズの光学部品であっても、不都合なく欠陥を検出することができる。つまり光学部品のサイズに拘束されることなく当該光学部品の欠陥を検出することができる。よって本欠陥検出装置の汎用性を高めることが可能となる。   Also, since the detection light is incident from one surface part of the optical component, the incident position is changed even if the light attenuation rate is high due to multiple coupling and the detection light cannot be guided to the entire optical component. Thus, it is possible to detect a defect in the entire optical component. Therefore, even a large-sized optical component can detect a defect without inconvenience. That is, the defect of the optical component can be detected without being restricted by the size of the optical component. Therefore, the versatility of this defect detection apparatus can be improved.

さらに本発明によれば、必要な光量を容易に確保することができる。また光結合手段を介して入射させることによって、簡便に導波経路を確定することができ、本発明を簡単な構成で実現することができる。   Furthermore, according to the present invention, it is possible to easily secure the necessary light quantity. Further, by making the light incident through the optical coupling means, the waveguide path can be determined easily, and the present invention can be realized with a simple configuration.

さらに本発明によれば、多重結合性が強く導光距離が短い光学部品であっても、検出用光の光学部品内への入射位置が制限されないので、欠陥検出可能な範囲を順次、変位させることができ、大形の光学部品の欠陥も検出することができる。   Further, according to the present invention, even if the optical component has a high multi-coupling property and a short light guide distance, the incident position of the detection light into the optical component is not limited, so that the defect detectable range is sequentially displaced. And defects in large optical components can also be detected.

図1は、本発明の実施の一形態の光学部品の欠陥検出装置30を示す斜視図である。図2は、光学部品の欠陥検出装置30と光学部品35との関係を示す図である。光学部品の欠陥検出装置(以下、単に「欠陥検出装置」ということがある)30は、光照射手段31、プリズム32、光検出部33および判定部34を含んで構成される。欠陥検出装置30は、透光性を有する複数、本実施の形態では6つの層が積層されて構成される光学部品35の欠陥45を検出する装置である。   FIG. 1 is a perspective view showing an optical component defect detection apparatus 30 according to an embodiment of the present invention. FIG. 2 is a diagram illustrating the relationship between the optical component defect detection apparatus 30 and the optical component 35. An optical component defect detection device (hereinafter, also simply referred to as “defect detection device”) 30 includes a light irradiation means 31, a prism 32, a light detection unit 33, and a determination unit 34. The defect detection device 30 is a device that detects a defect 45 of an optical component 35 that is configured by laminating a plurality of light-transmitting layers, in this embodiment, six layers.

光照射手段31は、光源36および光源36の出射光を集光するレンズ37を含んで構成され、光源36は、光学部品35の積層方向の一表面部35aに向けて、検出用光38を出射する。光源36から出射される検出用光38は、レンズ37によって集光され、プリズム32に導かれる。光源36は、たとえば半導体レーザによって実現される。   The light irradiation means 31 includes a light source 36 and a lens 37 that condenses the light emitted from the light source 36, and the light source 36 directs detection light 38 toward one surface portion 35 a of the optical component 35 in the stacking direction. Exit. The detection light 38 emitted from the light source 36 is collected by the lens 37 and guided to the prism 32. The light source 36 is realized by a semiconductor laser, for example.

プリズム32は、導波経路確定手段としての機能を有し、光学部品35の各層の屈折率に基づいて、光源36から光学部品35の一表面部35aに検出用光38を入射させて、検出用光38の導波経路を確定する。プリズム32は、光結合手段であって、光源36からの検出用光38を光学部品35の一表面部35aに入射させる。プリズム32は、光学部品35の積層方向一端面付近に配置され、光学部品35を構成する各層のうちの少なくとも1つの層で、多重結合を誘導するように、光源36から出射される検出用光38を光学部品35に入射させる。   The prism 32 has a function as a waveguide path determination means, and makes detection light 38 incident on one surface portion 35a of the optical component 35 from the light source 36 based on the refractive index of each layer of the optical component 35. The waveguide path of the working light 38 is determined. The prism 32 is an optical coupling means, and makes the detection light 38 from the light source 36 incident on one surface portion 35 a of the optical component 35. The prism 32 is arranged in the vicinity of one end surface of the optical component 35 in the stacking direction, and is detection light emitted from the light source 36 so as to induce multiple coupling in at least one of the layers constituting the optical component 35. 38 enters the optical component 35.

プリズム32には、たとえばLaSF03といった高屈折率の硝材を用いる。光源として赤色半導体レーザ(波長655nm)を用いる場合、前記プリズムの屈折率は1.8である。プリズム32が高屈折率材料であるほど、入射角θ1を小さくすることができるので光結合させるには好ましい。   For the prism 32, a glass material having a high refractive index such as LaSF03 is used. When a red semiconductor laser (wavelength 655 nm) is used as the light source, the refractive index of the prism is 1.8. The higher the refractive index material of the prism 32, the smaller the incident angle θ1, which is preferable for optical coupling.

光検出部33は、光検出手段であって、光学部品35から出射される光を検出し、本実施の形態では、光学部品35における積層方向一表面35aから出射される光を検出する。光検出部33は、たとえば受光素子および電荷結合素子(Charge Coupled Device:略称CCD)によって実現される。光検出部33は、検出した光に基づく情報を判定部34に与える。   The light detection unit 33 is a light detection unit that detects light emitted from the optical component 35, and in the present embodiment, detects light emitted from the one surface 35a in the stacking direction of the optical component 35. The light detection unit 33 is realized by, for example, a light receiving element and a charge coupled device (abbreviated as CCD). The light detection unit 33 gives information based on the detected light to the determination unit 34.

判定部34は、光検出部33から与えられる情報に基づいて、光学部品35の欠陥45の有無を判定する。判定部34は、判定した結果を示す情報を報知手段、たとえば表示装置または音発生手段に与えて、欠陥45の有無に基づく情報を報知させる。   The determination unit 34 determines the presence or absence of the defect 45 of the optical component 35 based on the information given from the light detection unit 33. The determination unit 34 gives information indicating the determination result to a notification unit, for example, a display device or a sound generation unit, so that information based on the presence or absence of the defect 45 is notified.

光学部品35は、複数の材料で構成され、本実施の形態ではシート状の材料が厚み方向に積層されて構成され、たとえば積層方向である厚み方向に光を通過させたとき、その光の中から1つの偏光方向の偏光のみを透過する機能を有する。以下、本実施の形態では、説明を容易にするため、光学部品35の最も積層方向一端寄りの層を第1層39と表記し、積層方向他端に向けて、順次、第2層40、第3層41、第4層42、第5層43および第6層44と表記することがある。各層の屈折率の一例をあげると、第1層39の屈折率は、1.51であり、第2層40の屈折率は、1.52であり、第3層41の屈折率は、1.505であり、第4層42の屈折率は、1.515であり、第5層43の屈折率は、1.5であり、第6層44の屈折率は、1.52である。検出用光38が導かれた層に欠陥45が存在する場合、欠陥45付近では光学的に屈折率、透過率および反射率変動が生じる。検出用光38が欠陥45を透過するとき、欠陥45付近で検出用光38が散乱する。光検出部33によって散乱光を検出することによって、判定部34は、検出された散乱光に基づいて、欠陥45とその周囲との光量差が所定以上になった場合に欠陥45と判定する。これによって判定部34は、欠陥45を検出することができる。   The optical component 35 is composed of a plurality of materials. In the present embodiment, the sheet-shaped material is laminated in the thickness direction. For example, when light is allowed to pass in the thickness direction, which is the lamination direction, To transmit only polarized light in one polarization direction. Hereinafter, in the present embodiment, for ease of description, the layer closest to one end in the stacking direction of the optical component 35 is referred to as a first layer 39, and sequentially toward the other end in the stacking direction, the second layer 40, The third layer 41, the fourth layer 42, the fifth layer 43, and the sixth layer 44 may be referred to. As an example of the refractive index of each layer, the refractive index of the first layer 39 is 1.51, the refractive index of the second layer 40 is 1.52, and the refractive index of the third layer 41 is 1. .505, the refractive index of the fourth layer 42 is 1.515, the refractive index of the fifth layer 43 is 1.5, and the refractive index of the sixth layer 44 is 1.52. When the defect 45 is present in the layer to which the detection light 38 is guided, refractive index, transmittance, and reflectance fluctuations are optically generated in the vicinity of the defect 45. When the detection light 38 passes through the defect 45, the detection light 38 is scattered in the vicinity of the defect 45. By detecting the scattered light by the light detection unit 33, the determination unit 34 determines that the defect 45 is a defect 45 when the light amount difference between the defect 45 and the surrounding area exceeds a predetermined value based on the detected scattered light. Thereby, the determination unit 34 can detect the defect 45.

検出用光38を、プリズム32を用いて、図2に示すように光学部品35の第2層40に多重結合を起こさせて導光する原理を説明する。先ず、光照射手段31を出射した検出用光38は、プリズム32から、光学部品35の第1層39に入射し、第2層40に到達する。光照射手段31からの検出用光38は、プリズム32を介して第2層40に到達した際、第2層40の中を全反射導光する角度近傍の入射角θ1に設定されて、プリズム32に導かれる。全反射導光する角度近傍に入射角θ1にしたのは、特に積層型光学部品35の入射時点で、第1層39と第2層40とプリズム32との間で屈折率が等しい場合しか全反射導光する角度に設定することができないためである。換言すると、光学部品35が積層構造であるので、全反射入射は薄膜デバイスの場合など特殊な条件以外では不可能である。したがって検出用光38は、前述のように第2層40を全反射しない入射角θ1で入射される。入射角θ1があまりに第2層40を全反射する条件から離れる場合、積層光学部品35内部の多重結合が利用できなくなるので、プリズム32への入射角θ1は第2層40の中を全反射導光する角度近傍に設定される。   The principle of guiding the detection light 38 by causing multiple coupling to the second layer 40 of the optical component 35 as shown in FIG. 2 using the prism 32 will be described. First, the detection light 38 emitted from the light irradiation means 31 enters the first layer 39 of the optical component 35 from the prism 32 and reaches the second layer 40. When the detection light 38 from the light irradiation means 31 reaches the second layer 40 via the prism 32, the detection light 38 is set to an incident angle θ1 in the vicinity of the angle at which the light is totally reflected and guided through the second layer 40. 32. The incident angle θ1 is set in the vicinity of the angle at which the total reflection light is guided, particularly when the refractive index is equal among the first layer 39, the second layer 40, and the prism 32 at the time of incidence of the laminated optical component 35. This is because the angle at which the light is reflected and guided cannot be set. In other words, since the optical component 35 has a laminated structure, total reflection incidence is impossible except for special conditions such as a thin film device. Therefore, the detection light 38 is incident at an incident angle θ1 that does not totally reflect the second layer 40 as described above. When the incident angle θ1 is too far from the condition for totally reflecting the second layer 40, the multiple coupling inside the laminated optical component 35 cannot be used, so the incident angle θ1 to the prism 32 is totally reflected in the second layer 40. It is set near the angle of light.

光学部品35の各層において、光の透過率低下の原因である層内不均一性がある場合、多重結合を起こすことができる。換言すると、光の位相定数が複数の組合せで変化し、光の進行方向が異なる別の複数の光に分かれる。   In each layer of the optical component 35, when there is in-layer non-uniformity that causes a decrease in light transmittance, multiple coupling can occur. In other words, the phase constant of the light changes with a plurality of combinations, and the light is divided into a plurality of different lights having different traveling directions.

第2層40で多重結合を起こす場合、まず、プリズム32への入射角θ1を第2層40の中を全反射導光する角度近傍であり、かつプリズム32と第1層39との境界、第1層39と第2層40との境界で全反射しない角度で、プリズム32を介して、検出用光38を光学部品35に入射させる。これによって進入した光と、第2層40を導光する多数のモード群との間の結合が起こりやすくなる。換言すると、前述の条件では進入した光の位相定数と、第2層40を導光する多数の光それぞれの位相定数が近くなり、これらの光相互のエネルギーのやり取りが起こりやすくなる。   When multiple coupling occurs in the second layer 40, first, the incident angle θ1 to the prism 32 is close to the angle at which total reflection light is guided through the second layer 40, and the boundary between the prism 32 and the first layer 39, The detection light 38 is incident on the optical component 35 through the prism 32 at an angle that does not totally reflect at the boundary between the first layer 39 and the second layer 40. As a result, coupling between the light that has entered and a large number of mode groups that guide the second layer 40 easily occurs. In other words, under the above-described conditions, the phase constant of the light that has entered and the phase constant of each of the multiple lights that are guided through the second layer 40 are close to each other, and energy exchange between these lights is likely to occur.

第2層40の層内不均一などによって、多重結合が起るので、図2に示すように第1導光経路L1によって光学部品35を通過する光も、その一部は多重結合によって他の位相速度を持つ光、換言すると多重結合で他の伝搬方向を有するようになった光となり、光は第2層40の中を第2導光経路L2を光路として導光する。   Since multiple coupling occurs due to non-uniformity in the second layer 40, for example, a part of the light passing through the optical component 35 by the first light guide path L1 as shown in FIG. Light having a phase velocity, in other words, light having a different propagation direction due to multiple coupling, is guided through the second layer 40 using the second light guide path L2 as an optical path.

以下に、本実施の形態に用いた多重結合による導光条件について具体的に説明する。各層が上記の屈折率関係を満たす積層構造の場合、層40内を全反射導光するのは、図2中の第1層39と第2層40との境界への入射角θ2が臨界角θ2C(83.4度、全反射の条件式から導出)以上の場合であるので、この条件に入射角θ2がなるように、プリズム32への入射角θ1が設定される。   Below, the light guide conditions by the multiple coupling used in this embodiment will be specifically described. When each layer has a laminated structure satisfying the above refractive index relationship, the total reflection light is guided in the layer 40 because the incident angle θ2 at the boundary between the first layer 39 and the second layer 40 in FIG. Since this is the case of θ2C (83.4 degrees, derived from the total reflection conditional expression) or more, the incident angle θ1 to the prism 32 is set so that the incident angle θ2 is in this condition.

次に、本実施の形態のプリズム32への入射角θ1の決定方法について説明する。平行光を積層構造に入射した場合の平均拡散角(平行光が層内不均一によりどの程度拡散光に変化するかを示す値)を平行光を入射して実測できる値Δθとする。伝搬方向の変換が、この角度内で発生するので、入射角θ2が(θ2C−Δθ)以上であれば、多重結合による導光を発生させることができる。また入射角θ2を小さくするほど、プリズム32と第1層39との境界での透過率は大きくなるので、多重結合を起こさせ、かつプリズム32と第1層39との境界での透過率も確保する入射角θ2を入射角θ2bとすると、入射角θ2bは、次式(1)の関係、つまり平均拡散角Δθの半分の値を臨界角θ2Cから減じた値であることが好ましい。
θ2b=θ2C−Δθ/2 …(1)
したがって第2層40内の平均拡散角Δθを4度とすると、好ましいθ2は、81.2度となる。
プリズム屈折率をnpとし、第1層39および第2層40の屈折率をそれぞれ、n39および40とすると、入射角θ1は次式(2)によって求めることができる。
θ1=asin(n40・sinθ2b/np) …(2)
すなわち、入射角θ2bに81.2度を代入すると、プリズム32への入射角θ1は56.6度となる。
Next, a method for determining the incident angle θ1 to the prism 32 of the present embodiment will be described. An average diffusion angle (a value indicating how much the parallel light changes to diffused light due to non-uniformity in the layer) when the parallel light is incident on the laminated structure is a value Δθ that can be measured by entering the parallel light. Since the change of the propagation direction occurs within this angle, if the incident angle θ2 is equal to or larger than (θ2C−Δθ), light guide by multiple coupling can be generated. Further, as the incident angle θ2 is decreased, the transmittance at the boundary between the prism 32 and the first layer 39 is increased, so that multiple coupling is caused and the transmittance at the boundary between the prism 32 and the first layer 39 is also increased. Assuming that the incident angle θ2 to be secured is the incident angle θ2b, the incident angle θ2b is preferably a value obtained by subtracting the value of half of the average diffusion angle Δθ from the critical angle θ2C in the relationship of the following equation (1).
θ2b = θ2C−Δθ / 2 (1)
Therefore, when the average diffusion angle Δθ in the second layer 40 is 4 degrees, a preferable θ2 is 81.2 degrees.
When the prism refractive index is np and the refractive indexes of the first layer 39 and the second layer 40 are n39 and 40, respectively, the incident angle θ1 can be obtained by the following equation (2).
θ1 = asin (n40 · sin θ2b / np) (2)
That is, if 81.2 degrees is substituted for the incident angle θ2b, the incident angle θ1 to the prism 32 is 56.6 degrees.

以上のように、第2層40の中を全反射導光するような角度近傍の入射角θ1度で、検出用光38をプリズム32に入射させて、光学部品35で多重結合を発生させると、第2層40を導光する光に位相が変化する光があるので、欠陥検出のための光量を確保することができる。   As described above, when the detection light 38 is incident on the prism 32 at an incident angle θ1 degree in the vicinity of the angle at which the light is totally reflected and guided in the second layer 40, multiple coupling is generated in the optical component 35. Since the light guided through the second layer 40 includes light whose phase changes, the amount of light for defect detection can be ensured.

図3は、光学部品35の欠陥検出方法を示すフローチャートである。ステップa0にて、光学部品35が予め定める位置に配置され、ステップa1に進む。ステップa1では、導波経路確定工程であって、光学部品35の各層の屈折率に基づいて、光学部品35の一表面部35aから検出用光38を入射させて、検出用光38の導波経路を確定する。検出用光38は、光学部品35の一表面部35aにプリズム32を介して入射され、ステップa2に進む。ステップa2では、光学部品35から出射される散乱光を、光検出部33が検出し、ステップa3に進む。ステップa3では、判定部34は、光検出部33が検出した散乱光強度に基づいて、欠陥45の有無を判定し、ステップa4に進む。ステップa4にて、ステップa1からの一連の検出手順を終了する。このような検出手順によって、欠陥45が検出される。   FIG. 3 is a flowchart illustrating a defect detection method for the optical component 35. In step a0, the optical component 35 is placed at a predetermined position, and the process proceeds to step a1. Step a1 is a waveguide path determination step, in which the detection light 38 is incident from one surface portion 35a of the optical component 35 based on the refractive index of each layer of the optical component 35, and the detection light 38 is guided. Determine the route. The detection light 38 enters the one surface portion 35a of the optical component 35 via the prism 32, and proceeds to step a2. In step a2, the light detection unit 33 detects scattered light emitted from the optical component 35, and the process proceeds to step a3. In step a3, the determination unit 34 determines the presence or absence of the defect 45 based on the scattered light intensity detected by the light detection unit 33, and proceeds to step a4. In step a4, the series of detection procedures from step a1 is terminated. The defect 45 is detected by such a detection procedure.

以上説明したように、本実施の形態の欠陥検出装置30では、光源36から検出用光38を出射して、プリズム32によって、光学部品35の各層の屈折率に基づいて、光源36から光学部品35の一表面部35aに検出用光38を入射させて、検出用光38の導波経路を確定する。これによってプリズム32は、光学部品35を構成する各層のうちの少なくとも1つの層で、多重結合を誘導するように、検出用光38を入射させることができる。したがって検出用光38のプリズム32への入射角θ1が、途中の境界で全反射されない角度で入射しても、多重結合の作用によって、検出用光38の一部が全反射による導波経路を取る別の導光に変化するという現象が生じる。換言すると、検出用光38の一部が多重結合の作用によって、入射したときの導波経路と異なり、別の導光に変化する。これによって検出用光38の一部を欠陥検出すべき層に導くことができる。また導光層が表面近くにない積層構造の光学部品35であっても、導光層に検出用光38を導いて光学部品35の欠陥45を検出することができる。   As described above, in the defect detection device 30 according to the present embodiment, the detection light 38 is emitted from the light source 36, and the prism 32 uses the optical component 35 to the optical component based on the refractive index of each layer of the optical component 35. The detection light 38 is made incident on one surface portion 35 a of 35 to determine the waveguide path of the detection light 38. Thereby, the prism 32 can make the detection light 38 enter so as to induce multiple coupling in at least one of the layers constituting the optical component 35. Therefore, even if the incident angle θ1 of the detection light 38 to the prism 32 is incident at an angle where it is not totally reflected at the intermediate boundary, a part of the detection light 38 travels through the waveguide path due to total reflection by the action of multiple coupling. The phenomenon of changing to another light guide takes. In other words, a part of the detection light 38 is changed to another light guide, unlike the waveguide path when incident, due to the action of multiple coupling. As a result, part of the detection light 38 can be guided to the layer where the defect is to be detected. Even if the optical component 35 has a laminated structure in which the light guide layer is not near the surface, the defect 45 of the optical component 35 can be detected by guiding the detection light 38 to the light guide layer.

また検出用光38は、光学部品35の積層方向の端面から入射されるので、多重結合によって光の減衰率が高く光学部品35の全体に検出用光38を導くことができなくても、入射させる位置を変えることによって、光学部品35全体の欠陥45を検出することができる。したがって大きいサイズの光学部品35であっても、不都合なく欠陥45を検出することができる。つまり光学部品35のサイズに拘束されることなく当該光学部品35の欠陥45を検出することができる。よって本欠陥検出方法および本欠陥検出装置の汎用性を高めることが可能となる。   Further, since the detection light 38 enters from the end face of the optical component 35 in the stacking direction, even if the light attenuation factor is high due to multiple coupling and the detection light 38 cannot be guided to the entire optical component 35, it is incident. The defect 45 of the entire optical component 35 can be detected by changing the position to be applied. Therefore, even if the optical component 35 has a large size, the defect 45 can be detected without any inconvenience. That is, the defect 45 of the optical component 35 can be detected without being restricted by the size of the optical component 35. Therefore, the versatility of this defect detection method and this defect detection apparatus can be improved.

また、第2層40と第3層41との屈折率が等しくはないが近い場合は、双方の層を伝搬するような光が存在することもあり、この場合は、多重結合で、第2層40および第3層41を導光する光が発生して、欠陥45を検出することができる。   In addition, when the refractive indexes of the second layer 40 and the third layer 41 are not equal but close, there may be light propagating through both layers. Light that guides the layer 40 and the third layer 41 is generated, and the defect 45 can be detected.

積層型の光学部品35を大面積化する場合には、光学部品35の構成材料もその面積的な制約から、選ばれる材料が検出用光38に対して必ずしも高い透過率にならない場合がある。また積層型の光学部品35に検出用光38を導光して欠陥45を検出する場合、複数の層が積層されることによって境界が複数あることから、その境界を検出用光38が透過あるいは、反射する回数も極力少なくして、境界に起因する検出用光38の減衰を抑制する必要もある。このような原因によって、既存の技術のように検出用光38を積層型光学部品35の端面から入射させずに、前述の実施の形態のように、表面から検出用光38を入射する方が、効率よく導光させることができ、光学部品35の欠陥45を検出することができる。   In the case of increasing the area of the laminated optical component 35, the material selected for the optical component 35 may not necessarily have a high transmittance with respect to the detection light 38 due to area restrictions. In addition, when the detection light 38 is guided to the laminated optical component 35 to detect the defect 45, there are a plurality of boundaries by laminating a plurality of layers. It is also necessary to reduce the number of reflections as much as possible to suppress the attenuation of the detection light 38 caused by the boundary. For this reason, the detection light 38 is not incident from the end face of the laminated optical component 35 as in the existing technology, but the detection light 38 is incident from the surface as in the above-described embodiment. The light can be guided efficiently, and the defect 45 of the optical component 35 can be detected.

図4は、本発明の実施の他の形態の欠陥検出装置50と光学部品35との関係を示す図である。本実施の形態の欠陥検出装置50は、前述の図1〜図3の欠陥検出装置30と類似しており、本実施の形態の構成には前述の欠陥検出装置30における対応する構成と同一の参照符号を付し、異なる構成についてだけ説明し、同様の構成については説明を省略する。本実施の形態では、光学部品35の構成が異なる。   FIG. 4 is a diagram showing the relationship between the defect detection device 50 and the optical component 35 according to another embodiment of the present invention. The defect detection device 50 according to the present embodiment is similar to the defect detection device 30 of FIGS. 1 to 3 described above, and the configuration of the present embodiment is the same as the corresponding configuration of the defect detection device 30 described above. Reference numerals are attached, only different configurations are described, and description of similar configurations is omitted. In the present embodiment, the configuration of the optical component 35 is different.

光学部品35は、積層方向一端面部を覆う保護フィルム51が設けられる。保護フィルム51は、透光性を有するフィルムであって、光学部品35を外力によって損傷しないように保護する。このような光学部品35であっても、欠陥45を検出することができる。   The optical component 35 is provided with a protective film 51 that covers one end portion in the stacking direction. The protective film 51 is a film having translucency, and protects the optical component 35 from being damaged by an external force. Even with such an optical component 35, the defect 45 can be detected.

プリズム32に入射する検出用光38を、光学部品35の第2層40に届く入射角θ1度で入射させると、第2層40に進入した光は、多重結合によって、第2層40内を全反射して伝搬することができる光にも変化する。これによって検出用光38の一部の光が、第2層40内を伝搬することになり、その光が到達可能な領域に欠陥45があれば、その散乱光を光検出部33で検出することができる。   When the detection light 38 incident on the prism 32 is incident at an incident angle θ1 degree reaching the second layer 40 of the optical component 35, the light that has entered the second layer 40 passes through the second layer 40 by multiple coupling. It also changes to light that can be totally reflected and propagated. As a result, part of the detection light 38 propagates in the second layer 40, and if there is a defect 45 in a region where the light can reach, the light detection unit 33 detects the scattered light. be able to.

このように本発明での光学部品35の欠陥検出のための導光方法は、多重結合を起こさせる導光方法であるから、光学部品35の表面が保護フィルム51で保護された状態でも、プリズム32を用いて、光照射手段31からの検出用光38を用いて欠陥45を検出することができる。   As described above, the light guide method for detecting defects in the optical component 35 according to the present invention is a light guide method that causes multiple coupling. Therefore, even if the surface of the optical component 35 is protected by the protective film 51, the prism is used. 32, the defect 45 can be detected using the detection light 38 from the light irradiation means 31.

図5は、本発明の実施のさらに他の形態の欠陥検出装置60と光学部品35との関係を示す図である。本実施の形態の欠陥検出装置60は、前述の図1〜図4の欠陥検出装置30,50と類似しており、本実施の形態の構成には前述の欠陥検出装置30,50における対応する構成と同一の参照符号を付し、異なる構成についてだけ説明し、同様の構成については説明を省略する。本実施の形態では、プリズム32の配置の位置が異なる。   FIG. 5 is a diagram showing the relationship between the defect detection device 60 and the optical component 35 according to still another embodiment of the present invention. The defect detection apparatus 60 of the present embodiment is similar to the defect detection apparatuses 30 and 50 of FIGS. 1 to 4 described above, and the configuration of the present embodiment corresponds to the defect detection apparatuses 30 and 50 described above. The same reference numerals as those in the configuration are attached, only different configurations are described, and description of similar configurations is omitted. In the present embodiment, the positions of the prisms 32 are different.

図5に示すように、光学部品35とプリズム32とが当接せずに、光学部品35とプリズム32との間に空隙が生じる場合がある。検出用光38がプリズム32を介して、空隙に向けて入射する角度を、プリズム32の底面で全反射が起きない角度に設定する。たとえば前記硝材LaSF03を用いたプリズム32では、全反射する入射角度θは33.7度であり、平均拡散角が4度であるので、入射角度θ1が31度の場合であれば、本実施の形態のプリズム32の底面で全反射が起きることなく、前記積層構造内に導光させることができる。   As illustrated in FIG. 5, the optical component 35 and the prism 32 may not contact each other, and a gap may be generated between the optical component 35 and the prism 32. The angle at which the detection light 38 enters the gap through the prism 32 is set to an angle at which total reflection does not occur on the bottom surface of the prism 32. For example, in the prism 32 using the glass material LaSF03, since the incident angle θ for total reflection is 33.7 degrees and the average diffusion angle is 4 degrees, if the incident angle θ1 is 31 degrees, the present embodiment It is possible to guide the light into the laminated structure without causing total reflection at the bottom surface of the prism 32 in the form.

検出用光38は、光学部品35の第2層40内に進入し、光学部品35の内部では、一部層間境界、たとえば第2層40と第1層39との境界、および第2層40と第3層41との境界を透過しながらリーキー波状態で導光する。このようなリーキー波は、もともと積層構造中全体を導光する光(第1層39と第6層44とを往復しつつ導光する光)と位相定数が近いので、何回かの多重結合を第1層39と第6層44との往復の間で繰り返せば、第2層40の内部で第2層40を導光する光と多重結合も起こすことができる。したがって入射した検出用光38の一部を、リーキー波から第2層40を導光する光に変化させることができる。なお、この往復過程は10回も済めば、結合が充分に進むのでリーキー波から第2層40内への導光へとの変換が充分に起こる。   The detection light 38 enters the second layer 40 of the optical component 35, and inside the optical component 35, a partial interlayer boundary, for example, the boundary between the second layer 40 and the first layer 39, and the second layer 40. The light is guided in a leaky wave state while passing through the boundary between the first layer 41 and the third layer 41. Since such a leaky wave has a phase constant close to that of light that is originally guided through the entire laminated structure (light that is guided back and forth between the first layer 39 and the sixth layer 44), several times of multiple coupling Is repeated between the first layer 39 and the sixth layer 44, the light that guides the second layer 40 inside the second layer 40 and multiple coupling can also occur. Therefore, a part of the incident detection light 38 can be changed from the leaky wave to the light guided through the second layer 40. If the reciprocation process is completed 10 times, the coupling proceeds sufficiently, so that the conversion from the leaky wave to the light guide into the second layer 40 is sufficiently generated.

このような現象によって、光学部品35とプリズム32との間に空隙があっても検出用光38を光学部品35に到達させることが可能な条件、すなわちリーキー波で導光させる条件の入射角θ1でプリズム32を用いて光学部品35に検出用光38を入射して、充分に導光する光を確保することができる。これによって欠陥検出のための光として用いることができる。   Due to such a phenomenon, even when there is a gap between the optical component 35 and the prism 32, the incident angle θ1 is a condition that allows the detection light 38 to reach the optical component 35, that is, a condition for guiding light with a leaky wave. Thus, the detection light 38 is incident on the optical component 35 by using the prism 32, and the light sufficiently guided can be secured. This can be used as light for defect detection.

以上説明したように、本実施の形態の欠陥検出装置60では、プリズム32は、光学部品35中に、リーキー波を誘導するように、検出用光38を入射させることで、プリズム32と光学部品35との間に空隙ができた場合であっても、検出用光38をプリズム32の底面で全反射されない角度で容易に光学部品35の内部に入射させることができる。   As described above, in the defect detection device 60 according to the present embodiment, the prism 32 and the optical component are made to enter the detection light 38 so as to induce the leaky wave into the optical component 35. Even if a gap is formed between the optical component 35 and the detection light 38, the detection light 38 can be easily incident on the optical component 35 at an angle that is not totally reflected by the bottom surface of the prism 32.

また、光学部品35内部に入った検出用光38は、全反射しないで伝搬する光であるリーキー波から、多重結合を繰り返しながら欠陥を検出するべき層を導光する光にも一部変化するので、欠陥45を検出することができる。   In addition, the detection light 38 that has entered the optical component 35 partially changes from a leaky wave, which is a light that propagates without being totally reflected, to a light that guides a layer where a defect is to be detected while repeating multiple coupling. Therefore, the defect 45 can be detected.

またプリズム32と光学部品35との間に空隙を開けても欠陥45を検出することができるので、プリズム32と光学部品35との相対的な変位を容易にすることができる。したがって本欠陥検出方法および本欠陥検出装置の再現性を簡便化することができ、その作業工数の低減を図ることが可能となる。   In addition, since the defect 45 can be detected even if a gap is formed between the prism 32 and the optical component 35, the relative displacement between the prism 32 and the optical component 35 can be facilitated. Therefore, the reproducibility of the defect detection method and the defect detection apparatus can be simplified, and the number of work steps can be reduced.

図6は、本発明の実施のさらに他の形態の欠陥検出装置70と光学部品35との関係を示す図である。本実施の形態の欠陥検出装置70は、前述の図1〜図5の欠陥検出装置30,50,60と類似しており、本実施の形態の構成には前述の欠陥検出装置30,50,60における対応する構成と同一の参照符号を付し、異なる構成についてだけ説明し、同様の構成については説明を省略する。本実施の形態では、欠陥検出装置70は、移動手段71をさらに含んで構成され、光源36およびプリズム32が、光学部品35の一表面部35aに対して、移動手段71によって相対変位可能に構成される。   FIG. 6 is a diagram showing the relationship between the defect detection apparatus 70 and the optical component 35 according to still another embodiment of the present invention. The defect detection device 70 of the present embodiment is similar to the defect detection devices 30, 50, 60 of FIGS. 1 to 5 described above, and the configuration of the present embodiment includes the defect detection devices 30, 50, 60 described above. The same reference numerals are assigned to the corresponding components in 60, and only different components will be described, and description of similar components will be omitted. In the present embodiment, the defect detection device 70 is further configured to include a moving unit 71, and the light source 36 and the prism 32 can be relatively displaced by the moving unit 71 with respect to the one surface portion 35 a of the optical component 35. Is done.

欠陥検出装置70は、さらに光源36およびプリズム32を移動させるための移動手段71を含んで構成される。移動手段71は、光学部品35に光を導光した際に導光する方向に略平行(用語「略平行」は平行を含む)にプリズム32を移動させる。たとえば図6に破線で示す位置から、実線で示す位置に移動させる。また光検出部33は、プリズム32と連動して移動するように構成される。光検出部33は、プリズム32と連動することによって、光検出部33を小形化でき、欠陥検出機の構成の全体も、より簡便になる。   The defect detection device 70 further includes a moving means 71 for moving the light source 36 and the prism 32. The moving means 71 moves the prism 32 substantially in parallel to the light guiding direction when the light is guided to the optical component 35 (the term “substantially parallel” includes parallel). For example, the position is moved from the position indicated by the broken line in FIG. 6 to the position indicated by the solid line. The light detection unit 33 is configured to move in conjunction with the prism 32. The light detection unit 33 can be miniaturized by interlocking with the prism 32, and the entire configuration of the defect detector becomes simpler.

以上のように本実施の形態では、プリズム32は、光学部品35の一表面部35aに対して、本実施の形態では、検出用光38の出射する方向であって、積層方向に交差する方向成分に変位可能である。これによって多重結合性が強く導光距離が短い光学部品35であっても、検出用光38の光学部品35内への入射位置が制限されないので、欠陥検出可能な範囲を順次、変位させることができ、大形の光学部品35の欠陥45も検出することができる。   As described above, in the present embodiment, the prism 32 is the direction in which the detection light 38 is emitted in the present embodiment with respect to the one surface portion 35a of the optical component 35, and the direction intersecting the stacking direction. The component can be displaced. As a result, even if the optical component 35 has a high multi-coupling property and a short light guide distance, the incident position of the detection light 38 into the optical component 35 is not limited. The defect 45 of the large optical component 35 can also be detected.

前述の実施の各形態は、本発明の例示に過ぎず、本発明の範囲内において構成を変更することができる。またたとえば前述の各実施の形態を適宜組合せるようにしてもよい。   Each of the embodiments described above is merely an example of the present invention, and the configuration can be changed within the scope of the present invention. Further, for example, the above-described embodiments may be appropriately combined.

また前述の実施の各形態では、検出用光38は、プリズム32を介して光学部品35に入射されているが、プリズム32を介さずに光源36からの検出用光38を直接、光学部品35に入射させるように構成してもよい。プリズム32を介さずに検出用光38を光学部品35に入射させる場合、検出用光38の光量および入射角θ1が適宜選択される。   In each of the above-described embodiments, the detection light 38 is incident on the optical component 35 via the prism 32, but the detection light 38 from the light source 36 is directly passed through the optical component 35 without passing through the prism 32. You may comprise so that it may inject into. When the detection light 38 is incident on the optical component 35 without passing through the prism 32, the light amount and the incident angle θ1 of the detection light 38 are appropriately selected.

本発明の実施の一形態の光学部品の欠陥検出装置30を示す斜視図である。It is a perspective view which shows the defect detection apparatus 30 of the optical component of one Embodiment of this invention. 光学部品の欠陥検出装置30と光学部品35との関係を示す図である。FIG. 3 is a diagram illustrating a relationship between an optical component defect detection apparatus 30 and an optical component 35; 光学部品35の欠陥検出方法を示すフローチャートである。3 is a flowchart showing a method for detecting a defect in an optical component 35. 本発明の実施の他の形態の欠陥検出装置50と光学部品35との関係を示す図である。It is a figure which shows the relationship between the defect detection apparatus 50 and the optical component 35 of other form of implementation of this invention. 本発明の実施のさらに他の形態の欠陥検出装置60と光学部品35との関係を示す図である。It is a figure which shows the relationship between the defect detection apparatus 60 of the further another form of implementation of this invention, and the optical component 35. FIG. 本発明の実施のさらに他の形態の欠陥検出装置70と光学部品35との関係を示す図である。It is a figure which shows the relationship between the defect detection apparatus 70 of the further another form of implementation of this invention, and the optical component 35. FIG. 第1の従来技術の透明基板の欠陥検出装置1を示す斜視図である。It is a perspective view which shows the defect detection apparatus 1 of the transparent substrate of the 1st prior art. 第2の従来技術の欠陥検出装置10の制御系を概略示すブロック図である。It is a block diagram which shows schematically the control system of the defect detection apparatus 10 of the 2nd prior art. 第3の従来技術の欠陥検出装置に用いられるプリズムカプラ21と基板との関係を示す正面図である。It is a front view which shows the relationship between the prism coupler 21 used for the defect detection apparatus of a 3rd prior art, and a board | substrate.

符号の説明Explanation of symbols

30,50,60,70 光学部品の欠陥検出装置
32 プリズム
33 光検出部
34 判定部
35 光学部品
36 光源
38 検出用光
45 欠陥
51 保護フィルム
71 移動手段
30, 50, 60, 70 Optical component defect detection device 32 Prism 33 Photodetection unit 34 Judgment unit 35 Optical component 36 Light source 38 Detection light 45 Defect 51 Protective film 71 Moving means

Claims (8)

複数の層が積層される光学部品の欠陥を検出する方法において、
前記各層の屈折率に基づいて、光学部品の一表面部から検出用光を入射させて、検出用光の導波経路を確定する導波経路確定工程を有することを特徴とする光学部品の欠陥検出方法。
In a method for detecting a defect in an optical component in which a plurality of layers are laminated,
An optical component defect comprising a waveguide path determining step for determining a waveguide path of detection light by making detection light incident from one surface portion of the optical component based on the refractive index of each layer Detection method.
前記導波経路確定工程は、光源から光結合手段を介して前記一表面部に検出用光を入射させる段階を有することを特徴とする請求項1に記載の光学部品の欠陥検出方法。   The optical component defect detection method according to claim 1, wherein the waveguide path determination step includes a step of causing detection light to be incident on the one surface portion from a light source through an optical coupling unit. 前記導波経路確定工程は、光学部品にて多重結合を誘導する段階を有することを特徴とする請求項1または2に記載の光学部品の欠陥検出方法。   3. The optical component defect detection method according to claim 1, wherein the waveguide path determination step includes a step of inducing multiple coupling in the optical component. 前記導波経路確定工程は、光学部品にてリーキー波を誘導する段階を有することを特徴とする請求項1〜3のいずれか1つに記載の光学部品の欠陥検出方法。   The optical component defect detection method according to claim 1, wherein the waveguide path determination step includes a step of inducing a leaky wave in the optical component. 前記光学部品の一表面部に対し、前記光源を相対変位させる相対変位工程をさらに有することを特徴とする請求項1〜4のいずれか1つに記載の光学部品の欠陥検出方法。   The optical component defect detection method according to claim 1, further comprising a relative displacement step of relatively displacing the light source with respect to one surface portion of the optical component. 複数の層が積層される光学部品の欠陥を検出する装置において、
光源と、
前記各層の屈折率に基づいて、光源から光学部品の一表面部に検出用光を入射させて、検出用光の導波経路を確定する導波経路確定手段とを有することを特徴とする光学部品の欠陥検出装置。
In an apparatus for detecting a defect in an optical component in which a plurality of layers are laminated,
A light source;
An optical system comprising: a waveguide path determining unit that determines the waveguide path of the detection light by causing detection light to enter the surface of the optical component from the light source based on the refractive index of each layer. Component defect detection device.
前記導波経路確定手段は、光結合手段を含み、
光源から検出用光は、光結合手段を介して光学部品に入射させることを特徴とする請求項6に記載の光学部品の欠陥検出装置。
The waveguide path determining means includes optical coupling means,
7. The optical component defect detection apparatus according to claim 6, wherein the detection light from the light source is incident on the optical component through an optical coupling means.
前記光学部品の一表面部に対し、前記光源および導波経路確定手段を相対変位させる相対変位手段をさらに有することを特徴とする請求項6または7に記載の光学部品の欠陥検出装置。   The optical component defect detection device according to claim 6, further comprising a relative displacement unit that relatively displaces the light source and the waveguide path determination unit with respect to one surface portion of the optical component.
JP2005026645A 2005-02-02 2005-02-02 Flaw detecting method of optical component and flaw detector Pending JP2006214818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005026645A JP2006214818A (en) 2005-02-02 2005-02-02 Flaw detecting method of optical component and flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005026645A JP2006214818A (en) 2005-02-02 2005-02-02 Flaw detecting method of optical component and flaw detector

Publications (1)

Publication Number Publication Date
JP2006214818A true JP2006214818A (en) 2006-08-17

Family

ID=36978180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005026645A Pending JP2006214818A (en) 2005-02-02 2005-02-02 Flaw detecting method of optical component and flaw detector

Country Status (1)

Country Link
JP (1) JP2006214818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059586A1 (en) * 2017-09-20 2019-03-28 서울과학기술대학교 산학협력단 Method for measuring adhesive strength of thin film using dispersion characteristics of surface waves, and computer-readable recording medium having program for performing same recorded thereon

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423144A (en) * 1987-07-20 1989-01-25 Ratotsuku Syst Eng Kk Method for detecting flaw in thin film layer of crystal substrate
JPH02213808A (en) * 1989-02-15 1990-08-24 Ricoh Co Ltd High-performance prism coupler
JPH08105736A (en) * 1994-10-04 1996-04-23 Hitachi Constr Mach Co Ltd Film thickness evaluation method of multilayer thin film by ultrasonic microscope
JPH08210985A (en) * 1995-02-01 1996-08-20 Sony Corp Detecting method for particle in film, and detecting device therefor
JPH11190700A (en) * 1997-12-26 1999-07-13 Hoya Corp Translucent material nonuniformity inspection method, device therefor, and transparent board
JP2001091475A (en) * 1999-09-20 2001-04-06 Rohm Co Ltd Inspection device for transparent laminated body
JP2003166944A (en) * 2001-12-03 2003-06-13 Sony Corp Apparatus and method for detection of defect in semiconductor device
JP2005257671A (en) * 2004-02-10 2005-09-22 Sharp Corp Defect detection method and defect-detecting apparatus of optical component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423144A (en) * 1987-07-20 1989-01-25 Ratotsuku Syst Eng Kk Method for detecting flaw in thin film layer of crystal substrate
JPH02213808A (en) * 1989-02-15 1990-08-24 Ricoh Co Ltd High-performance prism coupler
JPH08105736A (en) * 1994-10-04 1996-04-23 Hitachi Constr Mach Co Ltd Film thickness evaluation method of multilayer thin film by ultrasonic microscope
JPH08210985A (en) * 1995-02-01 1996-08-20 Sony Corp Detecting method for particle in film, and detecting device therefor
JPH11190700A (en) * 1997-12-26 1999-07-13 Hoya Corp Translucent material nonuniformity inspection method, device therefor, and transparent board
JP2001091475A (en) * 1999-09-20 2001-04-06 Rohm Co Ltd Inspection device for transparent laminated body
JP2003166944A (en) * 2001-12-03 2003-06-13 Sony Corp Apparatus and method for detection of defect in semiconductor device
JP2005257671A (en) * 2004-02-10 2005-09-22 Sharp Corp Defect detection method and defect-detecting apparatus of optical component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059586A1 (en) * 2017-09-20 2019-03-28 서울과학기술대학교 산학협력단 Method for measuring adhesive strength of thin film using dispersion characteristics of surface waves, and computer-readable recording medium having program for performing same recorded thereon
US11353432B2 (en) 2017-09-20 2022-06-07 Seoul National University Of Technology Center For Industry Collaboration Method for measuring adhesive strength of thin film using dispersion characteristics of surface waves, and computer-readable recording medium having program for performing same recorded thereon

Similar Documents

Publication Publication Date Title
US10928303B2 (en) Concentration measuring device
EP2787382B1 (en) Optical device and module for light transmission and attenuation
WO2013038626A1 (en) Optical element, and optical mechanism
TW201423032A (en) Systems and methods for measuring a profile characterstic of a glass sample
US20230333319A1 (en) Optical Signal Routing Devices and Systems
US11776298B2 (en) Under display fingerprint sensor with improved contrast ratio
JP2006214818A (en) Flaw detecting method of optical component and flaw detector
JP2015102796A (en) Optical branching device
JP6876207B1 (en) Inspection equipment
JP2006214886A (en) Method and device for detecting defect of optical element
WO2018163779A1 (en) Optical waveguide and optical density measuring device
TW202300876A (en) Method to measure light loss of optical films and optical substrates
CN107076540A (en) Multi-functional light-dividing device
JP3642967B2 (en) Optical communication device and bidirectional optical communication apparatus
KR102637273B1 (en) Optical systems and methods for measuring parameters of patterned structures in microelectronic devices
JP3213405B2 (en) A photodetector that detects incident light that is incident at an angle smaller than the angle at which total reflection occurs from a high refractive index medium to a low refractive index medium.
WO2019187073A1 (en) Optical waveguide inspection method and optical waveguide manufacturing method using same
JP2005257671A (en) Defect detection method and defect-detecting apparatus of optical component
JP2003185568A (en) Sensor using attenuated total reflection
JP7170876B1 (en) Optical waveguide element and optical axis adjustment method
JP2006258739A (en) Output device of branched light flux and measuring devices of a plurality of light flux output type
JP2006132972A (en) Defect detecting method and defect detecting device of optical part
KR102260167B1 (en) Method and system for inspecting defect of boundary surface in multi-layer of display panel
JP3761080B2 (en) Measuring method and measuring apparatus using total reflection attenuation
JP3152456B2 (en) Focus error signal detecting device, optical information recording / reproducing device, and magneto-optical information recording / reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511