JP3669340B2 - Oil refining method and refiner, and power plant - Google Patents

Oil refining method and refiner, and power plant Download PDF

Info

Publication number
JP3669340B2
JP3669340B2 JP2002087347A JP2002087347A JP3669340B2 JP 3669340 B2 JP3669340 B2 JP 3669340B2 JP 2002087347 A JP2002087347 A JP 2002087347A JP 2002087347 A JP2002087347 A JP 2002087347A JP 3669340 B2 JP3669340 B2 JP 3669340B2
Authority
JP
Japan
Prior art keywords
atmospheric distillation
oil
vanadium
heavy oil
distillation residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002087347A
Other languages
Japanese (ja)
Other versions
JP2003277770A (en
Inventor
信幸 穂刈
宏和 高橋
真一 稲毛
浩美 小泉
明典 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002087347A priority Critical patent/JP3669340B2/en
Publication of JP2003277770A publication Critical patent/JP2003277770A/en
Application granted granted Critical
Publication of JP3669340B2 publication Critical patent/JP3669340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界水で処理する工程を含む石油精製方法と石油精製装置、及び精製された油を燃料とする発電プラントに関する。
【0002】
【従来の技術】
石油精製において、各種留分を水素化処理する工程は多数あり、各種触媒が開発,利用されている。重質油の脱硫や、常圧蒸留残油の接触分解装置などでは、その触媒水素化処理においては、原料油に含まれるバナジウム等の金属が触媒粒子の外表面に堆積し、触媒細孔の入口を閉塞してしまう触媒被毒により、内部が有効に利用されず、触媒活性を長時間維持できない問題があった。
【0003】
これに対し、これまで、触媒設計、特に細孔径および担持金属の選定を最適化し、触媒活性を長寿命化させる技術が開発されてきた(例えば、特開2000−109852号公報参照)。また、水素化処理工程上流あるいは水素化処理工程内において、原料油からバナジウムなど金属を除去することを目的とした、脱金属触媒を使用する方法(例えば、特開2000−237857号公報)や、微生物を用いて金属を含む有機化合物を分解する手法(特開2000−69958号公報)などが知られている。
【0004】
これらの従来技術において、水素化処理用の触媒自体の改造、あるいは脱メタル触媒の使用においては、被毒防止と水素化反応促進を両立させる設計の難しさや、従来使用の触媒に比べ価格が上がる問題があった。また、被毒を完全に防ぐことはできないため、触媒が消耗品となり、再生も困難なため、ランニングコストが高くなる課題もある。これに対し、原料油から金属を予め除去する方法が有効であるが、微生物処理では高い脱金属率を得るために10〜100時間の処理が必要となり、プロセス内での連続処理が難しいという課題がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、水熱処理技術を用いて、原料油中のバナジウム等の金属を除去する方法を提供することにある。本発明の方法を採ることにより、各工程において水素化処理性能が最適の触媒を最適の条件で使用し、かつ、触媒被毒を抑制し長時間の使用が可能となる。また、短時間の反応による脱金属を可能とし、石油精製プロセス中の連続処理が可能とする。
【0006】
【課題を解決するための手段】
本発明は、バナジウム等の金属を含有する原油を常圧蒸留して得られる常圧蒸留残油、または該常圧蒸留残油を処理して得られる重質油を、水素化精製して精製油を得る石油精製方法において、該常圧蒸留残油または該重質油に、超臨界水または亜臨界水と、酸化剤を混合して、該常圧蒸留残油または該重質油中に含まれている金属のうち少なくともバナジウムを遊離し、次いで遊離したバナジウムを捕捉剤と接触させて、該バナジウムを捕捉,除去し、その後に水素化精製することを特徴とする石油精製方法にある。
【0007】
本発明はまた、バナジウム等の金属を含有する原油を蒸留する常圧蒸留装置と、該蒸留装置で得られた常圧蒸留残油または該常圧蒸留残油を処理して得られる重質油を水素化精製する水素化精製装置とを有する石油精製装置において、該常圧蒸留装置と該水素化精製装置の間に、該常圧蒸留残油、または該常圧蒸留残油を処理して得られる重質油に、超臨界水または亜臨界水と、酸化剤とを混合して、該常圧蒸留残油または該重質油に含まれる金属のうち少なくともバナジウムを遊離させる処理をする反応器と、該反応器を出た油を捕捉剤と接触させ、遊離したバナジウムを捕捉する捕捉器とを有する改質装置を備えたことを特徴とする石油精製装置にある。
【0008】
更に本発明は、バナジウム等の金属を含有する原油を蒸留する常圧蒸留装置と、該蒸留装置で得られた常圧蒸留残油を水素化精製する水素化精製装置と、該水素化精製装置で精製された精製油の少なくとも一部を燃料として発電するガスタービン発電装置を有する発電プラントにおいて、該常圧蒸留装置と該水素化精製装置の間に、該常圧蒸留残油、または該常圧蒸留残油を処理して得られる重質油に、超臨界水または亜臨界水と、酸化剤とを混合して、該常圧蒸留残油または該重質油に含まれる金属のうち少なくともバナジウムを遊離させる処理をする反応器と、該反応器を出た油を捕捉剤と接触させ、遊離したバナジウムを捕捉する捕捉器とを有する改質装置を備えたことを特徴とする発電プラントにある。
【0009】
本発明では、超臨界水と重質油を混合し、超臨界水の有機物溶媒としての特性と、加水分解剤としての特性を利用し、重質油中の除去対象物質を、重質油中の環状炭化水素分子あるいはポルフィリン構造中より脱離させる反応を起こさせる。このとき、バナジウム等の金属の除去反応を進行させるため、酸化剤を添加する。
【0010】
また、上記の超臨界水及び酸化剤との反応により分解した酸化バナジウムを、吸着,反応により原料油中から除去する。酸化バナジウムを吸着する方法としては、活性炭などによる物理吸着、あるいは触媒製造などに用いられる無機化合物による化学吸着がある。また、酸化バナジウムは、カルシウム,鉄などの金属と複合酸化物を生成するため、これらの金属を重質油中からバナジウムを除去する捕捉剤として使用することができる。さらに、原料油の一部より精製できる固形炭素(コーク)にバナジウムを捕捉する方法も可能である。この捕捉剤の使用により、除去対象物質を捕捉し、固体の形で系外に排出することが可能になる。系外に取り出した捕捉剤を処理することにより、バナジウムを単離し再生使用することも可能になる効果も得られる。
【0011】
本発明によれば、反応に使用する高温高圧水を、石油精製プラント内に設けた、ボイラあるいは発電設備の排熱回収熱交換器により生成し、所内用の熱あるいは電気供給システムと併用することにより、エネルギー使用量を節約した脱金属システムが可能となる。
【0012】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。
【0013】
なお、本実施例は本発明の具体的構成の一例を示しているに過ぎない。重質油中の金属、例えばバナジウムは、図4に例示するように、酸化バナジウムを中心とするポルフィリン形態、あるいは環状有機分子鎖のなかに存在することが知られている(例えばFish, R. H., Komlenic, J. J., Anal. Chem. 1984, 56(3), p510-517参照)。高温,高圧水は有機分子を溶媒中に分散させ、かつ加水分解作用により有機分子鎖を分解する作用がある。しかし、高温,高圧水のみの作用では、有機分子中のバナジウム化合物を分解する作用は得られない。類似の有機化合物の分解方法として、有機硫黄を、アルカリ金属を添加した超臨界水により分解する方法が知られているが、バナジウムはアルカリ添加によっても分解されることは無い。
【0014】
我々は、高温,高圧水と重質油を混合し、ここに酸化剤を添加することにより、バナジウムが有機分子中から分解,除去される反応が進行することを確認した。図5は、重質油,水,過酸化水素水を、高温,高圧状態で反応させたときの、バナジウム除去率を示したものである。温度の上昇とともにバナジウム除去率は向上する。この反応は図6に示したように、(1)有機炭化水素の部分酸化と、(2)COと水のシフト反応による水素発生、(3)COの有機分子中酸素への攻撃、(4)水素分子、および水の有機分子鎖開裂作用、(5)酸化剤によるバナジウム酸化作用、等が同時進行するものと考えられる。この反応により、有機分子中のバナジウムは分解除去され、酸化バナジウム分子として遊離する。
【0015】
(実施例1)
図1は本発明の一実施例を示している。油改質工程の反応器1の入口には、高温高圧水2と酸化剤3とバナジウム等の金属を含有する重質油4を取り入れる供給部が設置される。超臨界水の溶媒作用により水と重質油,酸化剤が混合した液体が反応器1内で脱金属反応を起こす。高温高圧水2と酸化剤3と重質油4との混合は、単純合流のほか、旋回流形成、あるいは対向流による衝突を利用して、混合を促進する方法も有効である。反応器1では図7に示した反応により、重質油中のバナジウム等の金属が有機分子中から脱離する反応が進行する。脱離反応を進行させるためには、反応器1出口までに、系が必要な温度,圧力条件になっていることが必要であり、本実施例のように予め高温高圧水を供給する構成の他にも、水と重質油を反応器1に供給した後に加熱することで、昇温,昇圧させる構成も取り得る。反応器1で脱金属改質された燃料と脱離した金属を含有する改質中間油5は、金属を分離するために設置された捕捉器6に送られる。図1に示された、反応器1と捕捉器6をつなぐ連結管が省略され、反応器1と捕捉器6が連続した構成も、もちろん取り得る。捕捉器6中には金属を捕捉する捕捉剤7が充填され、流通する液体中に含有されたバナジウム等の金属を、吸着あるいは反応により捕捉する。捕捉器6に捕捉剤7を滞留させる方法としては、目皿状の固定材により捕捉剤7を固定層として留まらせる方法の他に、捕捉剤を粒状とし、粒径を液体の線速度以上の終端速度をもつ大きさにすることで、流動層として留まらせる方法も取り得る。また、捕捉剤を成形して、板状あるいはハニカム状とし、隙間を液体が流通する方法も取り得る。捕捉剤7は、除去対象物質の捕捉を連続した結果、捕捉能力が飽和にいたるが、このような使用済み捕捉剤を排捕捉剤9として取り出す系統、あるいは新捕捉剤8を補給する系統が設けられた構成も取り得る。また、捕捉器6を複数配置し、順次使用する捕捉器を切り替え、あるいは一定時間毎に捕捉器の一部を停止する運転も可能であり、燃料流通を停止した捕捉器中の捕捉剤を交換する構成と運転方法も取り得る。捕捉器6で金属を除去された油は、捕捉剤、他の粒子を取り除く固液分離器10を通過し、改質油11として搬送される。金属を取り除いた油を、水素化精製装置13において精製し、精製油14として取り出すが、改質油11には触媒被毒原因であるバナジウム等の金属が含まれないか、非常に微量になっており、触媒活性を長く保ち、長時間の触媒使用が可能となる。水素化精製装置として、脱硫装置,改質装置,分解装置など多様な触媒装置が適用できることは言うまでも無い。
【0016】
(実施例2)
図2は本発明の他の実施例を示している。反応器1から捕捉器6を介して、脱金属された改質油11を供給する系統は、実施例1に示した構成と同様である。本実施例では、脱金属工程を、より具体的に石油精製工程に適用した構成を示している。原油16から常圧蒸留器15にて、ガス留分17,ナフサ留分18,灯油留分19,軽油留分20を取り出した後の、バナジウム等金属を多量に含む常圧蒸留残油が重質油4として、反応器1に供給される。常圧蒸留残油の段階で、脱金属工程を設け、触媒被毒物質である金属を一括除去することにより、水素化精製装置13,接触分解装置21,減圧蒸留装置22などの、触媒を使用し、あるいは触媒使用装置全流装置に、被毒物質を削減した油を送ることができ、触媒の長時間使用が可能となる。
【0017】
(実施例3)
図3は本発明の更に他の実施例を示している。常圧蒸留装置15から反応器1,捕捉器6を通じて油を脱金属し、各精製工程に送る構成は、実施例2と同様である。本実施例では、反応器1に必要となる高温高圧水2を、効率的に精製する構成を示した。本構成では精製油14を燃料として発電装置を駆動する。従来、バナジウム等の金属が含まれる油を燃焼させた場合、金属溶融塩を生成し、燃焼器あるいは後流機器の材料を腐食するため、燃料油への適用は難しい。しかし、本実施例の脱金属方法により、腐食原因となる金属を除去すれば、比較的重質な油も燃料として使用できる。精製油14はまさに上記のとおりの燃料油であり、これをガスタービン燃焼器28に供給し、圧縮機29で圧縮した空気30により燃焼し、ガスタービン32を駆動できる。ガスタービン32は発電機33を駆動し電力を発生すると同時に、発生した排ガス35より排熱回収熱交換器36で熱を取り出すことができる、熱電併給システムとなる。排熱回収熱交換器36で水37を加熱し、その全部あるいは一部を、脱金属装置用の高温高圧水2として供給する。この構成により、脱金属に必要な高温高圧水を得ると同時に、精製プラント所内に熱と電気を供給するシステムが構築でき、プラント効率を高めることができる。
【0018】
【発明の効果】
本発明によれば、石油精製工程中に、高温高圧水による水熱反応を利用した脱金属装置を設置することで、油中のバナジウム等金属を除去でき、触媒を用いる精製工程において、触媒の長時間使用が可能となり、運転コストの低減が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す重質油改質装置の概略図。
【図2】本発明の他の実施形態を示す重質油改質装置の概略図。
【図3】本発明の他の実施形態を示す重質油改質装置の概略図。
【図4】重質油中のバナジウム化合物形態の一例を示す図。
【図5】重質油中バナジウム除去反応実験の結果の一例を示す図。
【図6】重質油中のバナジウム除去反応機構の予想図。
【符号の説明】
1…反応器、2…高温高圧水、3…酸化剤、4…重質油、5…改質中間油、6…捕捉器、7…捕捉剤、10…固液分離器、11…改質油、12…水素、13…水素化精製装置、14…精製油、15…常圧蒸留装置、16…原油、17…ガス留分、18…ナフサ留分、19…灯油留分、20…軽油留分、21…流動接触分解装置、22…減圧蒸留装置、23…分解ガス、24…分解留出油、25…分解残油、26…減圧蒸留留分、27…減圧残油、28…重油燃焼器、29…圧縮機、30…圧縮空気、31…燃焼ガス、32…ガスタービン、33…発電機、34…空気、35…排ガス、36…排熱回収ボイラ、37…水。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil refining method and an oil refining apparatus including a step of treating with supercritical water, and a power plant using refined oil as fuel.
[0002]
[Prior art]
In petroleum refining, there are many processes for hydrotreating various fractions, and various catalysts have been developed and used. In desulfurization of heavy oil and catalytic cracking equipment of atmospheric distillation residue, metal such as vanadium contained in the raw material oil is deposited on the outer surface of the catalyst particles in the catalytic hydrogenation treatment, and the catalyst pores Due to the poisoning of the catalyst that closes the inlet, there is a problem that the inside is not used effectively and the catalytic activity cannot be maintained for a long time.
[0003]
On the other hand, techniques for optimizing the catalyst design, particularly the selection of the pore diameter and the supported metal, and extending the life of the catalyst activity have been developed (see, for example, JP 2000-109852 A). In addition, a method using a demetallation catalyst for the purpose of removing metals such as vanadium from the raw material oil in the hydrotreating process upstream or in the hydrotreating process (for example, JP 2000-237857 A), A technique (Japanese Patent Laid-Open No. 2000-69958) for decomposing an organic compound containing a metal using a microorganism is known.
[0004]
In these conventional technologies, the modification of the hydrotreating catalyst itself, or the use of a demetallizing catalyst, is difficult to design to achieve both poisoning prevention and acceleration of the hydrogenation reaction, and the price is higher than that of the conventional catalyst. There was a problem. Further, since the poisoning cannot be completely prevented, the catalyst becomes a consumable item and is difficult to regenerate, which causes a problem of an increase in running cost. On the other hand, the method of removing the metal from the raw material oil in advance is effective, but the microbial treatment requires treatment for 10 to 100 hours in order to obtain a high demetallation rate, and it is difficult to perform continuous treatment in the process. There is.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for removing metals such as vanadium in a raw material oil using a hydrothermal treatment technique. By adopting the method of the present invention, it is possible to use a catalyst having the optimum hydrotreating performance in each step under the optimum conditions, suppress catalyst poisoning, and use for a long time. In addition, it enables demetallation by a short-time reaction, and enables continuous treatment during the oil refining process.
[0006]
[Means for Solving the Problems]
The present invention is a refinement by hydrorefining and purifying an atmospheric distillation residue obtained by atmospheric distillation of a crude oil containing a metal such as vanadium, or a heavy oil obtained by treating the atmospheric distillation residue. In the petroleum refining method for obtaining oil, supercritical water or subcritical water and an oxidizing agent are mixed with the atmospheric distillation residue or heavy oil, and the atmospheric distillation residue or heavy oil is mixed. An oil refining method is characterized in that at least vanadium of the contained metal is liberated, and then the liberated vanadium is brought into contact with a scavenger to capture and remove the vanadium, followed by hydrorefining.
[0007]
The present invention also provides an atmospheric distillation apparatus for distilling crude oil containing a metal such as vanadium, an atmospheric distillation residue obtained by the distillation apparatus, or a heavy oil obtained by treating the atmospheric distillation residue. In a petroleum refining apparatus having a hydrorefining apparatus for hydrotreating, the atmospheric distillation residue or the atmospheric distillation residual oil is treated between the atmospheric distillation apparatus and the hydrorefining apparatus. Reaction in which supercritical water or subcritical water and an oxidizing agent are mixed with the obtained heavy oil to treat at least vanadium of the metal contained in the atmospheric distillation residue or the heavy oil. An oil refining apparatus comprising a reformer having a vessel and a trap for contacting the oil exiting the reactor with a trapping agent and trapping free vanadium.
[0008]
Furthermore, the present invention provides an atmospheric distillation apparatus for distilling crude oil containing a metal such as vanadium, a hydrorefining apparatus for hydrotreating atmospheric distillation residue obtained by the distillation apparatus, and the hydrorefining apparatus. In a power plant having a gas turbine power generation device that generates electricity using at least a part of the refined oil refined in step 1 as fuel, between the atmospheric distillation device and the hydrorefining device, Supercritical water or subcritical water and an oxidizing agent are mixed with heavy oil obtained by treating pressure distillation residue, and at least of the metals contained in the atmospheric distillation residue or heavy oil. A power plant comprising a reformer having a reactor for liberating vanadium, and a scavenger for capturing the released vanadium by bringing oil discharged from the reactor into contact with a scavenger. is there.
[0009]
In the present invention, supercritical water and heavy oil are mixed, and the property as an organic solvent of supercritical water and the property as a hydrolyzing agent are utilized, and the substance to be removed in heavy oil is mixed with the heavy oil. This causes a reaction to be eliminated from the cyclic hydrocarbon molecule or porphyrin structure. At this time, an oxidizing agent is added in order to advance the removal reaction of metals such as vanadium.
[0010]
Further, the vanadium oxide decomposed by the reaction with the supercritical water and the oxidizing agent is removed from the raw material oil by adsorption and reaction. As a method for adsorbing vanadium oxide, there are physical adsorption by activated carbon or the like, or chemical adsorption by an inorganic compound used for catalyst production or the like. Moreover, since vanadium oxide produces | generates complex oxides with metals, such as calcium and iron, these metals can be used as a scavenger which removes vanadium from heavy oil. Furthermore, a method of capturing vanadium in solid carbon (coke) that can be purified from a part of the raw material oil is also possible. By using this scavenger, the substance to be removed can be captured and discharged out of the system in the form of a solid. By treating the scavenger taken out of the system, it is possible to obtain an effect that vanadium can be isolated and reused.
[0011]
According to the present invention, the high-temperature and high-pressure water used for the reaction is generated by an exhaust heat recovery heat exchanger of a boiler or power generation facility provided in an oil refining plant, and is used in combination with an in-house heat or electric supply system. As a result, a metal removal system that saves energy can be achieved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
In addition, a present Example only shows an example of the specific structure of this invention. Metals in heavy oil, such as vanadium, are known to exist in a porphyrin form centered on vanadium oxide or in a cyclic organic molecular chain as exemplified in FIG. 4 (for example, Fish, RH, Komlenic, JJ, Anal. Chem. 1984, 56 (3), p510-517). High temperature, high pressure water has the effect of dispersing organic molecules in a solvent and decomposing organic molecular chains by hydrolysis. However, the action of only high-temperature and high-pressure water cannot obtain the action of decomposing vanadium compounds in organic molecules. As a method for decomposing a similar organic compound, a method of decomposing organic sulfur with supercritical water added with an alkali metal is known, but vanadium is not decomposed even when an alkali is added.
[0014]
We confirmed that the reaction in which vanadium is decomposed and removed from organic molecules proceeds by mixing high-temperature, high-pressure water and heavy oil, and adding an oxidizer. FIG. 5 shows the vanadium removal rate when heavy oil, water, and hydrogen peroxide are reacted at high temperature and high pressure. As the temperature rises, the vanadium removal rate improves. As shown in FIG. 6, this reaction includes (1) partial oxidation of organic hydrocarbons, (2) hydrogen generation by the shift reaction of CO and water, (3) attack of oxygen in organic molecules of CO, (4 It is considered that organic molecule chain cleavage action of hydrogen molecules and water, (5) vanadium oxidation action by oxidizing agent, etc. proceed simultaneously. By this reaction, vanadium in the organic molecule is decomposed and removed and released as a vanadium oxide molecule.
[0015]
(Example 1)
FIG. 1 shows an embodiment of the present invention. At the inlet of the reactor 1 in the oil reforming process, a supply unit for taking in heavy oil 4 containing high-temperature and high-pressure water 2, an oxidizer 3, and a metal such as vanadium is installed. Due to the solvent action of supercritical water, a liquid in which water, heavy oil, and oxidant are mixed causes a demetallation reaction in the reactor 1. The mixing of the high-temperature and high-pressure water 2, the oxidizer 3 and the heavy oil 4 is effective not only by simple merging, but also by a method of promoting mixing by using swirl flow formation or collision by counterflow. In the reactor 1, a reaction in which a metal such as vanadium in the heavy oil is desorbed from the organic molecule proceeds by the reaction shown in FIG. In order to proceed with the elimination reaction, it is necessary that the system has the necessary temperature and pressure conditions until the outlet of the reactor 1, and the high temperature and high pressure water is supplied in advance as in this embodiment. In addition, a configuration in which the temperature is increased and the pressure is increased by supplying water and heavy oil to the reactor 1 and then heating is also possible. The reformed intermediate oil 5 containing the fuel demetallized and reformed in the reactor 1 and the desorbed metal is sent to a trap 6 installed to separate the metal. Of course, a configuration in which the connecting pipe connecting the reactor 1 and the trap 6 shown in FIG. 1 is omitted and the reactor 1 and the trap 6 are continuous can be taken. The trap 6 is filled with a trapping agent 7 for trapping metal, and traps a metal such as vanadium contained in the flowing liquid by adsorption or reaction. As a method of retaining the capture agent 7 in the trap 6, in addition to a method of retaining the capture agent 7 as a fixed layer with a plate-shaped fixing material, the capture agent is made granular and the particle size is equal to or higher than the linear velocity of the liquid. A method of retaining the fluidized bed by making it a size having an end velocity is also possible. Moreover, the capture | acquisition agent is shape | molded and it can be set as plate shape or honeycomb shape, and the method with which a liquid distribute | circulates a clearance gap can also be taken. As a result of continuous capture of the substance to be removed, the capture agent 7 reaches a saturation capability. However, a system for taking out such a used capture agent as a waste capture agent 9 or a system for supplying a new capture agent 8 is provided. Also possible configurations are possible. It is also possible to operate multiple traps 6 and switch the traps to be used in sequence or stop a part of the traps at regular intervals, replacing the trapping agent in the traps that stopped fuel flow. The structure and operation method to take can also be taken. The oil from which the metal has been removed by the trap 6 passes through the solid-liquid separator 10 that removes the trapping agent and other particles, and is conveyed as the reformed oil 11. The oil from which the metal has been removed is refined in the hydrorefining apparatus 13 and taken out as the refined oil 14. However, the reformed oil 11 does not contain a metal such as vanadium that is a catalyst poisoning cause or becomes very small. Therefore, the catalyst activity is kept long and the catalyst can be used for a long time. It goes without saying that a variety of catalyst devices such as a desulfurization device, a reforming device, and a cracking device can be applied as the hydrorefining device.
[0016]
(Example 2)
FIG. 2 shows another embodiment of the present invention. The system for supplying the demetalized reformed oil 11 from the reactor 1 through the trap 6 is the same as the configuration shown in the first embodiment. In this embodiment, a configuration in which the metal removal process is more specifically applied to the oil refining process is shown. After extracting the gas fraction 17, the naphtha fraction 18, the kerosene fraction 19 and the light oil fraction 20 from the crude oil 16 with the atmospheric distillation unit 15, the atmospheric distillation residue containing a large amount of metal such as vanadium is heavy. The oil 4 is supplied to the reactor 1. At the atmospheric distillation residue stage, a demetallization process is provided to remove the metal that is a catalyst poisoning substance in a lump, thereby using a catalyst such as the hydrorefining device 13, the catalytic cracking device 21, and the vacuum distillation device 22. Alternatively, oil with reduced poisonous substances can be sent to the full-stream device using the catalyst, and the catalyst can be used for a long time.
[0017]
(Example 3)
FIG. 3 shows still another embodiment of the present invention. The configuration in which the oil is demetalized from the atmospheric distillation apparatus 15 through the reactor 1 and the trap 6 and sent to each purification step is the same as that of the second embodiment. In the present example, a configuration in which the high-temperature and high-pressure water 2 necessary for the reactor 1 is efficiently purified is shown. In this configuration, the power generator is driven using the refined oil 14 as fuel. Conventionally, when oil containing a metal such as vanadium is burned, a metal molten salt is generated, and the material of the combustor or the downstream device is corroded. Therefore, application to fuel oil is difficult. However, if the metal causing corrosion is removed by the metal removal method of this embodiment, relatively heavy oil can be used as fuel. The refined oil 14 is just the fuel oil as described above. The refined oil 14 is supplied to the gas turbine combustor 28 and combusted by the air 30 compressed by the compressor 29 to drive the gas turbine 32. The gas turbine 32 is a combined heat and power supply system that can drive the generator 33 to generate electric power and simultaneously extract heat from the generated exhaust gas 35 by the exhaust heat recovery heat exchanger 36. The water 37 is heated by the exhaust heat recovery heat exchanger 36, and all or part of the water 37 is supplied as the high-temperature and high-pressure water 2 for the metal removal apparatus. With this configuration, high-temperature and high-pressure water necessary for demetalization can be obtained, and at the same time, a system for supplying heat and electricity into the refinery plant can be constructed, and plant efficiency can be improved.
[0018]
【The invention's effect】
According to the present invention, during the petroleum refining process, by installing a demetallizing device that utilizes a hydrothermal reaction with high-temperature and high-pressure water, metals such as vanadium in oil can be removed. It can be used for a long time, and the operating cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of a heavy oil reformer showing an embodiment of the present invention.
FIG. 2 is a schematic view of a heavy oil reformer showing another embodiment of the present invention.
FIG. 3 is a schematic view of a heavy oil reforming apparatus showing another embodiment of the present invention.
FIG. 4 is a diagram showing an example of a vanadium compound form in heavy oil.
FIG. 5 is a diagram showing an example of a result of a vanadium removal reaction experiment in heavy oil.
FIG. 6 is a prediction diagram of a reaction mechanism for removing vanadium in heavy oil.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... High temperature / high pressure water, 3 ... Oxidizing agent, 4 ... Heavy oil, 5 ... Reformation intermediate oil, 6 ... Capture device, 7 ... Capture agent, 10 ... Solid-liquid separator, 11 ... Reformation Oil, 12 ... Hydrogen, 13 ... Hydrorefining equipment, 14 ... Refined oil, 15 ... Atmospheric distillation equipment, 16 ... Crude oil, 17 ... Gas fraction, 18 ... Naphtha fraction, 19 ... Kerosene fraction, 20 ... Light oil Fraction, 21 ... fluid catalytic cracking device, 22 ... vacuum distillation device, 23 ... cracked gas, 24 ... cracked distillate oil, 25 ... cracked residue, 26 ... vacuum distillation fraction, 27 ... vacuum residue, 28 ... heavy oil Combustor, 29 ... compressor, 30 ... compressed air, 31 ... combustion gas, 32 ... gas turbine, 33 ... generator, 34 ... air, 35 ... exhaust gas, 36 ... waste heat recovery boiler, 37 ... water.

Claims (10)

バナジウム等の金属を含有する原油を常圧蒸留して得られる常圧蒸留残油、または該常圧蒸留残油を処理して得られる重質油を、水素化精製して精製油を得る石油精製方法において、該常圧蒸留残油または該重質油に、超臨界水または亜臨界水と、酸化剤を混合して、該常圧蒸留残油または該重質油中に含まれている金属のうち少なくともバナジウムを遊離し、次いで遊離したバナジウムを捕捉剤と接触させて、該バナジウムを捕捉,除去し、その後に水素化精製することを特徴とする石油精製方法。Petroleum obtained by hydrorefining crude oil containing metals such as vanadium obtained by atmospheric distillation or heavy oil obtained by treating the atmospheric distillation residue to obtain refined oil In the refining method, the atmospheric distillation residue or the heavy oil is mixed with supercritical water or subcritical water and an oxidizing agent, and is contained in the atmospheric distillation residue or the heavy oil. A petroleum refining method characterized by liberating at least vanadium of a metal, and then contacting the liberated vanadium with a scavenger to capture and remove the vanadium, followed by hydrorefining. バナジウム等の金属を含有する原油を蒸留する常圧蒸留装置と、該蒸留装置で得られた常圧蒸留残油または該常圧蒸留残油を処理して得られる重質油を水素化精製する水素化精製装置とを有する石油精製装置において、該常圧蒸留装置と該水素化精製装置の間に、該常圧蒸留残油、または該常圧蒸留残油を処理して得られる重質油に、超臨界水または亜臨界水と、酸化剤とを混合して、該常圧蒸留残油または該重質油に含まれる金属のうち少なくともバナジウムを遊離させる処理をする反応器と、該反応器を出た油を捕捉剤と接触させ、遊離したバナジウムを捕捉する捕捉器とを有する改質装置を備えたことを特徴とする石油精製装置。Hydrotreating atmospheric distillation equipment that distills crude oil containing metals such as vanadium and heavy oil obtained by treating the atmospheric distillation residual oil obtained by the distillation equipment or the atmospheric distillation residual oil In a petroleum refining apparatus having a hydrorefining apparatus, the atmospheric distillation residue or heavy oil obtained by treating the atmospheric distillation residue between the atmospheric distillation apparatus and the hydrorefining apparatus A reactor for mixing at least one of the metals contained in the atmospheric distillation residue or heavy oil by mixing supercritical water or subcritical water with an oxidizing agent, and the reaction An oil refining apparatus comprising a reformer having a trap for capturing free vanadium by bringing oil exiting the vessel into contact with a trapping agent. バナジウム等の金属を含有する原油を常圧蒸留して得られる常圧蒸留残油、または該常圧蒸留残油を処理して得られる重質油を、水素化脱硫して脱硫油を得る石油精製方法において、該常圧蒸留残油または該重質油に、超臨界水または亜臨界水と、酸化剤を混合して、該常圧蒸留残油または該重質油中に含まれている金属のうち少なくともバナジウムを遊離し、次いで遊離したバナジウムを捕捉剤と接触させて該バナジウムを捕捉,除去し、その後に水素化精製することを特徴とする石油精製方法。Petroleum obtained by hydrodesulfurizing an atmospheric distillation residue obtained by atmospheric distillation of a crude oil containing a metal such as vanadium, or heavy oil obtained by treating the atmospheric distillation residue. In the refining method, the atmospheric distillation residue or the heavy oil is mixed with supercritical water or subcritical water and an oxidizing agent, and is contained in the atmospheric distillation residue or the heavy oil. A petroleum refining method characterized in that at least vanadium of a metal is liberated, and then the vanadium liberated is brought into contact with a scavenger to capture and remove the vanadium, followed by hydrorefining. バナジウム等の金属を含有する原油を蒸留する常圧蒸留装置と、該蒸留装置で得られた常圧残油または該常圧蒸留残油を処理して得られる重質油を水素化脱硫する脱硫装置とを有する石油精製装置において、該常圧蒸留装置と該脱硫装置の間に、該常圧蒸留残油、または該常圧蒸留残油を処理して得られる重質油に、超臨界水または亜臨界水と、酸化剤とを混合して、該常圧蒸留残油または該重質油に含まれる金属のうち少なくともバナジウムを遊離させる処理をする反応器と、該反応器を出た油を捕捉剤と接触させ遊離したバナジウムを捕捉する捕捉器とを有する改質装置を備えたことを特徴とする石油精製装置。Atmospheric distillation apparatus for distilling crude oil containing metals such as vanadium, and desulfurization for hydrodesulfurizing atmospheric residual oil obtained by the distillation apparatus or heavy oil obtained by treating the atmospheric distillation residual oil In the petroleum refining apparatus having the apparatus, between the atmospheric distillation apparatus and the desulfurization apparatus, the atmospheric distillation residue or heavy oil obtained by processing the atmospheric distillation residue is supercritical water. Alternatively, a reactor that mixes subcritical water and an oxidizing agent to release at least vanadium from the metals contained in the atmospheric distillation residue or the heavy oil, and the oil exiting the reactor A petroleum refining apparatus comprising a reformer having a trap for trapping free vanadium by contacting with a scavenger. 請求項1または3に記載の石油精製方法において、酸化剤として空気、あるいは酸素、あるいは過酸化水素水、あるいは硝酸、あるいは硝酸塩を使用することを特徴とする石油精製方法。4. The petroleum refining method according to claim 1, wherein air, oxygen, hydrogen peroxide water, nitric acid, or nitrate is used as an oxidant. 請求項2または4に記載の石油精製装置において、反応器に、酸化剤である空気、あるいは酸素、あるいは過酸化水素水、あるいは硝酸、あるいは硝酸塩を供給する装置を有することを特徴とする、石油精製装置。The petroleum refining apparatus according to claim 2 or 4, wherein the reactor has an apparatus for supplying air as an oxidant, oxygen, hydrogen peroxide water, nitric acid, or nitrate to the reactor. Purification equipment. 請求項1または3に記載の石油精製方法において、捕捉剤として鉄または鉄化合物,カルシウムまたはカルシウム化合物、または活性炭、または、固体炭素、または、アルミニウム酸化物または珪素酸化物を含有する化合物、または金属および金属酸化物を使用することを特徴とする石油精製方法。The oil refining method according to claim 1 or 3, wherein iron or an iron compound, calcium or a calcium compound, activated carbon, solid carbon, a compound containing aluminum oxide or silicon oxide, or a metal as a scavenger. And a petroleum refining method characterized by using a metal oxide. 請求項2または4に記載の石油精製装置において、捕捉器に捕捉剤として鉄または鉄化合物,カルシウムまたはカルシウム化合物、または活性炭、または、固体炭素、または、アルミニウム酸化物または珪素酸化物を含有する化合物、または金属および金属酸化物を保持する部品、あるいは捕捉器に捕捉剤を供給する装置、あるいは捕捉器から使用済み捕捉剤を抜き出す装置の、少なくとも1つを有することを特徴とする石油精製装置。5. The oil refining apparatus according to claim 2, wherein iron or iron compound, calcium or calcium compound, activated carbon, solid carbon, aluminum oxide, or silicon oxide is used as a scavenger in the trap. Or an oil refining apparatus comprising at least one of a component for holding a metal and a metal oxide, a device for supplying a trapping agent to a trap, or a device for extracting a used trapping agent from a trap. バナジウム等の金属を含有する原油を蒸留する常圧蒸留装置と、該蒸留装置で得られた常圧蒸留残油を水素化精製する水素化精製装置と、該水素化精製装置で精製された精製油の少なくとも一部を燃料として発電するガスタービン発電装置を有する発電プラントにおいて、該常圧蒸留装置と該水素化精製装置の間に、該常圧蒸留残油、または該常圧蒸留残油を処理して得られる重質油に、超臨界水または亜臨界水と、酸化剤とを混合して、該常圧蒸留残油または該重質油に含まれる金属のうち少なくともバナジウムを遊離させる処理をする反応器と、該反応器を出た油を捕捉剤と接触させ、遊離したバナジウムを捕捉する捕捉器とを有する改質装置を備えたことを特徴とする発電プラント。Atmospheric distillation equipment for distilling crude oil containing metals such as vanadium, hydrorefining equipment for hydrotreating atmospheric distillation residue obtained by the distillation equipment, and purification purified by the hydrorefining equipment In a power plant having a gas turbine power generation device that generates power using at least a part of oil as fuel, the atmospheric distillation residue or the atmospheric distillation residue is provided between the atmospheric distillation device and the hydrorefining device. A treatment for mixing at least the vanadium of the metal contained in the atmospheric distillation residue or the heavy oil by mixing supercritical water or subcritical water and an oxidizing agent with the heavy oil obtained by the treatment. A power plant comprising: a reforming device having a reactor for carrying out the process; and a scavenger for capturing the released vanadium by bringing oil exiting the reactor into contact with a scavenger. 請求項9に記載の発電プラントにおいて、前記ガスタービン発電装置の排ガスがもつ熱を回収する排熱回収ボイラを備え、該ボイラで生成される超臨界水または亜臨界水を、前記反応器に供給する配管を有することを特徴とする発電プラント。The power plant according to claim 9, further comprising an exhaust heat recovery boiler that recovers heat of the exhaust gas of the gas turbine power generator, and supplying supercritical water or subcritical water generated by the boiler to the reactor. A power plant characterized by having a piping to perform.
JP2002087347A 2002-03-27 2002-03-27 Oil refining method and refiner, and power plant Expired - Fee Related JP3669340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087347A JP3669340B2 (en) 2002-03-27 2002-03-27 Oil refining method and refiner, and power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087347A JP3669340B2 (en) 2002-03-27 2002-03-27 Oil refining method and refiner, and power plant

Publications (2)

Publication Number Publication Date
JP2003277770A JP2003277770A (en) 2003-10-02
JP3669340B2 true JP3669340B2 (en) 2005-07-06

Family

ID=29233571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087347A Expired - Fee Related JP3669340B2 (en) 2002-03-27 2002-03-27 Oil refining method and refiner, and power plant

Country Status (1)

Country Link
JP (1) JP3669340B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589450A (en) * 2012-08-14 2014-02-19 中国科学院大连化学物理研究所 Ultra-deep oxidative desulfurization method of diesel oil
CN106520187A (en) * 2015-09-14 2017-03-22 中国石油天然气股份有限公司 Light gasoline hydrocarbon recombination etherification catalytic rectification process and device thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842181B2 (en) 2006-12-06 2010-11-30 Saudi Arabian Oil Company Composition and process for the removal of sulfur from middle distillate fuels
KR101606680B1 (en) 2007-11-28 2016-03-25 사우디 아라비안 오일 컴퍼니 Continuous process for lowering pour point and paraffinic content of highly waxy crude oil
US8142646B2 (en) 2007-11-30 2012-03-27 Saudi Arabian Oil Company Process to produce low sulfur catalytically cracked gasoline without saturation of olefinic compounds
US9636662B2 (en) 2008-02-21 2017-05-02 Saudi Arabian Oil Company Catalyst to attain low sulfur gasoline
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
JP5421793B2 (en) 2010-01-12 2014-02-19 日揮株式会社 Crude oil processing system
US9005432B2 (en) 2010-06-29 2015-04-14 Saudi Arabian Oil Company Removal of sulfur compounds from petroleum stream
US9382485B2 (en) 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
US9039889B2 (en) 2010-09-14 2015-05-26 Saudi Arabian Oil Company Upgrading of hydrocarbons by hydrothermal process
US9410090B2 (en) 2010-11-29 2016-08-09 Jgc Corporation Method of operating crude treatment system
US8535518B2 (en) 2011-01-19 2013-09-17 Saudi Arabian Oil Company Petroleum upgrading and desulfurizing process
JP2014189661A (en) * 2013-03-27 2014-10-06 Hitachi Ltd Heavy oil reforming method and apparatus
US10106748B2 (en) * 2017-01-03 2018-10-23 Saudi Arabian Oil Company Method to remove sulfur and metals from petroleum
US10752847B2 (en) 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US10703999B2 (en) 2017-03-14 2020-07-07 Saudi Arabian Oil Company Integrated supercritical water and steam cracking process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103589450A (en) * 2012-08-14 2014-02-19 中国科学院大连化学物理研究所 Ultra-deep oxidative desulfurization method of diesel oil
CN103589450B (en) * 2012-08-14 2015-11-04 中国科学院大连化学物理研究所 A kind of Ultra-deep oxidative desulfurization of diesel oil
CN106520187A (en) * 2015-09-14 2017-03-22 中国石油天然气股份有限公司 Light gasoline hydrocarbon recombination etherification catalytic rectification process and device thereof
CN106520187B (en) * 2015-09-14 2018-04-06 中国石油天然气股份有限公司 A kind of light petrol hydrocarbon restructuring etherificate catalytic rectification process and its device

Also Published As

Publication number Publication date
JP2003277770A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
JP3669340B2 (en) Oil refining method and refiner, and power plant
JP3724438B2 (en) Method and apparatus for treating heavy oil with supercritical water, and power generation system equipped with heavy oil treatment apparatus
JP6912613B2 (en) A system that removes metals from petroleum
US20050072137A1 (en) Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
JP6208773B2 (en) SOx and NOx removal method and purification apparatus from exhaust gas
CA2736788C (en) A method for treating refinery waste streams in a fluid catalytic cracking unit and an improved catalytic cracking unit for processing refinery waste streams
US10675585B2 (en) Method for the removal of oxygen from an industrial gas
WO2000001929A1 (en) Combined cycle power generating system
CN102527208B (en) Method for removing sulfur oxide and nitrogen oxide in catalytic cracking regenerated smoke
US10933372B2 (en) Method for the removal of oxygen from an industrial gas feed
EP3463628B1 (en) A process for the purifying of a raw gas stream containing mainly c1-c5 hydrocarbons and carbon dioxide, and impurities of organic and inorganic sulfur compounds, halogenated and non-halogenated volatile organic compounds and oxygen
JP2003534897A (en) Method and apparatus for regenerating spent absorbent generated in heat generator flue gas treatment
CN111617596B (en) Method for treating gas containing VOCs
JP2004011479A (en) Internal combustion engine using heavy fuel oil
CN110898606B (en) Method for treating catalytic cracking regenerated flue gas
JP4289334B2 (en) Method and apparatus for processing heavy oil with supercritical water, and power generation system equipped with heavy oil processing apparatus
JP3855816B2 (en) Reformed fuel modified from heavy oil
JP2003286491A (en) Method and apparatus for reforming heavy oil
JP2004169043A (en) Method and apparatus for treating heavy oil with supercritical water and electric power generating system equipped with the device for treating heavy oil
WO2018149709A1 (en) A method for the removal of oxygen from an industrial gas
VOCs Diesel additive gives better burn
JP2013202494A (en) Decomposing and removing method of tar component produced in reduced pressure heating state
FR2984178A1 (en) Capturing hydrogen sulfide contained in acid gas from refinery and for hydrogen coproduction, comprises emitting acid gases to amine and units of gases, passing monosulfide to form disulfide and regenerating by passing disulfide
FR2887467A1 (en) Treatment process for fumes from catalytic regenerator includes catalytic reduction at least partly by wet gas from catalytic cracking unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees