JP3670742B2 - Method for producing polyamide film - Google Patents
Method for producing polyamide film Download PDFInfo
- Publication number
- JP3670742B2 JP3670742B2 JP894696A JP894696A JP3670742B2 JP 3670742 B2 JP3670742 B2 JP 3670742B2 JP 894696 A JP894696 A JP 894696A JP 894696 A JP894696 A JP 894696A JP 3670742 B2 JP3670742 B2 JP 3670742B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- coating
- coated
- temperature
- stretched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、インラインコーティング法によって、表面コート逐次2軸延伸ポリアミドフイルムを製造する方法に関するものである。
【0002】
【従来の技術】
2軸延伸ポリアミドフイルムは、機械的特性、光学的特性、熱的特性、ガスバリヤー性をはじめとして、耐摩耗性、耐衝撃性、耐ピンホール性などに優れていることから、食品その他の包装材料用フイルムとして広く利用されている。
【0003】
近年、包装材料用フイルムの高性能化が強く要望されるようになり、例えば、ハイガスバリヤー性、易接着性、帯電防止性などの特性のレベルアップが求められている。このような性能のレベルアップの要求に対応する方法として、種々の高分子溶液あるいは分散液をコーティングする方法がある。
【0004】
表面コートフイルムの製造法としては、フイルム製品の巻取工程以降に後処理としてコーティングを行うポストコート法とフイルムの巻取工程以前の未延伸フイルム又は延伸工程においてコーティングを行うインラインコート法がある。
【0005】
インラインコート法は、経済的観点から注目されており、有用な技術である。例えば、特公昭41−8370号公報には、熱可塑性樹脂フイルムを縦方向に2倍以上延伸したフイルムに熱可塑性高分子物質の溶液あるいは分散液をコーティングし、直ちにテンター式延伸機に供給し、フイルム延伸の予熱ゾーンにおいて40℃以上で乾燥し、引き続いて横方向に2倍以上の延伸を行う方法が開示されている。しかし、この方法によれば、横延伸前のコート皮膜乾燥後のフイルム幅方向の温度の均一性が不十分であり、横延伸時に延伸斑がしばしば発生するという問題がある。
【0006】
また、特公平3− 67495号公報には、結晶性を有する熱可塑性樹脂を溶融押出しし、得られた未延伸フイルムを縦方向に延伸した後、少なくともその片面に端部を残して塗液をコーティングし、乾燥した後、横方向に延伸し、表面コート逐次2軸延伸フイルムを得る方法において、コーティング後の縦延伸フイルムをその結晶開始温度より少なくとも30℃低い温度で、かつ、熱収縮率が2%を超えない温度で実質的に乾燥した後、テンターで横方向に延伸することによって優れた連続生産性を得る方法が開示されている。しかしながら、ポリアミドのように結晶化開始温度が低く、配向結晶化が速い樹脂では、塗液をコーティングした後の乾燥工程で配向結晶化が進行して操業性が悪いという問題がある。なお、配向結晶化の進行を抑制するために、乾燥温度を低くすると乾燥に長時間を要し、実際上、連続生産は不可能となる。
【0007】
【発明が解決しようとする課題】
本発明は、優れたフイルム物性を有する表面コート逐次2軸延伸ポリアミドフイルムを操業性よく、しかも経済的に製造することのできる方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明は、上記の課題を解決するもので、その要旨は、実質的に無定形で配向していない未延伸ポリアミドフイルムを縦方向に延伸した後、テンターで横方向に延伸する方法において、テンター直前でフイルムの片面にクリップで把持するための端部を残して塗液をコーティングし、テンター内の予熱部でフイルムを乾燥した後、テンターで横延伸して、表面コート延伸ポリアミドフイルムを製造するに際し、横延伸直前のコート部のフイルム温度を45〜65℃とするとともに、コート部と非コート部との温度差を10℃以内とすることを特徴とする延伸ポリアミドフイルムの製造方法にある。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0010】
本発明においてポリアミドとは、配向結晶性を有する熱可塑性ポリアミドを意味し、具体例としては、ナイロン6(ポリカプラミド)、ナイロン66(ポリヘキサメチレンアジパミド)、ナイロン610(ポリヘキサメチレンセバカミド)、ナイロン11(ポリウンデカナミド)、ナイロン12(ポリラウラミド)及びこれらの共重合物や混合物が挙げられるが含まれ、コストパフォーマンスに優れるナイロン6が特に好ましく用いられる。
【0011】
これらのポリアミドには必要に応じてフイルムの性能に悪影響を与えない範囲で、滑剤、帯電防止剤、ブロッキング防止剤、無機微粒子等各種添加剤を添加することができる。
【0012】
本発明に用いる塗液は特に限定されるものではなく、接着性、ガスバリヤー性、ヒートシール性、表面滑性、帯電防止性等を改善するための高分子溶液又は高分子分散液であり、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリ塩化ビニリデン系樹脂、ポリオレフイン系樹脂、アイオノマー系樹脂、ポリビニルアルコール系樹脂、ポリアクリル酸系樹脂、ポリアルキレングリコール樹脂等の熱可塑性樹脂、アミノアルキド系樹脂、アミノアクリル酸系樹脂、メラミン系樹脂、尿素系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、シリコーン系樹脂等の熱硬化性及びこれら樹脂の混合物が挙げられる。塗液には乳化剤、ブロッキング防止剤、帯電防止剤、レベリング剤、粘度調整剤等の各種添加物を目的に応じて適宜添加することができる。
【0013】
本発明において実質的に無定形で配向していない未延伸ポリアミドフイルムを得るには、例えば、ポリアミドを押出機で加熱溶融してTダイからフイルム状に押出し、これをエアーナイフキャスト法、静電印加キャスト法等公知のキャスティング法で回転する冷却ドラム上で冷却固化して急冷製膜することによって得ることができる。この未延伸フイルムが配向していると、後工程での延伸性が低下する。
【0014】
次に、未延伸フイルムは周速の異なる加熱ローラ群からなるローラ式縦延伸機で未延伸フイルムのガラス転移点以上の温度で 2.7〜3.5 倍に延伸する。
本発明では、縦延伸に引き続いて、フイルムの片面に端部を残して塗液をコーティングした後、直ちにテンターへ導入してテンター内の予熱部において塗液の乾燥及び延伸のための予熱を行い横延伸を施す。この際、横延伸直前におけるフイルムのコート部の温度を45〜65℃とすることが必要である。その理由は、コート部のフイルム温度が上記範囲より低い場合は、延伸のための予熱が不十分となり、延伸部における初期延伸応力が高いためにクリップのつかみ外れを生じ易く、操業性が著しく悪化する。特に水性塗液の場合、乾燥が不十分で高分子粒子が未だ密着しないまま延伸されることとなり、たとえ延伸可能であったとしても、得られるコートフイルムにおける塗膜と基材フイルムとの接着が悪いものしか得られず好ましくない。一方、この温度が上記範囲より高い場合はフイルムの結晶化が著しく進行するため横延伸性が低下し好ましくない。上記温度範囲においては、ナイロン6のように結晶化の速い樹脂に対しても良好な延伸性が得られる。
【0015】
さらに、本発明においてはコート部と非コート部のフイルム温度差を10℃以内にすることが必要てある。コート部は乾燥中に溶媒の蒸発潜熱によって熱を奪われるためフイルム温度が上がりにくい状態となっている。このため非コート部との温度差が助長され易く幅方向で温度斑が生じるため横延伸性に影響を及ぼす。すなわち、この温度以上に高い場合はフイルム端部におけるネック延伸が発生しやすくなってコート部の実質倍率が低下し、延伸フイルムに所望の性能を付与するためには過度に横延伸倍率を上げる必要性が生じるため、切断頻度が増加し操業性の悪化に繋がる。前記フイルム温度と同様、幅方向のフイルム温度差をできるだけ小さくすることで、特にナイロン6に対する良好な延伸性が達成される。
【0016】
以上のように、コートされた縦延伸フイルムの温度が上記最適条件になるように制御したときのみ、塗液の乾燥、塗膜と基材フイルムとの密着性及び横延伸のための予熱が十分達成されるため、延伸性、操業性が向上するとともに、得られる表面コートされたポリアミドフイルムの塗膜密着性が良好となる。
【0017】
本発明においてコーティングの方法は特に限定されるものではなく、例えばグラビアロール法、リバースロール法、エアーナイフ法、リバースグラビア法、マイヤーバー法、インバースロール法及びこれらの組み合わせによる各種コーティング方式を採用することができ、塗液の特性と目標とする塗工厚みにより適宜選択できる。ただし、後の工程で行われる乾燥の効率化を計るためできるだけ均一に塗工できるものが好ましい。
【0018】
本発明においては、コーティングはテンタークリップで把持される部分以外に行う。全面に行った場合乾燥されていない状態でテンター内に導入されるためテンタークリップを汚し、クリップのつかみ外れなど種々トラブルを引き起こしたりして好ましくない。
【0019】
コーティング後の予熱部における乾燥は、できるだけ乾燥効率の優れた方式で行うことがが望ましい。例えば、上下に熱風吹き出しノズルが配置されたもので、かつ前記の温度条件を達成することのできる幅方向の特定位置でその熱風量が調節可能な構造の装置を用いて行うことが好ましい。これによりコート部と非コート部の温度差を極小化でき、延伸性を向上させることが可能となる。
【0020】
【実施例】
次に、実施例により本発明を具体的に説明する。
本発明における特性値の測定法は次の通りである。
(1) フイルムの表面温度
堀場製作所社製放射温度計で、横延伸直前におけるフイルム温度を測定した。
なお、測定位置はコート部及び非コート部とし、10点計測して平均した。
(2) 延伸性
横延伸時における破断の頻度を次の規準で評価した。
○:横延伸時に破断がほとんど生じない。
△:横延伸時にたまに破断する。
×:横延伸時に破断が頻発する。
(3) 塗膜密着性
延伸後のコートフイルムのコート面にセロハンテープ(ニチバン社製)を貼着し、急激に剥離して、塗膜の剥離程度により、次の規準で評価した。
○:塗膜が全く剥がれない。
△:塗膜が部分的に剥がれる。
×:塗膜がほとんど剥がれる。
【0021】
実施例1
融点 220℃のナイロン6を 260℃でTダイよりシート状に溶融押出した後、エアーナイフキャスト法により25℃の回転ドラムに密着させて急冷し、厚さ 130μm の実質的に無定形で配向していない未延伸ポリアミドフイルムを得た。次いで、この未延伸フイルムを周速の異なる加熱ローラ群からなる縦延伸機により55〜62℃の温度で2.75倍に縦延伸して縦延伸ポリアミドフイルムを得た。この縦延伸フイルムに端部30mmを除いて水溶性ポリウレタンとメラミンホルムアルデヒド系硬化剤とからなる固形分濃度6重量%の水性塗液をマイヤーバーコータを用いて 3.6g/m2・wet となる量でコーティングした。次いで、コートされた縦延伸フイルムをテンターに導入し、予熱部で横延伸直前のコート部のフイルム温度を45℃、非コート部のフイルム温度を50℃として実質的に塗液を乾燥させ、90〜100 ℃で 3.4倍に横延伸し、 150〜210 ℃で熱処理し、厚さ15μm の表面コートされた2軸延伸ポリアミドフイルムを得た。
【0022】
実施例2〜3
横延伸直前のコート部のフイルム温度及び非コート部のフイルム温度を表1のように変えた以外は、実施例1と同様の方法で厚さ15μm の表面コートされた2軸延伸ポリアミドフイルムを得た。
【0023】
実施例4
ポリ塩化ビニリデン共重合体の45重量%濃度のラテックスをエアーナイフコート法により15g/m2・wet となる量でコーティングした以外は実施例2と同様の方法で厚さ16.3μm の表面コートされた2軸延伸ポリアミドフイルムを得た。
【0024】
比較例1〜3
横延伸直前のコート部のフイルム温度及び非コート部のフイルム温度を表1のように変えた以外は、実施例1と同様の方法で厚さ15μm の表面コートされた2軸延伸ポリアミドフイルムを得た。
【0025】
上記の実施例及び比較例における延伸性及び塗膜密着性を評価した結果を表1に示す。
【0026】
【表1】
【0027】
本発明の実施例では、延伸性が良好で、塗膜の密着性の良好な表面コート2軸延伸フイルムが得られた。
これに対して、比較例1では、フイルム延伸のため不足し、しばしばクリップのつかみ外れや切断が生じた。また、得られたフイルムは、塗液の乾燥不足から塗膜と基材フイルムとの密着性に劣るものであった。
比較例2では、塗膜の密着性には問題なかったが、コート部と非コート部の温度差が大きいため端部にネックが発生した。
比較例3では、予熱部における塗液の乾燥は十分であったが、縦延伸フイルムの結晶化が著しく進行し、横延伸時に破断が生じた。
【0028】
【発明の効果】
本発明によれば、テンター内の予熱部において、塗液の乾燥、塗膜と基材フイルムとの密着化及びフイルム延伸のための予熱を幅方向に対して均一に行うことができるため、得られるフイルムの物性、横延伸性、操業性を向上させることができる。また、本発明の方法では、コーティング後、特別な乾燥工程が不要であり経済効果も大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a surface-coated sequential biaxially stretched polyamide film by an in-line coating method.
[0002]
[Prior art]
Biaxially stretched polyamide film is superior in mechanical properties, optical properties, thermal properties, gas barrier properties, wear resistance, impact resistance, pinhole resistance, etc. Widely used as a film for materials.
[0003]
In recent years, there has been a strong demand for higher performance of films for packaging materials. For example, higher levels of properties such as high gas barrier properties, easy adhesion properties, and antistatic properties have been demanded. As a method corresponding to such a demand for improvement in performance, there is a method of coating various polymer solutions or dispersions.
[0004]
As a method for producing the surface coat film, there are a post-coating method in which coating is performed as a post-treatment after the film product winding step and an in-line coating method in which coating is performed in an unstretched film or a stretching step before the film winding step.
[0005]
The in-line coating method is attracting attention from an economic viewpoint and is a useful technique. For example, in Japanese Examined Patent Publication No. 41-8370, a thermoplastic polymer film is coated with a solution or dispersion of a thermoplastic polymer on a film obtained by stretching a thermoplastic resin film twice or more in the machine direction, and immediately supplied to a tenter type stretching machine. A method is disclosed in which the film is dried at 40 ° C. or higher in a preheating zone for film stretching, and subsequently stretched twice or more in the transverse direction. However, according to this method, there is a problem that the uniformity of the temperature in the film width direction after drying of the coating film before transverse stretching is insufficient, and stretching spots often occur during transverse stretching.
[0006]
In Japanese Patent Publication No. 3-67495, a thermoplastic resin having crystallinity is melt-extruded, and the obtained unstretched film is stretched in the longitudinal direction. In the method of coating, drying and then stretching in the transverse direction to obtain a surface-coated sequential biaxially stretched film, the longitudinally stretched film after coating is at least 30 ° C. lower than its crystal initiation temperature and has a thermal shrinkage rate. A method is disclosed in which excellent continuous productivity is obtained by substantially drying at a temperature not exceeding 2% and then stretching in the transverse direction with a tenter. However, a resin having a low crystallization start temperature and a fast orientation crystallization, such as polyamide, has a problem that the orientation crystallization proceeds in the drying step after coating the coating liquid and the operability is poor. In order to suppress the progress of oriented crystallization, if the drying temperature is lowered, drying takes a long time, and practically continuous production becomes impossible.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method by which a surface-coated sequential biaxially stretched polyamide film having excellent film properties can be produced with good operability and economically.
[0008]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and the gist of the present invention is that in a method in which an unstretched polyamide film that is substantially amorphous and not oriented is stretched in the longitudinal direction and then stretched in the transverse direction with a tenter. Immediately before, the coating liquid is coated leaving an end for gripping with a clip on one side of the film, and the film is dried in a preheating portion in the tenter and then stretched in the tenter to produce a surface-coated stretched polyamide film. At the time, the film temperature of the coated portion immediately before the transverse stretching is set to 45 to 65 ° C., and the temperature difference between the coated portion and the non-coated portion is set to 10 ° C. or less.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0010]
In the present invention, the polyamide means a thermoplastic polyamide having oriented crystallinity. Specific examples include nylon 6 (polycoupleramide), nylon 66 (polyhexamethylene adipamide), nylon 610 (polyhexamethylene sebacamide). ), Nylon 11 (polyundecanamide), nylon 12 (polylauramide), and copolymers and mixtures thereof are included, and nylon 6 excellent in cost performance is particularly preferably used.
[0011]
Various additives such as a lubricant, an antistatic agent, an antiblocking agent, and inorganic fine particles can be added to these polyamides as necessary within a range that does not adversely affect the film performance.
[0012]
The coating liquid used in the present invention is not particularly limited, and is a polymer solution or polymer dispersion for improving adhesiveness, gas barrier property, heat sealability, surface slipperiness, antistatic property, etc. For example, polyester resins, polyamide resins, polyvinylidene chloride resins, polyolefin resins, ionomer resins, polyvinyl alcohol resins, polyacrylic acid resins, thermoplastic resins such as polyalkylene glycol resins, amino alkyd resins, Examples thereof include thermosetting resins such as aminoacrylic acid resins, melamine resins, urea resins, epoxy resins, polyurethane resins, silicone resins, and mixtures of these resins. Various additives such as an emulsifier, an antiblocking agent, an antistatic agent, a leveling agent, and a viscosity modifier can be appropriately added to the coating liquid according to the purpose.
[0013]
In order to obtain an unstretched polyamide film which is substantially amorphous and not oriented in the present invention, for example, polyamide is heated and melted by an extruder and extruded from a T die into a film, which is then air knife cast, electrostatic The film can be obtained by cooling and solidifying on a cooling drum rotating by a known casting method such as an applied casting method and rapidly forming a film. If this unstretched film is oriented, the stretchability in the subsequent process is lowered.
[0014]
Next, the unstretched film is stretched 2.7 to 3.5 times at a temperature equal to or higher than the glass transition point of the unstretched film by a roller-type longitudinal stretching machine composed of heating roller groups having different peripheral speeds.
In the present invention, following the longitudinal stretching, after coating the coating liquid leaving one end on one side of the film, the coating liquid is immediately introduced into the tenter and preheating for drying and stretching of the coating liquid is performed in the preheating portion in the tenter. Apply lateral stretching. At this time, it is necessary to set the temperature of the coating portion of the film immediately before the transverse stretching to 45 to 65 ° C. The reason for this is that when the film temperature of the coat portion is lower than the above range, preheating for stretching becomes insufficient, and the initial stretching stress in the stretched portion is high, so that the clip tends to come off and the operability is remarkably deteriorated. To do. In particular, in the case of an aqueous coating solution, the polymer film is stretched without being sufficiently dried and the polymer film is not yet in close contact, and even if it can be stretched, adhesion between the coating film and the substrate film in the resulting coat film is not possible. Only bad ones can be obtained, which is not preferable. On the other hand, when the temperature is higher than the above range, the film is remarkably progressed in crystallization, so that the transverse stretchability is lowered. In the above temperature range, good stretchability can be obtained even for resins that are rapidly crystallized, such as nylon 6.
[0015]
Furthermore, in the present invention, the film temperature difference between the coated part and the non-coated part must be within 10 ° C. The coating portion is deprived of heat by the latent heat of evaporation of the solvent during drying, so that the film temperature is difficult to rise. For this reason, the temperature difference from the non-coated portion is easily promoted, and temperature spots are generated in the width direction, which affects the lateral stretchability. That is, when the temperature is higher than this temperature, neck stretching at the end of the film is likely to occur, and the substantial magnification of the coat portion decreases, and it is necessary to excessively increase the lateral stretching ratio in order to impart the desired performance to the stretched film. Therefore, the cutting frequency increases and the operability deteriorates. Like the film temperature, by making the film temperature difference in the width direction as small as possible, particularly good stretchability for nylon 6 is achieved.
[0016]
As described above, only when the temperature of the coated longitudinally stretched film is controlled so as to satisfy the above optimum conditions, drying of the coating liquid, adhesion between the coating film and the base film, and preheating for transverse stretching are sufficient. As a result, stretchability and operability are improved, and the coating film adhesion of the resulting surface-coated polyamide film is improved.
[0017]
In the present invention, the coating method is not particularly limited, and for example, a gravure roll method, a reverse roll method, an air knife method, a reverse gravure method, a Mayer bar method, an inverse roll method, and various coating methods based on a combination thereof are adopted. It can be appropriately selected depending on the characteristics of the coating liquid and the target coating thickness. However, in order to increase the efficiency of drying performed in the subsequent steps, those that can be applied as uniformly as possible are preferable.
[0018]
In the present invention, the coating is performed on a portion other than the portion gripped by the tenter clip. When it is applied to the entire surface, it is introduced into the tenter in a non-dried state, which is not preferable because the tenter clip is soiled and causes various troubles such as the clip coming off.
[0019]
Desirably, the drying in the preheated part after coating is performed by a method having the highest possible drying efficiency. For example, it is preferable to use a device having a structure in which hot air blowing nozzles are arranged at the top and bottom and the amount of hot air can be adjusted at a specific position in the width direction that can achieve the temperature condition. Thereby, the temperature difference between the coated part and the non-coated part can be minimized, and the stretchability can be improved.
[0020]
【Example】
Next, the present invention will be described specifically by way of examples.
The measuring method of the characteristic value in the present invention is as follows.
(1) Film surface temperature The film temperature immediately before transverse stretching was measured with a radiation thermometer manufactured by Horiba, Ltd.
The measurement positions were coated and uncoated, and 10 points were measured and averaged.
(2) Stretchability The frequency of fracture during transverse stretching was evaluated according to the following criteria.
○: Fracture hardly occurs during transverse stretching.
Δ: Occasionally breaks during transverse stretching.
X: Breaking frequently occurs during transverse stretching.
(3) Adhesiveness of the coating film A cellophane tape (manufactured by Nichiban Co., Ltd.) was applied to the coated surface of the coated film after stretching, peeled off rapidly, and evaluated according to the following criteria based on the degree of peeling of the coating film.
○: The coating film is not peeled off at all.
(Triangle | delta): A coating film peels partially.
X: The coating film is almost peeled off.
[0021]
Example 1
Nylon 6 with a melting point of 220 ° C is melt-extruded in a sheet form from a T-die at 260 ° C, and then cooled tightly by an air knife casting method, and is oriented in a virtually amorphous form with a thickness of 130 µm. An unstretched polyamide film was obtained. Next, this unstretched film was stretched by 2.75 times at a temperature of 55 to 62 ° C. by a longitudinal stretching machine composed of a group of heating rollers having different peripheral speeds to obtain a longitudinally stretched polyamide film. An amount of 3.6 g / m 2 · wet using a Mayer bar coater with an aqueous coating solution with a solid content of 6% by weight, consisting of a water-soluble polyurethane and a melamine formaldehyde-based curing agent, with the exception of 30 mm at the edge. Coated with. Next, the coated longitudinally stretched film was introduced into the tenter, the film temperature of the coated part immediately before transverse stretching in the preheated part was 45 ° C., the film temperature of the uncoated part was 50 ° C., and the coating liquid was substantially dried. The film was transversely stretched 3.4 times at -100 ° C and heat-treated at 150-210 ° C to obtain a surface-coated biaxially stretched polyamide film having a thickness of 15 µm.
[0022]
Examples 2-3
A biaxially stretched polyamide film having a surface coating thickness of 15 μm was obtained in the same manner as in Example 1 except that the film temperature of the coated part and the film temperature of the non-coated part immediately before transverse stretching were changed as shown in Table 1. It was.
[0023]
Example 4
A surface of 16.3 μm thick was coated in the same manner as in Example 2 except that 45% by weight latex of polyvinylidene chloride copolymer was coated by air knife coating in an amount of 15 g / m 2 · wet. A biaxially stretched polyamide film was obtained.
[0024]
Comparative Examples 1-3
A biaxially stretched polyamide film having a surface coating thickness of 15 μm was obtained in the same manner as in Example 1 except that the film temperature of the coated part and the film temperature of the non-coated part immediately before transverse stretching were changed as shown in Table 1. It was.
[0025]
Table 1 shows the results of evaluating the stretchability and coating film adhesion in the above Examples and Comparative Examples.
[0026]
[Table 1]
[0027]
In the examples of the present invention, a surface-coated biaxially stretched film having good stretchability and good coating film adhesion was obtained.
On the other hand, in Comparative Example 1, the film was insufficient for film stretching, and the clip was often detached or cut. Moreover, the obtained film was inferior in the adhesiveness of a coating film and a base film because of insufficient drying of a coating liquid.
In Comparative Example 2, there was no problem in the adhesion of the coating film, but a neck occurred at the end due to a large temperature difference between the coated part and the non-coated part.
In Comparative Example 3, the coating liquid was sufficiently dried in the preheated part, but the crystallization of the longitudinally stretched film remarkably progressed, and breakage occurred during transverse stretching.
[0028]
【The invention's effect】
According to the present invention, in the preheating part in the tenter, it is possible to uniformly perform preheating for drying of the coating liquid, adhesion between the coating film and the base film and film stretching in the width direction. The physical properties, lateral stretchability, and operability of the film can be improved. Further, the method of the present invention does not require a special drying step after coating, and has a great economic effect.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP894696A JP3670742B2 (en) | 1996-01-23 | 1996-01-23 | Method for producing polyamide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP894696A JP3670742B2 (en) | 1996-01-23 | 1996-01-23 | Method for producing polyamide film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09193242A JPH09193242A (en) | 1997-07-29 |
JP3670742B2 true JP3670742B2 (en) | 2005-07-13 |
Family
ID=11706846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP894696A Expired - Lifetime JP3670742B2 (en) | 1996-01-23 | 1996-01-23 | Method for producing polyamide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3670742B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7522012B2 (en) * | 2020-11-18 | 2024-07-24 | 日東電工株式会社 | Film manufacturing system and film manufacturing method |
-
1996
- 1996-01-23 JP JP894696A patent/JP3670742B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09193242A (en) | 1997-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020031651A1 (en) | Multilayer metallized polyolefin film | |
CN112238663A (en) | In-line coated biaxially oriented polyethylene film and method of making same | |
JP2007185898A (en) | Biaxially oriented polyester film and its manufacturing process | |
US6764751B2 (en) | Coated multilayer polyethylene film | |
JP3670742B2 (en) | Method for producing polyamide film | |
JP4641673B2 (en) | Method for producing polyamide film | |
JP3948824B2 (en) | Method for producing stretched film and apparatus therefor | |
JP3640282B2 (en) | Method for producing biaxially stretched polyester film | |
JP4252122B2 (en) | Method for producing easy-adhesive biaxially stretched polyamide film | |
JPH1016047A (en) | Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture | |
JPH1134259A (en) | Biaxially oriented polyamide film having easily adhesive properties and production thereof | |
JP3460295B2 (en) | Heat and moisture resistant vapor deposition film | |
JPH08197620A (en) | Manufacture of biaxially oriented polyamide film | |
JP2000301604A (en) | Production of easy adhesive polyamide film | |
JPH0716920A (en) | Method for successively biaxial orientation of crystalline polymer film | |
JP2000143830A (en) | Production of thermoplastic resin sheet | |
JPH10258459A (en) | Production of biaxially stretched polyamide film | |
JPH11348115A (en) | Production of simultaneously biarxially stretched polyamide film | |
JPH10296853A (en) | Manufacture of biaxially oriented polyamide film | |
JPH0367495B2 (en) | ||
JP2001341198A (en) | Biaxially stretched polyamide film and method for manufacturing the same | |
JPH09286054A (en) | Production of biaxially stretched polyamide film | |
JP3870746B2 (en) | Method for producing thermoplastic resin sheet | |
JPH11147254A (en) | Manufacture of polyamide film | |
JPH06335993A (en) | Surface coated thermoplastic resin film and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050415 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080422 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090422 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100422 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110422 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110422 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120422 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120422 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130422 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140422 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |