JP4252122B2 - Method for producing easy-adhesive biaxially stretched polyamide film - Google Patents

Method for producing easy-adhesive biaxially stretched polyamide film Download PDF

Info

Publication number
JP4252122B2
JP4252122B2 JP09120998A JP9120998A JP4252122B2 JP 4252122 B2 JP4252122 B2 JP 4252122B2 JP 09120998 A JP09120998 A JP 09120998A JP 9120998 A JP9120998 A JP 9120998A JP 4252122 B2 JP4252122 B2 JP 4252122B2
Authority
JP
Japan
Prior art keywords
film
temperature
biaxially stretched
polyamide
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09120998A
Other languages
Japanese (ja)
Other versions
JPH11286046A (en
Inventor
健一 山岸
豊樹 宇山
岳博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP09120998A priority Critical patent/JP4252122B2/en
Publication of JPH11286046A publication Critical patent/JPH11286046A/en
Application granted granted Critical
Publication of JP4252122B2 publication Critical patent/JP4252122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、易接着性の逐次二軸延伸ポリアミドフィルムの製造法に関するものである。
【0002】
【従来の技術】
二軸延伸ポリアミドフィルムは、機械的特性、光学的特性、熱的特性、バリアー性をはじめとして、耐摩耗性、耐衝撃性、耐ピンホール性などに優れていることから、食品その他の包装材料用フィルムとして広く利用されている。
【0003】
ポリアミドフィルムを食品包装用途として使用する場合、シーラントフィルムとラミネートして用いられるが、両フィルム間の接着力が弱いと、殺菌のためのボイル処理やレトルト処理を施す際に基材のポリアミドフィルムとシーラントフィルムとの間で剥離する、いわゆるデラミ現象が発生するという問題がある。
【0004】
ラミネート加工を行う場合、酢酸エチルやメチルエチルケトンのような有機溶剤で希釈した接着剤を使用するのが一般的である。この場合、フィルムのラミネート加工工程において、塗膜の耐溶剤性が悪いとロール上の有機溶剤によって塗膜が剥がれてしまい、性能が極端に低下してしまうという問題があった。
さらに、ポリアミドフィルムは、印刷して用いられる場合が多く、印刷インキとの接着性も必要とされる。
【0005】
従来より、ポリアミドフィルムに易接着性を付与するための表面処理を施すことが行われている。例えば、特公平3− 55302号公報には、易接着性ポリアミドフィルムを製造する際に、未延伸フィルムにポリウレタン樹脂及びメラミン系架橋剤を含有した水性エマルジョンを塗布し、乾燥した後、同時二軸延伸し、熱セットする方法が開示されている。
しかし、この公報に開示された組成の水性エマルジョンを用いる場合、高温で処理しないと架橋反応が円滑に進行せず、縦延伸後に水性エマルジョンを塗布し、乾燥、予熱後、横延伸する逐次二軸延伸法には適用できなかった。すなわち、逐次二軸延伸法では、縦延伸後のフィルムを高温で処理すると横延伸が困難となるため、低温で乾燥、予熱することが必要であり、塗膜の形成が不完全で、耐溶剤性に問題があった。
【0006】
【発明が解決しようとする課題】
本発明は、逐次二軸延伸法による、耐溶剤性の優れた易接着性二軸延伸ポリアミドフィルムを提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明者らは前記事情に鑑み、易接着性ポリアミドフィルムを逐次二軸延伸法で得る方法について鋭意検討した結果、易接着性樹脂の性状および予熱、延伸温度を適切に選択することにより、予熱温度が低温でも易接着層の優れた密着性が得られ、さらには耐溶剤性に優れた二軸延伸ポリアミドフィルムが得られることを見いだし本発明を完成した。
【0008】
すなわち、本発明の要旨は、次の通りである。
実質的に無定形、無配向の未延伸ポリアミドフィルムを一連のロール群からなる縦延伸機で縦延伸し、この縦延伸フィルムの少なくともその片面に水性ポリウレタン系エマルジョン(A)とメラミン系架橋剤(B)の混合液をコーティングした後、テンター式横延伸機で予熱、横延伸して易接着性タイプの逐次二軸延伸ポリアミドフィルムを製造する方法において、下記式(1)〜(2)を満足する条件で予熱とともに水分の乾燥をし、下記式(3)を満足する条件で横延伸し、下記式(4)を満足する条件で熱セットすることを特徴とする易接着性二軸延伸ポリアミドフィルムの製造方法。
1 ≧Tmf(A) (1)
Tg ≦T1 ≦Tg +20℃ (2)
Tsf(A)≦T2 ≦Tg +60℃ (3)
3 ≧Tts(B) (4)
ここでT1 は予熱温度、T2 は横延伸温度、T3 は熱セット温度、Tmf(A)はAの最低成膜温度、Tg はポリアミドのガラス転移温度、Tsf(A)はAの軟化開始温度、Tts(B)はBの架橋反応開始温度を示す。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明においてポリアミドとは、配向結晶性を有する熱可塑性ポリアミドを意味する。このようなポリアミドの具体例としては、ナイロン6、ナイロン66
ナイロン610、ナイロン11、ナイロン12、ナイロンMXD6(ポリメタキシリレンアジパミド)及びこれらを主体とする共重合体及び混合物が挙げられる。特に好ましいものは、コストパフォーマンスに優れるナイロン6である。
なお、これらのポリアミドには必要に応じ、フィルムの性能に悪影響を与えない範囲で、滑剤、帯電防止剤、ブロッキング防止剤、無機微粒子等各種添加剤を含有させることができる。
【0010】
本発明においては、まず、常法に従って、実質的に無定形、無配向の未延伸ポリアミドフィルムを得る。例えば、ポリアミドチップを押出機で加熱溶融してTダイからフィルム状に押出し、これをエアーナイフキャスト法、静電印加キャスト法などの公知のキャスティング法で回転する冷却ドラム上で冷却固化して急冷製膜する。
【0011】
次に、未延伸フィルムを周速の異なる加熱ローラ群からなるローラ式縦延伸機に供給し、延伸のための予熱を行った後、未延伸フィルムのガラス転移点以上の温度に加熱された延伸ロールと冷却ロールとの間で、 2.7〜3.6 倍に延伸して縦延伸フィルムをつくる。
【0012】
次に、上記の縦延伸フィルムに水性ポリウレタン系エマルジョン(A)とメラミン系架橋剤(B)の混合液を横延伸後の厚みが0.03〜0.1μmとなるように少なくともその片面にコーティングした後、テンター予熱部へ導き、水分の乾燥及びフィルム横延伸のための予熱を行う。
【0013】
本発明では、予熱温度(T1 )を下記式1〜2に示す条件で製造することが必要である。
1 ≧Tmf(A) (1)
Tg ≦T1 ≦Tg +20℃ (2)
ここで、Tmf(A)はAの最低成膜温度、Tg はポリアミドのガラス転移温度である。
【0014】
予熱温度を式(1)の条件を満たすようにするのは、横延伸前にポリウレタン樹脂皮膜を適切に形成させるためである。式(1)を満たさない場合、横延伸後のフィルムにポリウレタン樹脂皮膜が形成されない。
また、予熱温度を式(2)の条件を満たすようにするのは横延伸を均一に行うためである。予熱温度がTg より低いと、横延伸初期でフィルムが破断し、またTg +20℃より高いと縦延伸フィルムの結晶化が過度に進行して、横延伸時にフィルムが破断したり、たとえ延伸できたとしても、フィルムの長さ方向にネックが発生して製品としての価値が低下する。
【0015】
次に、本発明では、予熱された縦延伸フィルムを、下記式(3)を満たす延伸温度(T2 )で横方向に3.0〜5.0倍延伸する。
Tsf(A)≦T2 ≦Tg +60℃ (3)
ここで、Tsf(A)はAの軟化開始温度を示す。
【0016】
横延伸温度を式(3)の条件を満たすようにするのは、横延伸後に均一な皮膜を形成させるためである。
横延伸温度がAの軟化開始温度より低い場合には、横延伸時に皮膜にクラックが発生するため、フィルムの耐溶剤性、接着性が低下する。また、Tg +60℃より高いと、横延伸時にフィルムの破断が頻発したり、延伸が不均一となり厚み斑が大きくなる。
【0017】
このようにして得られた二軸延伸フィルムは寸法安定性を付与するために下記式(4)を満たす温度条件で熱セットを行う。
3 ≧Tts(B)
ここで、T3 は熱セット温度、Tts(B)はBの架橋反応開始温度を示す。
【0018】
熱セット温度がBの架橋反応開始温度より低いと、ポリウレタンと架橋剤との反応が起こらないため、皮膜の耐溶剤性、接着性が得られない。
3 は、Bの架橋反応開始温度以上で、フィルムの強度に影響を与えない範囲で適宜選択すればよい。
なお、Bの種類としては、高収縮フィルムを得るには通常低温セットを行うため、架橋反応温度の低いものを使用する。
【0019】
本発明で用いられる水性ポリウレタン系エマルジョン(A)としてはアイオノマー型自己乳化型ポリウレタン樹脂、アイオノマー型自己乳化型ポリウレタン−ポリ尿素樹脂などが挙げられる。
耐溶剤性を高めるためには、少なくとも両成分のどちらか一方に芳香族系の成分を用いることが好ましい。また、接着性を高めるためには、ポリマー主鎖あるいは末端に、水酸基、カルボキシル基、アミノ基を導入したものを用いることが好ましい。
【0020】
メラミン系架橋剤(B)としてはメラミンをメチロール化したものが用いられ、反応性の制御、貯蔵安定性を付与するために、メチロール基をアルコキシル化したものを用いるのが一般的である。なお、アルコキシル基としてはメトキシ基、エトキシ基、プロポキシ基、ブトキシ基などがあげられる。また、必要に応じて、架橋触媒を添加してもよい。架橋触媒としては、たとえばパラトルエンスルホン酸が挙げられる。
【0021】
メラミン系架橋剤(B)の添加量は、Aが90〜100重量部に対して、5〜7重量部が好ましい。
(B)の添加量が、5重量部より少ないと耐溶剤性が不十分となり、7重量部より多くしても耐溶剤性は飽和するので経済的でない。また、必要に応じて、架橋触媒を架橋剤の量に対して5〜7重量%を加えることにより架橋反応を促進させることができる。
【0022】
本発明における易接着コート液には、必要に応じて、接着性に影響を与えない範囲で、帯電防止剤やスリップ剤など公知の各種添加剤を加えることができる。また塗工性を向上させるため消泡剤、界面活性剤を加えることができる。
【0023】
なお、水性エマルジョン混合液の貯蔵方法としては、貯蔵中における架橋反応を抑制するために凍結しない範囲でできるだけ低温が好ましく、たとえば貯蔵タンクの表面に10〜20℃程度の冷却水を流すなどの方法を用いればよい。
【0024】
フィルムを延伸した後の皮膜の厚みは0.03〜0.1μmが好ましく、さらに好ましくは0.05〜0.08μmである。皮膜の厚みが0.03μmより薄い場合には十分な接着性が得られず、0.1μmより厚くしても性能が飽和するため、それ以上の厚みを塗工しても経済的ではない。
【0025】
本発明においては、皮膜のコーティング方法は特に限定するものではなく、例えばグラビアロール法、リバースロール法、エアーナイフ法、リバースグラビア法、マイヤーバー法、インバースロール法、又はこれらの組み合わせによる各種コーティング方式や、各種噴霧方式などを採用することができる。
また、縦延伸機とコーターの間にコロナ処理装置などを設置し、縦延伸後のフィルムの濡れ張力を調整することができる。
【0026】
このようにして得られた二軸延伸ポリアミドフィルムはフィルムの寸法安定性を付与するために必要に応じてリラックス処理が施される。
その後、フィルムをクリップから解放し、端部の未延伸残部をトリミングし、残りを製品として巻き取る。
【0027】
次に、実施例に基づいて本発明を具体的に説明する。
本発明における評価方法は次の通りである。
【0028】
(1) 耐溶剤性
コートフィルム(二軸延伸フィルム)を酢酸エチルに20℃で3分間浸漬し、風乾後、塗布量を定量し、塗布量の減少率を求め、次の4段階で評価した。
◎:30重量%未満
○:30〜40重量%
△:40重量%〜60重量%未満
×:60重量%以上
なお、塗布量の定量は次のようにして行った。
易接着処理フィルムには、架橋剤に由来するメラミン環が存在し、260〜300 nm に特有の紫外吸収を示す。このため、易接着処理をしていない基材フィルムと易接着処理フィルムの紫外線吸収スペクトルの差スペクトル (面積) を求めれば塗布量の定量が可能となる。
そこで、あらかじめ塗布量が既知のコートフィルムで塗布量検量線を作成しておき、コートフィルムの塗布量を定量した。
(2) ラミネート強力
易接着処理フィルムと無延伸ポリプロピレンフィルム:(東レ合成社製「トレファン」、厚み60μm)とを、ポリウレタン系接着剤を使用して、ドライラミネートした。
このラミネートフィルムから幅15mmの試験片を採取し、20℃、65%RHの雰囲気中で、島津製作所製引張試験機 AGS−100B型を用い、Tピール法で、引張速度300mm/分で、試験片の端部からフィルム界面を剥離し、強力を測定した。
(3) インキ接着性
コートフィルムにポリウレタン系インキを塗布し、乾燥後、ニチバン社製セロハンテープを空気が混入しないようにインキ面に貼付し、180°の方向に一気に剥離し、インキの剥がれた面積の比率により、次の4段階で評価した。
◎:30%未満
○:30〜40%
△:40%〜60%未満
×:60%以上
(4) 最低成膜温度
温度勾配板法により測定した(T. F. Protzman, G. L. Brown, J. Appl.
Polymer Sci., 4, 81(1960))。
(5) 軟化点
JIS−K−7196に従い測定した。
【0029】
実施例1
ナイロン6(融点:220℃、Tg 45℃)を温度260℃で、幅600mmのTダイよりシート状に溶融押出した後、エアーナイフキャスト法により温度25℃の回転ドラムに密着させて急冷し、厚さ155μm の実質的に無定形で配向していない未延伸ポリアミドフィルムを得た。
次いで、この未延伸フィルムを周速の異なる加熱ローラ群からなる縦延伸機により、温度55〜62℃、延伸倍率として2.8倍に縦延伸して縦延伸フィルムを得た。
続いて、この縦延伸フィルムに固形分濃度6重量%でPH9.0に調整された水性ポリウレタン系エマルジョン(A)(大日本インキ化学工業社製 ハイドラン )(Tmf=約0℃、Tsf=80℃)100重量部に対して、トリ(メトキシメチル)メラミン樹脂(B)(Tts=150℃)7重量部を混合した液を、マイヤーバーコータを用いて横延伸後の厚みが0.07μmとなるようにコーティングした。
次いで、テンターに導き、予熱部において温度60℃で乾燥して塗膜を成膜し、温度90℃で3.7倍に横延伸した後、215℃で熱処理し、厚さ15μm の表面コートされた二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
【0030】
実施例2
Tmf=62℃、Tsf=80℃の水性ポリウレタン系エマルジョン(A)を用い、予熱温度を65℃とした以外は、実施例1と同様にして厚さ15μmの表面コートされた二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
【0031】
実施例3
Tmf=40℃、Tsf=90℃の水性ポリウレタン系エマルジョン(A)を用い、横延伸温度を100℃とした以外は、実施例1と同様にして厚さ15μmの表面コートされた二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
【0032】
実施例4
Tts=120℃のメラミン系架橋剤を用い、熱セット温度を130℃とした以外は、実施例1と同様にして厚さ15μmの表面コートされた熱収縮性二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
【0033】
実施例5
ポリアミドとしてポリメタキシリレンアジパミド(MXD6、Tg75℃)を用い、縦延伸温度を85℃とし、予熱温度を90℃、横延伸温度を95℃とした以外は、実施例2と同様にして厚さ15μmの表面コートされた二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
【0034】
比較例1
予熱温度を60℃とした以外は、実施例2と同様にして厚さ15μmの表面コートされた二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
この場合には、予熱部で皮膜の成膜がなされないまま横延伸されたので、耐溶剤性、接着性の劣るフィルムであった。
【0035】
比較例2
Tmf=約0℃、Tsf=100℃の水性ポリウレタン系エマルジョン(A)を用いた以外は、実施例1と同様にして厚さ15μmの表面コートされた二軸延伸ポリアミドフィルムを得た。
製造条件および特性値を表1に示す。
得られたフィルムの性能を表1に示した。
得られたフィルムは、横延伸時に皮膜が追従せず、耐溶剤性、接着性の劣るフィルムであった。
【0036】
比較例3
Tmf=70℃、Tsf=80℃の水性ポリウレタン系エマルジョン(A)を用い、予熱温度を75℃とした以外は実施例1と同様にして厚さ15μmの表面コートされた二軸延伸ポリアミドフィルムを得た。
この場合には、予熱温度が高すぎたため、基材フィルムの結晶化が進行し、フィルムの切断が頻発した。
【0037】
比較例4
Tmf=62℃、Tsf=100℃の水性ポリウレタン系エマルジョン(A)を用いた以外は、実施例1と同様にして厚さ15μmの表面コートされた二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
この場合には、予熱部における皮膜の成膜が行われず、耐溶剤性、接着性の劣るフィルムであった。
【0038】
比較例5
Tsf=120℃の水性ポリウレタン系エマルジョン(A)を用い、横延伸温度を125℃とした以外は、実施例1と同様にして厚さ15μmの表面コートされた二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
この製造方法では横延伸温度が高すぎたため、横延伸工程での配向結晶化が過度に進行し、部分的にネックが発生し、厚み斑の大きいフィルムであった。
【0039】
比較例6
Tts=150℃のメラミン系架橋剤(B)を用いた以外は、実施例4と同様にして厚さ15μmの表面コートされた熱収縮性二軸延伸ポリアミドフィルムを得た。
得られたフィルムの性能を表1に示した。
この場合には、熱セット部における架橋が進行せず、耐溶剤性、ならびに接着性の乏しいフィルムであった。
【0040】
【表1】

Figure 0004252122
【0041】
【発明の効果】
本発明によれば、逐次二軸延伸法により、耐溶剤性及び基材フィルムとの密着性に優れた塗膜を有する易接着性二軸延伸ポリアミドフィルムが提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an easy-adhesive sequential biaxially stretched polyamide film.
[0002]
[Prior art]
Biaxially stretched polyamide film is excellent in mechanical properties, optical properties, thermal properties, barrier properties, wear resistance, impact resistance, pinhole resistance, etc. Widely used as an industrial film.
[0003]
When the polyamide film is used for food packaging, it is used by laminating it with a sealant film. However, if the adhesive strength between the two films is weak, the base film is used for boiling and retorting for sterilization. There is a problem that a so-called delamination phenomenon occurs in which the film peels off from the sealant film.
[0004]
When laminating, it is common to use an adhesive diluted with an organic solvent such as ethyl acetate or methyl ethyl ketone. In this case, in the laminating process of the film, if the solvent resistance of the coating film is poor, the coating film is peeled off by the organic solvent on the roll, and the performance is extremely lowered.
Furthermore, the polyamide film is often used after printing, and also requires adhesion with printing ink.
[0005]
Conventionally, surface treatment for imparting easy adhesion to a polyamide film has been performed. For example, in Japanese Patent Publication No. 3-55302, when producing an easily adhesive polyamide film, an aqueous emulsion containing a polyurethane resin and a melamine-based crosslinking agent is applied to an unstretched film, dried, and simultaneously biaxial A method of stretching and heat setting is disclosed.
However, when an aqueous emulsion having the composition disclosed in this publication is used, the cross-linking reaction does not proceed smoothly unless it is treated at a high temperature. After the longitudinal stretching, the aqueous emulsion is applied, dried, preheated, and then stretched laterally. It could not be applied to the stretching method. That is, in the sequential biaxial stretching method, if the film after longitudinal stretching is processed at a high temperature, it becomes difficult to perform transverse stretching. Therefore, it is necessary to dry and preheat at a low temperature. There was a problem with sex.
[0006]
[Problems to be solved by the invention]
The present invention is intended to provide an easy-adhesive biaxially stretched polyamide film having excellent solvent resistance by a sequential biaxial stretching method.
[0007]
[Means for Solving the Problems]
In view of the above circumstances, the present inventors have intensively studied a method for obtaining an easy-adhesive polyamide film by a sequential biaxial stretching method, and as a result, by appropriately selecting the property and preheating of the easy-adhesive resin and the stretching temperature, preheating is possible. The present invention was completed by finding that a biaxially stretched polyamide film having excellent adhesiveness of the easy-adhesive layer was obtained even at low temperatures, and further having excellent solvent resistance.
[0008]
That is, the gist of the present invention is as follows.
A substantially amorphous, non-oriented unstretched polyamide film is longitudinally stretched by a longitudinal stretching machine comprising a series of roll groups, and an aqueous polyurethane emulsion (A) and a melamine crosslinking agent (on at least one side of the longitudinally stretched film ( After coating the mixed solution of B), the following formulas (1) to (2) are satisfied in the method of producing an easy-adhesive type sequential biaxially stretched polyamide film by preheating and transverse stretching with a tenter type transverse stretching machine. The preadhesive biaxially stretched polyamide is characterized in that moisture is dried together with preheating under the conditions of the above, transversely stretched under the conditions satisfying the following formula (3), and heat-set under the conditions satisfying the following formula (4): A method for producing a film.
T 1 ≧ Tmf (A) (1)
Tg ≦ T 1 ≦ Tg + 20 ℃ (2)
Tsf (A) ≦ T 2 ≦ Tg + 60 ° C. (3)
T 3 ≧ Tts (B) (4)
Here, T 1 is the preheating temperature, T 2 is the transverse stretching temperature, T 3 is the heat setting temperature, Tmf (A) is the minimum film forming temperature of A, Tg is the glass transition temperature of polyamide, and Tsf (A) is the softening of A. The onset temperature, Tts (B), indicates the onset temperature of the B crosslinking reaction.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, the polyamide means a thermoplastic polyamide having oriented crystallinity. Specific examples of such polyamides include nylon 6 and nylon 66.
Nylon 610, nylon 11, nylon 12, nylon MXD6 (polymetaxylylene adipamide) and copolymers and mixtures based on these. Particularly preferred is nylon 6 which is excellent in cost performance.
These polyamides may contain various additives such as a lubricant, an antistatic agent, an antiblocking agent, and inorganic fine particles as long as they do not adversely affect the performance of the film.
[0010]
In the present invention, first, a substantially amorphous and non-oriented unstretched polyamide film is obtained according to a conventional method. For example, polyamide chips are heated and melted with an extruder and extruded from a T-die into a film shape, which is cooled and solidified on a cooling drum that rotates by a known casting method such as an air knife casting method or an electrostatic application casting method, and then rapidly cooled. Form a film.
[0011]
Next, the unstretched film is supplied to a roller-type longitudinal stretching machine composed of a group of heating rollers having different peripheral speeds, preheated for stretching, and then stretched to a temperature equal to or higher than the glass transition point of the unstretched film. A longitudinally stretched film is formed by stretching 2.7 to 3.6 times between the roll and the cooling roll.
[0012]
Next, at least one side of the above-mentioned longitudinally stretched film is coated with a mixed solution of an aqueous polyurethane emulsion (A) and a melamine crosslinking agent (B) so that the thickness after transverse stretching is 0.03 to 0.1 μm. Then, it leads to a tenter preheating part and performs preheating for drying of moisture and film transverse stretching.
[0013]
In the present invention, it is necessary to manufacture the preheating temperature (T 1 ) under the conditions shown in the following formulas 1 and 2.
T 1 ≧ Tmf (A) (1)
Tg ≦ T 1 ≦ Tg + 20 ℃ (2)
Here, Tmf (A) is the minimum film forming temperature of A, and Tg is the glass transition temperature of polyamide.
[0014]
The preheating temperature is made to satisfy the condition of the formula (1) in order to appropriately form the polyurethane resin film before transverse stretching. When the formula (1) is not satisfied, the polyurethane resin film is not formed on the film after transverse stretching.
In addition, the preheating temperature is made to satisfy the condition of the formula (2) in order to perform the horizontal stretching uniformly. When the preheating temperature is lower than Tg, the film is broken at the initial stage of transverse stretching, and when it is higher than Tg + 20 ° C., the crystallization of the longitudinally stretched film proceeds excessively, and the film is broken or even stretched during transverse stretching. Even so, a neck occurs in the length direction of the film, and the value as a product is lowered.
[0015]
Next, in the present invention, the preheated longitudinally stretched film is stretched 3.0 to 5.0 times in the transverse direction at a stretching temperature (T 2 ) that satisfies the following formula (3).
Tsf (A) ≦ T 2 ≦ Tg + 60 ° C. (3)
Here, Tsf (A) represents the softening start temperature of A.
[0016]
The reason why the transverse stretching temperature satisfies the condition of the formula (3) is to form a uniform film after the transverse stretching.
When the transverse stretching temperature is lower than the softening start temperature of A, the film is cracked during transverse stretching, so that the solvent resistance and adhesiveness of the film are lowered. On the other hand, when the temperature is higher than Tg + 60 ° C., the film frequently breaks during transverse stretching, or the stretching becomes uneven and the thickness unevenness increases.
[0017]
The biaxially stretched film thus obtained is heat-set under a temperature condition that satisfies the following formula (4) in order to impart dimensional stability.
T 3 ≧ Tts (B)
Here, T 3 represents a heat set temperature, and Tts (B) represents a crosslinking reaction initiation temperature of B.
[0018]
When the heat setting temperature is lower than the crosslinking reaction start temperature of B, the reaction between the polyurethane and the crosslinking agent does not occur, so that the solvent resistance and adhesion of the film cannot be obtained.
T 3 may be appropriately selected as long as it is not lower than the crosslinking reaction initiation temperature of B and does not affect the strength of the film.
In addition, as a kind of B, in order to obtain a high shrink film, since a low temperature setting is normally performed, the thing with low crosslinking reaction temperature is used.
[0019]
Examples of the aqueous polyurethane emulsion (A) used in the present invention include an ionomer type self-emulsifying polyurethane resin and an ionomer type self-emulsifying polyurethane-polyurea resin.
In order to improve the solvent resistance, it is preferable to use an aromatic component for at least one of both components. Moreover, in order to improve adhesiveness, it is preferable to use what introduce | transduced the hydroxyl group, the carboxyl group, and the amino group into the polymer principal chain or the terminal.
[0020]
As the melamine-based cross-linking agent (B), a melamine methylolated one is used, and a methylol group alkoxylated one is generally used in order to provide reactivity control and storage stability. Examples of the alkoxyl group include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group. Moreover, you may add a crosslinking catalyst as needed. Examples of the crosslinking catalyst include p-toluenesulfonic acid.
[0021]
As for the addition amount of a melamine type crosslinking agent (B), 5-7 weight part is preferable with respect to A for 90-100 weight part.
If the addition amount of (B) is less than 5 parts by weight, the solvent resistance becomes insufficient, and if it is more than 7 parts by weight, the solvent resistance is saturated, which is not economical. Moreover, a crosslinking reaction can be accelerated | stimulated by adding 5 to 7weight% of a crosslinking catalyst with respect to the quantity of a crosslinking agent as needed.
[0022]
Various known additives such as an antistatic agent and a slip agent can be added to the easy-adhesion coating solution in the present invention, as necessary, within a range that does not affect the adhesiveness. Further, an antifoaming agent and a surfactant can be added in order to improve coatability.
[0023]
In addition, as a storage method of the aqueous emulsion mixed solution, a low temperature is preferable as long as it is not frozen in order to suppress a crosslinking reaction during storage, for example, a method of flowing cooling water of about 10 to 20 ° C. over the surface of the storage tank. May be used.
[0024]
The thickness of the film after stretching the film is preferably 0.03 to 0.1 μm, more preferably 0.05 to 0.08 μm. When the thickness of the film is less than 0.03 μm, sufficient adhesiveness cannot be obtained, and even when the thickness is more than 0.1 μm, the performance is saturated, so it is not economical to apply a thickness larger than that.
[0025]
In the present invention, the coating method of the film is not particularly limited, for example, gravure roll method, reverse roll method, air knife method, reverse gravure method, Mayer bar method, inverse roll method, or various coating methods by a combination thereof. In addition, various spraying methods can be employed.
Moreover, a corona treatment apparatus etc. can be installed between a longitudinal stretch machine and a coater, and the wet tension of the film after longitudinal stretch can be adjusted.
[0026]
The biaxially stretched polyamide film thus obtained is subjected to a relaxation treatment as necessary in order to impart dimensional stability of the film.
The film is then released from the clip, the unstretched remainder at the end is trimmed, and the remainder is wound up as a product.
[0027]
Next, the present invention will be specifically described based on examples.
The evaluation method in the present invention is as follows.
[0028]
(1) A solvent-resistant coated film (biaxially stretched film) was immersed in ethyl acetate at 20 ° C. for 3 minutes, air-dried, the amount of coating was quantified, the rate of decrease in coating amount was determined, and the following four stages were evaluated. .
A: Less than 30% by weight B: 30-40% by weight
Δ: 40% by weight to less than 60% by weight x: 60% by weight or more The coating amount was determined as follows.
The easy adhesion treatment film has a melamine ring derived from a cross-linking agent and exhibits a characteristic ultraviolet absorption at 260 to 300 nm. For this reason, if the difference spectrum (area) of the ultraviolet absorption spectrum of the base film that has not been subjected to the easy adhesion treatment and the easy adhesion treatment film is obtained, the amount of coating can be quantified.
Therefore, a coating amount calibration curve was prepared in advance using a coat film with a known coating amount, and the coating amount of the coating film was quantified.
(2) Laminate strong easy-adhesion treated film and unstretched polypropylene film: (Toray Synthetic Co., Ltd. “Trephan”, thickness 60 μm) was dry laminated using a polyurethane adhesive.
A test piece having a width of 15 mm was taken from this laminate film and tested in an atmosphere of 20 ° C. and 65% RH using a tensile tester AGS-100B manufactured by Shimadzu Corporation at a tensile rate of 300 mm / min by the T peel method. The film interface was peeled off from the edge of the piece and the strength was measured.
(3) A polyurethane-based ink was applied to the ink adhesive coat film, and after drying, the cellophane tape made by Nichiban was applied to the ink surface so that air did not enter, and it was peeled off in a direction of 180 ° at once, and the ink was peeled off. The evaluation was made according to the following four stages according to the area ratio.
A: Less than 30% B: 30-40%
Δ: 40% to less than 60% ×: 60% or more
(4) Minimum film formation temperature Measured by temperature gradient plate method (TF Protzman, GL Brown, J. Appl.
Polymer Sci., 4, 81 (1960)).
(5) Softening point Measured according to JIS-K-7196.
[0029]
Example 1
Nylon 6 (melting point: 220 ° C., Tg 45 ° C.) was melt-extruded into a sheet form from a 600 mm wide T-die at a temperature of 260 ° C., and then closely cooled to a rotating drum at a temperature of 25 ° C. by an air knife casting method. An unstretched polyamide film having a thickness of 155 μm and substantially amorphous and not oriented was obtained.
Next, this unstretched film was stretched longitudinally at a temperature of 55 to 62 ° C. and a stretching ratio of 2.8 times by a longitudinal stretching machine composed of a group of heating rollers having different peripheral speeds to obtain a longitudinally stretched film.
Then, the longitudinally stretched film is adjusted to a solid concentration of 6 weight% pH 9.0 The aqueous polyurethane-based emulsion (A) (manufactured by Dainippon Ink and Chemicals, Inc. " Hydran ) (Tmf = about 0 ° C., Tsf = 80 ° C.) 100 parts by weight of tri (methoxymethyl) melamine resin (B) (Tts = 150 ° C.) 7 parts by weight was mixed using a Meyer bar coater Then, coating was performed so that the thickness after transverse stretching was 0.07 μm.
Next, it is led to a tenter and dried at a temperature of 60 ° C. in the preheated part to form a coating film. The film is stretched 3.7 times at a temperature of 90 ° C. and then heat-treated at 215 ° C. A biaxially stretched polyamide film was obtained.
The performance of the obtained film is shown in Table 1.
[0030]
Example 2
A biaxially stretched polyamide film with a surface coating of 15 μm in thickness was used in the same manner as in Example 1 except that the aqueous polyurethane emulsion (A) with Tmf = 62 ° C. and Tsf = 80 ° C. was used and the preheating temperature was 65 ° C. Got.
The performance of the obtained film is shown in Table 1.
[0031]
Example 3
A surface-coated biaxially stretched polyamide having a thickness of 15 μm in the same manner as in Example 1 except that the aqueous polyurethane emulsion (A) having Tmf = 40 ° C. and Tsf = 90 ° C. was used and the transverse stretching temperature was 100 ° C. A film was obtained.
The performance of the obtained film is shown in Table 1.
[0032]
Example 4
A heat-shrinkable biaxially stretched polyamide film having a surface coating thickness of 15 μm was obtained in the same manner as in Example 1 except that a melamine-based crosslinking agent having Tts = 120 ° C. was used and the heat setting temperature was 130 ° C.
The performance of the obtained film is shown in Table 1.
[0033]
Example 5
The thickness is the same as in Example 2 except that polymetaxylylene adipamide (MXD6, Tg 75 ° C.) is used as the polyamide, the longitudinal stretching temperature is 85 ° C., the preheating temperature is 90 ° C., and the transverse stretching temperature is 95 ° C. A biaxially stretched polyamide film having a thickness of 15 μm was obtained.
The performance of the obtained film is shown in Table 1.
[0034]
Comparative Example 1
A surface-coated biaxially stretched polyamide film having a thickness of 15 μm was obtained in the same manner as in Example 2 except that the preheating temperature was 60 ° C.
The performance of the obtained film is shown in Table 1.
In this case, the film was inferior in solvent resistance and adhesion because it was stretched in the preheated portion without being formed into a film.
[0035]
Comparative Example 2
A surface-coated biaxially stretched polyamide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the aqueous polyurethane emulsion (A) having Tmf = about 0 ° C. and Tsf = 100 ° C. was used.
Manufacturing conditions and characteristic values are shown in Table 1.
The performance of the obtained film is shown in Table 1.
The film obtained was a film with poor solvent resistance and adhesiveness because the film did not follow during transverse stretching.
[0036]
Comparative Example 3
A biaxially stretched polyamide film with a surface coating of 15 μm in thickness was used in the same manner as in Example 1 except that the aqueous polyurethane emulsion (A) with Tmf = 70 ° C. and Tsf = 80 ° C. was used and the preheating temperature was 75 ° C. Obtained.
In this case, since the preheating temperature was too high, crystallization of the base film progressed, and the film was frequently cut.
[0037]
Comparative Example 4
A surface-coated biaxially stretched polyamide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the aqueous polyurethane emulsion (A) having Tmf = 62 ° C. and Tsf = 100 ° C. was used.
The performance of the obtained film is shown in Table 1.
In this case, no film was formed in the preheated part, and the film had poor solvent resistance and adhesion.
[0038]
Comparative Example 5
A surface-coated biaxially stretched polyamide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the aqueous polyurethane emulsion (A) with Tsf = 120 ° C. was used and the transverse stretching temperature was 125 ° C.
The performance of the obtained film is shown in Table 1.
In this production method, since the transverse stretching temperature was too high, orientational crystallization in the transverse stretching process proceeded excessively, a neck was partially generated, and the film had a large thickness unevenness.
[0039]
Comparative Example 6
A heat-shrinkable biaxially stretched polyamide film having a surface coating thickness of 15 μm was obtained in the same manner as in Example 4 except that the melamine-based crosslinking agent (B) at Tts = 150 ° C. was used.
The performance of the obtained film is shown in Table 1.
In this case, the crosslinking in the heat setting part did not proceed, and the film had poor solvent resistance and adhesion.
[0040]
[Table 1]
Figure 0004252122
[0041]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the easy-adhesion biaxially stretched polyamide film which has a coating film excellent in solvent resistance and adhesiveness with a base film is provided by the sequential biaxial stretching method.

Claims (1)

実質的に無定形、無配向の未延伸ポリアミドフィルムを一連のロール群からなる縦延伸機で縦延伸し、この縦延伸フィルムの少なくともその片面に水性ポリウレタン系エマルジョン(A)とメラミン系架橋剤(B)の混合液をコーティングした後、テンター式横延伸機で予熱、横延伸して易接着性タイプの逐次二軸延伸ポリアミドフィルムを製造する方法において、下記式(1)〜(2)を満足する条件で予熱とともに水分の乾燥をし、下記式(3)を満足する条件で横延伸し、下記式(4)を満足する条件で熱セットすることを特徴とする易接着性二軸延伸ポリアミドフィルムの製造方法。
1 ≧Tmf(A) (1)
Tg ≦T1 ≦Tg +20℃ (2)
Tsf(A)≦T2 ≦Tg +60℃ (3)
3 ≧Tts(B) (4)
ここでT1 は予熱温度、T2 は横延伸温度、T3 は熱セット温度、Tmf(A)はAの最低成膜温度、Tg はポリアミドのガラス転移温度、Tsf(A)はAの軟化開始温度、Tts(B)はBの架橋反応開始温度を示す。
A substantially amorphous, non-oriented unstretched polyamide film is longitudinally stretched by a longitudinal stretching machine comprising a series of roll groups, and an aqueous polyurethane emulsion (A) and a melamine crosslinking agent (on at least one side of the longitudinally stretched film ( After coating the mixed solution of B), the following formulas (1) to (2) are satisfied in the method of producing an easy-adhesive type sequential biaxially stretched polyamide film by preheating and transverse stretching with a tenter type transverse stretching machine. The preadhesive biaxially stretched polyamide is characterized in that moisture is dried together with preheating under the conditions of the above, transversely stretched under the conditions satisfying the following formula (3), and heat-set under the conditions satisfying the following formula (4): A method for producing a film.
T 1 ≧ Tmf (A) (1)
Tg ≦ T 1 ≦ Tg + 20 ℃ (2)
Tsf (A) ≦ T 2 ≦ Tg + 60 ° C. (3)
T 3 ≧ Tts (B) (4)
Here, T 1 is the preheating temperature, T 2 is the transverse stretching temperature, T 3 is the heat setting temperature, Tmf (A) is the minimum film forming temperature of A, Tg is the glass transition temperature of polyamide, and Tsf (A) is the softening of A. The onset temperature, Tts (B), indicates the onset temperature of the B crosslinking reaction.
JP09120998A 1998-04-03 1998-04-03 Method for producing easy-adhesive biaxially stretched polyamide film Expired - Fee Related JP4252122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09120998A JP4252122B2 (en) 1998-04-03 1998-04-03 Method for producing easy-adhesive biaxially stretched polyamide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09120998A JP4252122B2 (en) 1998-04-03 1998-04-03 Method for producing easy-adhesive biaxially stretched polyamide film

Publications (2)

Publication Number Publication Date
JPH11286046A JPH11286046A (en) 1999-10-19
JP4252122B2 true JP4252122B2 (en) 2009-04-08

Family

ID=14020044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09120998A Expired - Fee Related JP4252122B2 (en) 1998-04-03 1998-04-03 Method for producing easy-adhesive biaxially stretched polyamide film

Country Status (1)

Country Link
JP (1) JP4252122B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012250389A (en) * 2011-06-01 2012-12-20 Asahi Kasei Chemicals Corp Method for forming oriented laminated film, oriented laminated film, pillow shrink package, and casing package

Also Published As

Publication number Publication date
JPH11286046A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP3493268B2 (en) Silicone release layer coated polyester film and film coating method
US5156904A (en) Polymeric film coated in-line with polyethyleneimine
EP0536766B1 (en) In-line silicone coated polyester film and a process for coating the film
EP0637603B1 (en) Polymeric film
EP0498249B1 (en) Process for producing shrink film and resultant shrink film layers and laminates
AU615241B2 (en) Production of polymeric films
BRPI0819881B1 (en) methods for producing a polyamide film with a vinylidene chloride copolymer layer and a laminate
JP2006009023A (en) Biaxially oriented polyester film and its production method
JP4252122B2 (en) Method for producing easy-adhesive biaxially stretched polyamide film
EP1337399A1 (en) Primer coating composition for multilayer films
JPH1134259A (en) Biaxially oriented polyamide film having easily adhesive properties and production thereof
NZ292443A (en) Biaxially oriented copolymer shrink film with high shrinkage in machine direction compared to transverse direction
JP3670742B2 (en) Method for producing polyamide film
JPH08506775A (en) In-line silicone coated biaxially oriented copolyester film and method for making the film
JP3915148B2 (en) Surface treatment plastic film
US20050158475A1 (en) Films and compositions
JPH11348115A (en) Production of simultaneously biarxially stretched polyamide film
JPS60264226A (en) Manufacture of coated stretched film
JPH0716920A (en) Method for successively biaxial orientation of crystalline polymer film
JPH05202214A (en) Polyester film having good bondability
JP3010628B2 (en) Transfer base film
KR20090067307A (en) A easy printable and laminatable nylon film and manufacturing method thereof
KR19980016222A (en) METHOD FOR PREPARING COMPOSITE TOTAL FILM FILM
JPH06210789A (en) Polypropylene film and its production
JPH08238728A (en) Gas barrier film and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees