JP2006102597A - Method for regenerating sulfur-poisoned catalyst - Google Patents

Method for regenerating sulfur-poisoned catalyst Download PDF

Info

Publication number
JP2006102597A
JP2006102597A JP2004290555A JP2004290555A JP2006102597A JP 2006102597 A JP2006102597 A JP 2006102597A JP 2004290555 A JP2004290555 A JP 2004290555A JP 2004290555 A JP2004290555 A JP 2004290555A JP 2006102597 A JP2006102597 A JP 2006102597A
Authority
JP
Japan
Prior art keywords
catalyst
regeneration
sulfur
steam
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004290555A
Other languages
Japanese (ja)
Inventor
Takashi Yamauchi
崇史 山内
Shuichi Kubo
修一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004290555A priority Critical patent/JP2006102597A/en
Publication of JP2006102597A publication Critical patent/JP2006102597A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating a sulfur-poisoned catalyst, by which the sulfur-poisoned catalyst can be regenerated efficiently at a low temperature in a short time, a cycle of regeneration of the sulfur-poisoned catalyst can be prolonged and the sulfur-poisoned catalyst can be prevented from being deteriorated thermally and the energy loss can be reduced when the sulfur-poisoned catalyst is regenerated. <P>SOLUTION: An alumina-deposited rhodium catalyst 10 sulfur-poisoned in a fuel reformation reaction is regenerated by supplying steam of a concentration higher than that of the steam in the reactive gas used in the reformation reaction to the alumina-deposited rhodium catalyst together with air at high temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、触媒反応に伴なって硫黄成分で被毒された触媒の被毒の程度を低減し再生する硫黄被毒触媒の再生方法に関する。   The present invention relates to a method for regenerating a sulfur poisoning catalyst that reduces and regenerates the degree of poisoning of a catalyst poisoned with a sulfur component accompanying a catalytic reaction.

Pt,Rh,Pd等の貴金属に代表される金属触媒は、燃料の改質反応や、例えば内燃機関から排出された排出ガス中の有害成分(NOx等)を浄化する還元反応などに広く利用されている。 Pt, Rh, metal catalysts typified by a noble metal such as Pd, the reforming reaction and the fuel, for example, widely used in such harmful components (NO x, etc.) to clean the reduction in the exhaust gas discharged from an internal combustion engine Has been.

燃料の改質反応では、例えば、燃料成分を脱硫して硫黄分をppmオーダー(例えば0.1ppm程度)にまで低減した炭化水素(Cnm)に水蒸気を供給することによって合成ガス(H2+CO)が生成されている。ところが、反応ガス中の炭化水素は一旦脱硫がなされているものの、ガス中に依然微量の硫黄分が含まれており、燃料改質用の金属触媒はこの硫黄分により被毒されて触媒活性は時間と共に著しく低下してしまい〔SO2 , H2S(気相)+触媒活性サイト→S-触媒活性サイト(Sによる反応サイトの閉塞)〕、初期の触媒活性を長時間維持することは難しい。 In the reforming reaction of fuel, for example, by supplying steam to hydrocarbons (C n H m ) in which the fuel components are desulfurized and the sulfur content is reduced to the ppm order (for example, about 0.1 ppm), synthesis gas (H 2 + CO) is produced. However, although the hydrocarbons in the reaction gas are once desulfurized, the gas still contains a small amount of sulfur, and the metal catalyst for fuel reforming is poisoned by this sulfur and the catalytic activity is low. It decreases remarkably with time [SO 2 , H 2 S (gas phase) + catalytic active site → S-catalytic active site (reaction site clogging by S)], and it is difficult to maintain the initial catalytic activity for a long time. .

また、例えば自動車のエンジンから排出される排出ガスは一般に、ガス中に含まれる炭化水素や窒素酸化物等の有害成分を浄化するための浄化触媒(例えば三元触媒)により、車両内で無害の二酸化炭素や水、窒素等に浄化されてから車両外に排出されている。ところが、三元触媒等もまた、反応時間の増加と共に触媒活性が著しく低下する点で上記と同様であり、初期の触媒活性のまま長期間保つ耐久性能を保持することは難しい。   Further, for example, exhaust gas discharged from an automobile engine is generally harmless in a vehicle by a purification catalyst (for example, a three-way catalyst) for purifying harmful components such as hydrocarbons and nitrogen oxides contained in the gas. After being purified by carbon dioxide, water, nitrogen, etc., it is discharged outside the vehicle. However, the three-way catalyst or the like is also similar to the above in that the catalytic activity is remarkably lowered with an increase in the reaction time, and it is difficult to maintain the durability performance that maintains the initial catalytic activity for a long period of time.

特に上記したような、反応速度の遅い水蒸気改質反応では触媒劣化の影響を顕著に受けるため、従来問題のなかったレベルでの硫黄被毒でも水蒸気反応性の低下が顕著に生じてしまう。   In particular, the steam reforming reaction having a slow reaction rate as described above is remarkably affected by catalyst deterioration, so that the steam reactivity is remarkably lowered even by sulfur poisoning at a level where there has been no problem.

したがって、触媒の初期活性を維持するためには、硫黄被毒により触媒活性が低下した場合に、何らかの手段で触媒に吸着した硫黄分子を除去し触媒活性の高い状態に再生するプロセスが必要となる。   Therefore, in order to maintain the initial activity of the catalyst, when the catalyst activity is reduced due to sulfur poisoning, a process for removing sulfur molecules adsorbed on the catalyst by some means and regenerating to a state with high catalyst activity is required. .

硫黄で被毒された触媒の再生方法としては、従来より、高温環境下に水素等の還元剤を含むリッチガスを導入して、触媒温度の急激な上昇に随伴して吸着硫黄分を脱離させたり、還元剤との化学反応により吸着硫黄分を還元除去する等の方法が行なわれてきた(例えば、特許文献1参照)。また、被毒触媒に高温下で水蒸気を導入して触媒活性を回復させる方法も知られている。   As a method for regenerating a catalyst poisoned with sulfur, conventionally, a rich gas containing a reducing agent such as hydrogen is introduced in a high temperature environment, and the adsorbed sulfur content is desorbed as the catalyst temperature rapidly increases. Alternatively, a method of reducing and removing the adsorbed sulfur component by a chemical reaction with a reducing agent has been performed (see, for example, Patent Document 1). Also known is a method of recovering the catalytic activity by introducing water vapor into the poisoned catalyst at a high temperature.

しかしながら、触媒活性の再生の点では必ずしも充分な活性回復には至らず、特に上記の水蒸気改質反応で被毒した硫黄被毒触媒に対しては不充分であった。このように硫黄被毒された触媒の触媒活性を充分に回復させようとすると、長時間を要したり、再生温度が高温となって熱の影響による触媒劣化が不可避であった。   However, in terms of regeneration of the catalyst activity, it is not always sufficient to recover the activity, and in particular, it is insufficient for the sulfur poisoned catalyst poisoned by the steam reforming reaction. In order to sufficiently recover the catalytic activity of the sulfur-poisoned catalyst as described above, it takes a long time or the regeneration temperature becomes high, and the catalyst deterioration due to the influence of heat is inevitable.

また、自動車等に搭載されたエンジン等の内燃機関から排出される排出ガスを浄化する三元触媒が短期間で失活してしまうと、大気中への窒素酸化物等の有害成分の排出量の増加が懸念され、地球環境を悪化させることにもなる。
特開2002−161781号公報
In addition, if a three-way catalyst that purifies exhaust gas discharged from an internal combustion engine such as an engine mounted on an automobile is deactivated in a short period of time, the amount of harmful components such as nitrogen oxides released into the atmosphere The increase in the environment is a concern, and it will worsen the global environment.
JP 2002-161781 A

以上のように、これまで硫黄で被毒された硫黄被毒触媒の活性再生については幾つか実現されている方法があるものの、例えば水蒸気改質による硫黄被毒の再生など、必ずしも硫黄被毒に伴なう触媒活性の劣化を充分に回復することができず、あるいは回復に長時間を要したり、触媒自体の劣化を来し、被毒後に触媒活性を効率的に再生できる技術の確立が求められていた。   As described above, there are several methods for the regeneration of sulfur-poisoned catalysts that have been poisoned with sulfur so far. Establishing a technology that can not sufficiently recover the deterioration of the catalyst activity that accompanies it, or that it takes a long time to recover, or that the catalyst itself deteriorates, and that the catalyst activity can be efficiently regenerated after poisoning. It was sought after.

本発明は、上記に鑑みなされたものであり、硫黄で被毒された硫黄被毒触媒の再生を低温かつ短時間で効率的に行なえ、再生に伴なうエネルギー損失を効果的に低減することができる硫黄被毒触媒の再生方法を提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above, and can efficiently regenerate a sulfur-poisoned catalyst poisoned with sulfur at a low temperature in a short time, and effectively reduce energy loss associated with the regeneration. An object of the present invention is to provide a method for regenerating a sulfur poisoning catalyst capable of achieving the above object, and to achieve the object.

本発明は、硫黄で被毒された被毒触媒の再生雰囲気中の水蒸気濃度を高めることが、被毒触媒からの硫黄の脱離、すなわち触媒活性の再生に有効であるとの知見を得、かかる知見に基づいてなされたものである。前記課題を達成するための具体的手段は以下の通りである。   The present invention has obtained the knowledge that increasing the water vapor concentration in the regeneration atmosphere of the poisoned catalyst poisoned with sulfur is effective for desorption of sulfur from the poisoned catalyst, that is, regeneration of the catalytic activity, This is based on this finding. Specific means for achieving the above object are as follows.

上記目的を達成するために、本発明の硫黄被毒触媒の再生方法は、硫黄被毒された被毒触媒に高温下、被毒時における雰囲気中の水蒸気濃度よりも高濃度の水蒸気を供給して被毒触媒を再生するように構成したものである。   In order to achieve the above object, the sulfur poisoning catalyst regeneration method of the present invention supplies a high concentration of water vapor to the sulfur poisoned poison catalyst at a high temperature than the water vapor concentration in the atmosphere at the time of poisoning. Thus, the poisoning catalyst is regenerated.

本発明においては、硫黄被毒触媒に高温下で水蒸気を導入して再生するに際して、再生時に導入する導入成分中に占める水蒸気濃度を、硫黄被毒を受けた触媒反応時における雰囲気成分中に占める水蒸気濃度よりも高くなるようにすることで、硫黄被毒触媒からの硫黄(S)の脱離反応〔触媒再生反応;S-触媒活性サイト→H2S(気相)+触媒活性サイト(Sの脱離)〕をH2O成分により促進させることができるので、再生速度が大幅に向上し、再生に要する時間の短縮化、再生周期の長期化、及び再生温度の低温化が可能となり、再生の過程で生ずるエネルギー損失を大幅に低減でき、高温下で長時間かけて再生する従来に比し、再生時の熱で起こる触媒劣化をも大幅に抑制することができる。 In the present invention, when steam is introduced into a sulfur-poisoned catalyst at a high temperature for regeneration, the water vapor concentration in the introduced component introduced at the time of regeneration occupies the atmosphere component at the time of the catalyst reaction subjected to sulfur poisoning. By making the concentration higher than the water vapor concentration, the desorption reaction of sulfur (S) from the sulfur poisoned catalyst [catalyst regeneration reaction; S-catalyst active site → H 2 S (gas phase) + catalytic active site (S Desorption))] can be promoted by the H 2 O component, so that the regeneration speed is greatly improved, the time required for regeneration can be shortened, the regeneration cycle can be prolonged, and the regeneration temperature can be lowered, Energy loss generated in the regeneration process can be greatly reduced, and catalyst deterioration caused by heat during regeneration can be significantly suppressed as compared to the conventional case where regeneration is performed at a high temperature for a long time.

好適な例として、石油系等の燃料から取出した炭化水素に水蒸気を付与し(本発明において、炭化水素に水蒸気が付与されて燃料改質反応に供される混合ガスを「反応ガス」という。)水蒸気改質して水素を得る燃料改質用触媒が反応ガス中の微量の硫黄分で被毒された被毒触媒を再生する場合に、水蒸気改質時に触媒に供給される反応ガス中の水蒸気濃度、すなわち炭化水素(Cnm)ガスと改質必要な水蒸気とを混合した反応ガス雰囲気中の水蒸気濃度よりも高濃度の水蒸気を供給して再生するようにするのが効果的である。これにより上記と同様、再生速度が大幅に向上し、再生に要する時間の短縮化、再生周期の長期化、及び再生温度の低温化が可能となる。 As a preferred example, steam is imparted to hydrocarbons extracted from fuels such as petroleum (in the present invention, a mixed gas that is subjected to fuel reforming reaction by imparting steam to hydrocarbons is referred to as “reaction gas”). ) When the fuel reforming catalyst that obtains hydrogen by steam reforming regenerates the poisoned catalyst that was poisoned with a small amount of sulfur in the reaction gas, the catalyst in the reaction gas supplied to the catalyst during steam reforming It is effective to supply and regenerate the water vapor concentration, that is, the water vapor concentration higher than the water vapor concentration in the reaction gas atmosphere in which the hydrocarbon (C n H m ) gas and the water vapor necessary for reforming are mixed. is there. As a result, as described above, the reproduction speed is greatly improved, and the time required for reproduction can be shortened, the reproduction cycle can be prolonged, and the reproduction temperature can be lowered.

また、内燃機関から排出された排出ガス中の有機成分(NOx等)を浄化する浄化触媒が排出ガス中の微量の硫黄分で被毒された被毒触媒を再生する場合に、排出ガス中の水蒸気濃度よりも高濃度の水蒸気を供給して再生するようにするのが効果的であり、これにより上記同様に、再生速度が大幅に向上し、再生に要する時間の短縮化、再生周期の長期化、及び再生温度の低温化が可能となる。 In addition, when the purification catalyst that purifies organic components (NO x etc.) in the exhaust gas discharged from the internal combustion engine regenerates the poisoned catalyst poisoned with a small amount of sulfur in the exhaust gas, It is effective to supply water vapor with a concentration higher than the water vapor concentration of the water, so that, as described above, the regeneration speed is greatly improved, the time required for regeneration is shortened, and the regeneration cycle is reduced. Prolongation and lowering of the regeneration temperature are possible.

本発明の硫黄被毒触媒の再生方法においては、水蒸気の供給を被毒時の温度より200℃以上の高温条件下で行なうようにすることが効果的である。例えば、水蒸気改質によって硫黄被毒された被毒触媒の再生などの場合、800℃以上の温度下で行なうのが好適である。水蒸気供給時の温度は、再生を行なう場合の再生条件(系の水蒸気濃度など)に依存する場合があるが、被毒時の温度と200℃以上の温度差を設けることで、再生速度を向上しつつ触媒劣化が抑制され、再生に要する時間の短縮化及び再生周期の長期化を実現し、再生に伴なって生ずるエネルギー損失を大幅に低減することができる。   In the method for regenerating a sulfur poisoning catalyst of the present invention, it is effective to supply steam under a high temperature condition of 200 ° C. or higher than the temperature at the time of poisoning. For example, in the case of regeneration of a poisoned catalyst sulfur-poisoned by steam reforming, it is preferable to carry out at a temperature of 800 ° C. or higher. The temperature at the time of water vapor supply may depend on the regeneration conditions (such as the water vapor concentration of the system) at the time of regeneration, but the regeneration speed is improved by providing a temperature difference of 200 ° C or more from the temperature at the time of poisoning. However, catalyst deterioration is suppressed, the time required for regeneration is shortened and the regeneration cycle is lengthened, and energy loss caused by regeneration can be greatly reduced.

本発明によれば、硫黄で被毒された硫黄被毒触媒の再生を低温かつ短時間で効率的に行なえ、再生に伴なうエネルギー損失を効果的に低減することができる硫黄被毒触媒の再生方法を提供することができる。また、再生の実施周期も長期化できると共に、再生温度の低温化に起因して熱劣化による触媒活性の低下も大幅に低減することが可能となる。   According to the present invention, a sulfur poisoning catalyst capable of efficiently regenerating a sulfur poisoning catalyst poisoned with sulfur at a low temperature in a short time and effectively reducing energy loss accompanying regeneration. A reproduction method can be provided. In addition, the regeneration cycle can be extended, and the decrease in catalyst activity due to thermal degradation due to the lowering of the regeneration temperature can be greatly reduced.

本発明の硫黄被毒触媒の再生方法の実施形態を図1〜図3を参照して説明する。本実施形態は、燃料改質用触媒に燃料改質反応に必要な反応ガスを供給して改質反応を行なうと共に、改質生成される水素濃度の変化に基づき、反応ガスの供給路にパルス的に再生に必要な水及びエア(Air)を加えて再生を行なうようにしたものである。   An embodiment of the method for regenerating a sulfur poisoning catalyst of the present invention will be described with reference to FIGS. In the present embodiment, a reforming reaction is performed by supplying a reaction gas necessary for a fuel reforming reaction to a fuel reforming catalyst, and a pulse is applied to a reaction gas supply path based on a change in the concentration of hydrogen produced by reforming. In particular, the regeneration is performed by adding water and air necessary for regeneration.

図1に示すように、本実施形態は、アルミナ担持ロジウム触媒10(燃料改質用触媒)と、アルミナ担持ロジウム触媒にガスを供給するためのガス供給管20と、ガス供給管20に取付けられたインジェクタ30とを備えた反応装置を用いて、燃料改質用の反応ガスの供給を停止せずに連続的に、改質反応で硫黄被毒したアルミナ担持ロジウム触媒の再生(触媒再生反応)を行なえるように構成したものである。   As shown in FIG. 1, the present embodiment is attached to an alumina-supported rhodium catalyst 10 (fuel reforming catalyst), a gas supply pipe 20 for supplying gas to the alumina-supported rhodium catalyst, and the gas supply pipe 20. Regeneration of an alumina-supported rhodium catalyst that has been poisoned with sulfur in the reforming reaction without stopping the supply of the reaction gas for fuel reforming using the reactor equipped with the injector 30 (catalyst regeneration reaction) It is configured to be able to perform.

なお、本実施形態での燃料改質反応は、燃料改質用反応ガスの炭化水素成分としてイソオクタン(C818)を用い、イソオクタンを5ppms(イソオクタン中の硫黄の重量濃度;以下同様)で水蒸気と共に供給して改質温度〜700℃にて行なえるようになっており、アルミナ担持ロジウム触媒はイソオクタンに含まれる微量の硫黄分で時間と共に被毒される。このときの水蒸気濃度は、イソオクタンの3%に対して45%とした。 The fuel reforming reaction in this embodiment uses isooctane (C 8 H 18 ) as the hydrocarbon component of the fuel reforming reaction gas, and isooctane is 5 ppms (weight concentration of sulfur in isooctane; the same applies hereinafter). It can be supplied with steam and can be carried out at a reforming temperature of -700 ° C., and the alumina-supported rhodium catalyst is poisoned over time with a small amount of sulfur contained in isooctane. The water vapor concentration at this time was 45% with respect to 3% of isooctane.

アルミナ担持ロジウム触媒10は、アルミナ(Al23)を担体とし、これにロジウム(Rh)粒子を担持させてなるものであり、供給されたイソオクタンを一酸化炭素と水素とに改質することができる〔C818+8H2O→8CO+17H2〕。また、アルミナ担持ロジウム触媒10の近傍には、触媒温度を計測するための温度センサ70が取付けられている。 The alumina-supported rhodium catalyst 10 uses alumina (Al 2 O 3 ) as a carrier and supports rhodium (Rh) particles thereon, and reforms the supplied isooctane to carbon monoxide and hydrogen. [C 8 H 18 + 8H 2 O → 8CO + 17H 2 ]. A temperature sensor 70 for measuring the catalyst temperature is attached in the vicinity of the alumina-supported rhodium catalyst 10.

加熱器60は、アルミナ担持ロジウム触媒10の加熱が可能なように設けられており、アルミナ担持ロジウム触媒10を燃料改質反応及び触媒再生反応に必要な温度にコントロールできるようになっている。加熱器には、電気ヒータや、炭化水素を燃焼させて得た燃焼熱で加熱する加熱装置などを使用することができる。   The heater 60 is provided so that the alumina-supported rhodium catalyst 10 can be heated, and the alumina-supported rhodium catalyst 10 can be controlled to a temperature necessary for the fuel reforming reaction and the catalyst regeneration reaction. As the heater, an electric heater, a heating device that heats with combustion heat obtained by burning hydrocarbons, or the like can be used.

ガス供給管20は、その一端でアルミナ担持ロジウム触媒10と連通されており、他端は燃料供給源(不図示)と接続されて、燃料改質反応を行なうための反応ガス、すなわちイソオクタンとエア(空気)と水蒸気(steam)とを混合して供給できるようになっている。   One end of the gas supply pipe 20 communicates with the alumina-supported rhodium catalyst 10, and the other end is connected to a fuel supply source (not shown), and a reaction gas for performing a fuel reforming reaction, that is, isooctane and air. (Air) and water vapor (steam) can be mixed and supplied.

インジェクタ30は、ガス供給管20におけるアルミナ担持ロジウム触媒10のガス挿通方向上流側に取付けられており、再生に必要な水とエア(空気)とを気液混合し霧状にして、ガス供給管20内を挿通する反応ガスに直接加えて供給できるようになっている。インジェクタ30には、再生に用いる水とエア(空気)とを挿通する供給管40の一端が接続されており、他端は水及びエアの供給源(不図示)と接続されている。   The injector 30 is attached to the gas supply pipe 20 upstream of the alumina-supported rhodium catalyst 10 in the gas insertion direction, and water and air (air) necessary for regeneration are mixed into a mist to form a gas supply pipe. The gas can be supplied directly in addition to the reaction gas inserted through the inside 20. One end of a supply pipe 40 through which water and air (air) used for regeneration are inserted is connected to the injector 30, and the other end is connected to a water and air supply source (not shown).

水及びエアの供給は、上記のインジェクタ以外に、霧状もしくはシャワー状に噴出できる噴射装置から適宜選択することができ、あらかじめ加熱して水蒸気の状態で供給するようにしてもよい。   The supply of water and air can be appropriately selected from an injection device that can be sprayed in the form of a mist or a shower, in addition to the above-described injector, and may be supplied in the state of steam by heating in advance.

アルミナ担持ロジウム触媒10のガス供給管20と連通する側と逆側には、ガス排出管50が設けられて、反応後の雰囲気を排出できるようにアルミナ担持ロジウム触媒10と連通されている。   A gas discharge pipe 50 is provided on the opposite side of the alumina-supported rhodium catalyst 10 to the gas supply pipe 20 and communicates with the alumina-supported rhodium catalyst 10 so that the atmosphere after the reaction can be discharged.

ガス排出管50には、燃料改質後のガス雰囲気中の水素濃度を計測するための水素センサ80が取付けられており、燃料改質反応で発生した水素濃度からアルミナ担持ロジウム触媒の硫黄被毒による触媒劣化を検知できるようになっている。   A hydrogen sensor 80 for measuring the hydrogen concentration in the gas atmosphere after fuel reforming is attached to the gas exhaust pipe 50, and sulfur poisoning of the alumina-supported rhodium catalyst from the hydrogen concentration generated in the fuel reforming reaction. It is now possible to detect catalyst deterioration due to.

インジェクタ30や加熱器60等は、図示しない制御装置と電気的に接続されており、制御装置の信号を受けて燃料改質と共に被毒されたアルミナ担持ロジウム触媒の再生が行なえるようになっている。以下、本実施形態において、燃料改質反応を行なっている場合の再生制御について、図2を参照して具体的に説明する。   The injector 30, the heater 60, and the like are electrically connected to a control device (not shown) so that the alumina-supported rhodium catalyst that has been poisoned along with fuel reforming can be regenerated by receiving a signal from the control device. Yes. Hereinafter, in the present embodiment, the regeneration control when the fuel reforming reaction is performed will be specifically described with reference to FIG.

燃料供給源から、改質用燃料であるイソオクタン混合ガス〔イソオクタンとエアと水蒸気(改質時steam濃度d1=45%)との混合ガス〕が図1に示すガス供給管20を挿通して700℃程度に加熱されたアルミナ担持ロジウム触媒10に供給されると、アルミナ担持ロジウム触媒10上で改質反応が進行し、水素が一酸化炭素と共に生成される(反応開始当初の水素濃度は42.7%であった;図2参照)。その後、燃料改質反応を継続していくと、図2に示すように、時間の経過と共に徐々に水素濃度が減少した。これは、アルミナ担持ロジウム触媒10がイソオクタン混合ガス中にppmオーダーで存在する硫黄分で被毒され、触媒活性が低下したことによるものである。そのため、改質反応の開始から28分経過したところ(点ta)で、以下のようにして再生処理を行なった。 From the fuel supply source, an isooctane mixed gas [mixed gas of isooctane, air, and water vapor (reforming steam concentration d 1 = 45%)], which is a reforming fuel, passes through the gas supply pipe 20 shown in FIG. When supplied to the alumina-supported rhodium catalyst 10 heated to about 700 ° C., the reforming reaction proceeds on the alumina-supported rhodium catalyst 10, and hydrogen is produced together with carbon monoxide (the hydrogen concentration at the start of the reaction is 42). 7%; see Figure 2). Thereafter, when the fuel reforming reaction was continued, as shown in FIG. 2, the hydrogen concentration gradually decreased with the passage of time. This is due to the fact that the alumina-supported rhodium catalyst 10 was poisoned by the sulfur content present on the ppm order in the isooctane mixed gas, and the catalytic activity was lowered. Therefore, when 28 minutes have passed since the start of the reforming reaction (point t a ), the regeneration process was performed as follows.

再生処理は、イソオクタン混合ガスを供給しながら、同時にインジェクタ30からガス供給管20に水及びエアを気液混合して3秒間噴射し、噴射後のイソオクタン混合ガスと水及びエアとの混合雰囲気中の水蒸気濃度(再生時steam濃度d2)が前記改質時steam濃度d1と同一濃度となるようにして行なった。すなわち、steam濃度d2/steam濃度d1で表されるsteam比d2/d1は1である。 In the regeneration process, while supplying the isooctane mixed gas, water and air are simultaneously gas-liquid mixed from the injector 30 to the gas supply pipe 20 and injected for 3 seconds, and in the mixed atmosphere of the injected isooctane mixed gas, water and air The steam concentration (regeneration steam concentration d 2 ) was made to be the same as the reforming steam concentration d 1 . That, steam ratio d 2 / d 1 represented by steam concentration d 2 / steam concentration d 1 is 1.

インジェクタ30から噴射された水は、霧状となってエアと混合され、加熱触媒(本実施形態では触媒温度900℃である。)の熱で気化して水蒸気となり、これにより再生時にアルミナ担持ロジウム触媒10が曝される水蒸気濃度が制御することができる。また、インジェクタから水と共にエアを供給し、エア中の酸素が燃焼して急激に温度上昇することで、水の気化と触媒の昇温とが促進され、瞬間的にsteam分圧を高めることができる。   The water jetted from the injector 30 is atomized and mixed with air, and is vaporized by the heat of the heating catalyst (in this embodiment, the catalyst temperature is 900 ° C.) to become water vapor. The water vapor concentration to which the catalyst 10 is exposed can be controlled. In addition, air is supplied together with water from the injector, oxygen in the air burns and the temperature rapidly rises, promoting the vaporization of water and the temperature rise of the catalyst, and instantaneously increasing the steam partial pressure. it can.

しかし、上記のsteam比d2/d1=1の再生条件では、硫黄被毒されたアルミナ担持ロジウム触媒10の触媒活性は再生されず、継続的に劣化して、図2に示すように水素濃度は更に低下した。 However, under the regeneration conditions with the steam ratio d 2 / d 1 = 1, the catalytic activity of the sulfur-poored alumina-supported rhodium catalyst 10 is not regenerated, but deteriorates continuously, as shown in FIG. The concentration further decreased.

引き続き、改質反応の開始から36分に達したところ(点tb)で再度、イソオクタン混合ガスを供給しながら、同時にインジェクタ30から水及びエアを気液混合してガス供給管20に3秒間噴射した。このとき、噴射後のイソオクタン混合ガスと水及びエアとの混合雰囲気中の水蒸気濃度(再生時steam濃度d3)を、前記改質時steam濃度d1の1.7倍となるようにした(すなわち、steam濃度d3/steam濃度d1で表されるsteam比d3/d1=1.7)。なお、触媒温度は900℃である。再生処理後、図2に示すように、水素濃度はほぼ改質反応の開始時点まで回復し、アルミナ担持ロジウム触媒10の触媒活性を、触媒の熱劣化を招来しない温度で短時間に再生することができ、また、再生に伴なうエネルギー損失も従来より大幅に低減することができた。 Subsequently, when 36 minutes have elapsed from the start of the reforming reaction (point t b ), while supplying the isooctane mixed gas again, water and air are simultaneously gas-liquid mixed from the injector 30 and fed into the gas supply pipe 20 for 3 seconds. Jetted. At this time, the water vapor concentration (regeneration steam concentration d 3 ) in the mixed atmosphere of the isooctane mixed gas after injection and water and air was set to 1.7 times the steam concentration d 1 during reforming ( That is, the steam ratio d 3 / d 1 = 1.7) expressed by the steam concentration d 3 / steam concentration d 1 . The catalyst temperature is 900 ° C. After the regeneration treatment, as shown in FIG. 2, the hydrogen concentration is almost restored to the start of the reforming reaction, and the catalytic activity of the alumina-supported rhodium catalyst 10 is regenerated at a temperature that does not cause thermal degradation of the catalyst in a short time. In addition, the energy loss associated with regeneration could be significantly reduced compared to the prior art.

本実施形態では、再生時のアルミナ担持ロジウム触媒10の温度を、水蒸気改質時の温度より200℃高い900℃としたが、ここでの温度領域としては、900℃以下であることがエネルギー損失と触媒劣化を抑制するうえで望ましい。再生時の温度領域は、エネルギー損失を抑制し触媒劣化を伴なわない範囲で、高温なほど望ましく、更に再生速度を高めつつ短時間に触媒活性を回復させる点を考慮すると、水蒸気改質温度+200℃以上であるのが好適である。   In the present embodiment, the temperature of the alumina-supported rhodium catalyst 10 at the time of regeneration is set to 900 ° C. which is 200 ° C. higher than the temperature at the time of steam reforming. It is desirable to suppress catalyst deterioration. The temperature range at the time of regeneration is preferably as high as possible within a range in which energy loss is suppressed and catalyst deterioration is not caused. Considering that the catalyst activity is recovered in a short time while further increasing the regeneration rate, the steam reforming temperature +200 It is preferable that the temperature is not lower than ° C.

その後継続して燃料改質反応を行なっていくと、図2に示すように再び時間経過と共に水素濃度は低下し、改質反応の開始から57分、62分に達したところ(点tc、点td)で、インジェクタ30からの噴射後のイソオクタン混合ガスと水及びエアとの混合雰囲気中の水蒸気濃度(再生時steam濃度d4)が、前記改質時steam濃度d1の1.3倍(steam比d4/d1=1.3)となるようにして、ガス供給管20に水及びエアを気液混合して3秒間噴射した。しかし、steam比d4/d1=1.3のもとでは、アルミナ担持ロジウム触媒10の触媒活性を回復させることはできなかった。なお、触媒温度は900℃としてある。 Then, when the fuel reforming reaction is continued, the hydrogen concentration decreases with time as shown in FIG. 2, and reaches 57 minutes and 62 minutes from the start of the reforming reaction (point t c , At the point t d ), the steam concentration (regeneration steam concentration d 4 ) in the mixed atmosphere of the isooctane mixed gas, water and air after injection from the injector 30 is 1.3 of the reforming steam concentration d 1 . Water and air were mixed in the gas supply pipe 20 and injected for 3 seconds so as to be double (steam ratio d 4 / d 1 = 1.3). However, the catalytic activity of the alumina-supported rhodium catalyst 10 could not be recovered under the steam ratio d 4 / d 1 = 1.3. The catalyst temperature is 900 ° C.

続いて、改質反応の開始から70分に達したところ(点te)で、上記同様に、steam比(d5/d1)=1.7としてインジェクタ30から水及びエアを気液混合してガス供給管20に3秒間噴射したところ、上記同様にアルミナ担持ロジウム触媒10の触媒活性をほぼ改質反応の開始時点まで回復させることができた。 Subsequently, when 70 minutes have elapsed from the start of the reforming reaction (point t e ), water and air are mixed from the injector 30 with a steam ratio (d 5 / d 1 ) = 1.7 as described above. Then, when the gas was injected into the gas supply pipe 20 for 3 seconds, the catalytic activity of the alumina-supported rhodium catalyst 10 could be recovered almost to the start of the reforming reaction as described above.

同様に燃料改質反応を行なう時間の経過と共に水素濃度が低下したため、改質反応の開始から90分が経過したところ(点tf)で今度は、インジェクタ30からの噴射後のイソオクタン混合ガスと水及びエアとの混合雰囲気中の水蒸気濃度(再生時steam濃度d6)が、前記改質時steam濃度d1の1.5倍(steam比d6/d1=1.5)となるようにして、ガス供給管20に水及びエアを気液混合して数秒間噴射し、その後数分間燃料改質反応を行なった後に(改質反応の開始から98分が経過した点tg)、再びsteam比(d7/d1)=1.5でガス供給管20に水及びエアを気液混合して数秒間噴射した。このときの触媒温度も900℃である。図2に示すように、steam比=1.5のもとでは、アルミナ担持ロジウム触媒10の触媒活性は短時間に回復し、触媒の熱劣化を抑えつつ再生によるエネルギー損失をも大幅に低減することができた。 Similarly, since the hydrogen concentration decreased with the lapse of time for performing the fuel reforming reaction, 90 minutes have elapsed from the start of the reforming reaction (point t f ), and this time, the isooctane mixed gas after the injection from the injector 30 and The water vapor concentration in the mixed atmosphere of water and air (regeneration steam concentration d 6 ) is 1.5 times the reforming steam concentration d 1 (steam ratio d 6 / d 1 = 1.5). a manner, the gas supply pipe 20, water and air to the gas-liquid mixture to injection a few seconds, (t g that has passed 98 minutes from the start of the reforming reaction) followed after performing several minutes fuel reforming reaction, Again, water and air were mixed into the gas supply pipe 20 at a steam ratio (d 7 / d 1 ) = 1.5 and injected for several seconds. The catalyst temperature at this time is also 900 degreeC. As shown in FIG. 2, when the steam ratio is 1.5, the catalytic activity of the alumina-supported rhodium catalyst 10 is recovered in a short time, and the energy loss due to regeneration is greatly reduced while suppressing thermal deterioration of the catalyst. I was able to.

また、その後も同様のsteam比(=1.7)での再生処理を繰り返し行なったところ、同様の回復効果が再現され、本実施形態のように燃料改質の反応過程において20〜30分間毎に1回程度、数秒〜3秒の再生処理をパルス的に加えることによって、再生のための時間的負荷を短く抑えつつ、良好な燃料改質反応を連続的に行なうことが可能となった。インジェクタ30からの噴射間隔(パルス間隔)は、上記に限られるものではなく適宜選択すればよい。   Further, after that, when the regeneration process at the same steam ratio (= 1.7) is repeated, the same recovery effect is reproduced, and every 20 to 30 minutes in the fuel reforming reaction process as in this embodiment. By adding a regeneration process of several seconds to 3 seconds about once every two times, it becomes possible to continuously perform a good fuel reforming reaction while keeping the time load for regeneration short. The injection interval (pulse interval) from the injector 30 is not limited to the above, and may be appropriately selected.

上記したようにsteam比を変えて行なった再生処理でのアルミナ担持ロジウム触媒10の被毒回復率(%)を図3に示す。本実施形態では、図3に示されるように、再生時steam濃度/改質時(被毒時)steam濃度の比(steam比)が1.3を超えた場合、すなわち燃料改質時の反応ガス中の水蒸気濃度よりも1.3倍を超える高濃度の水蒸気(水)を供給して再生処理を行なった場合に、飛躍的に再生効果が発現され、steam比を更に上げることによって再生効率をより高めることができた。   FIG. 3 shows the poisoning recovery rate (%) of the alumina-supported rhodium catalyst 10 in the regeneration process performed by changing the steam ratio as described above. In this embodiment, as shown in FIG. 3, when the ratio of the steam concentration during regeneration / the steam concentration during reforming (during poisoning) (steam ratio) exceeds 1.3, that is, the reaction during fuel reforming When regeneration processing is performed by supplying high-concentration water vapor (water) that is 1.3 times higher than the water vapor concentration in the gas, the regeneration effect is dramatically improved, and the regeneration efficiency is increased by further increasing the steam ratio. We were able to raise more.

本発明においては、例えば、水蒸気改質時の反応ガス中の水蒸気濃度を30%〜50%程度とした場合、炭化水素に水蒸気が付与された改質用の反応ガスと再生に必要な水及びエアとが混合された雰囲気中に占める水蒸気濃度は60%〜90%が望ましい。   In the present invention, for example, when the water vapor concentration in the reaction gas at the time of steam reforming is about 30% to 50%, the reforming reaction gas in which steam is imparted to hydrocarbons, water necessary for regeneration, and The water vapor concentration in the atmosphere mixed with air is preferably 60% to 90%.

上記のようにして、再生時にパルス的に水とエアとを同時に供給することによって、エア(すなわち酸素)の増加による酸化発熱を利用して触媒を昇温させ得ると共に、水の気化を促進させて再生時にアルミナ担持ロジウム触媒と接触する雰囲気中に占める水蒸気(steam)分圧を増加させることができ、これにより短時間で効率的に硫黄被毒されたアルミナ担持ロジウム触媒を再生し、触媒活性を効果的に回復させることが可能である。   As described above, by simultaneously supplying water and air in a pulsed manner during regeneration, the temperature of the catalyst can be raised using oxidation heat generated by the increase of air (ie, oxygen), and the vaporization of water is promoted. It is possible to increase the steam partial pressure in the atmosphere in contact with the alumina-supported rhodium catalyst during regeneration, thereby efficiently regenerating the sulfur-supported rhodium catalyst poisoned in a short time, and catalytic activity Can be effectively recovered.

上記の実施形態では、改質燃料である炭化水素成分としてイソオクタンを用いたが、イソオクタン以外の他の炭化水素(Cnm;例えばメタン、ブタンなど)も、特に制限なく使用することができ、他の炭化水素を用いた場合も同様である。 In the above embodiment, isooctane is used as the hydrocarbon component that is the reformed fuel. However, hydrocarbons other than isooctane (C n H m ; for example, methane, butane, etc.) can be used without particular limitation. The same applies when other hydrocarbons are used.

上記では、再生反応時の水蒸気濃度を高めるために、水及びエアを気液混合して供給するようにしたが、例えば触媒加熱温度や水の気化が充分に進行する反応環境下などでは、水のみを(霧状にして)供給したり、あるいは水蒸気の状態で供給するようにすることも可能である。   In the above, in order to increase the water vapor concentration during the regeneration reaction, water and air are mixed with gas and liquid and supplied. However, for example, in a reaction environment where the catalyst heating temperature and water vaporization sufficiently proceed, It is also possible to supply only (in the form of mist) or supply in the form of water vapor.

また、上記の実施形態においては、燃料改質反応に必要な反応ガスの供給を停止せずに、燃料改質反応を行なっている過程にパルス的に再生に必要な水及びエアを加えるようにし、改質反応の途中で再生処理を入れ、再生完了後直ぐに改質反応に戻るという連続処理を行なうようにしたが、これに限られず例えば、燃料改質反応と再生処理とを交互に切替えて行なうようにすることもできる。例えば、反応ガスを供給するガス供給管20とは別に、再生に必要な水もしくは水蒸気、あるいは水及びエア(特に酸素)を供給する供給管を更に触媒と連通するように設けておき、燃料改質用の反応ガスの供給を停止した後、水等を触媒上に直に供給して再生させる操作を繰り返すようにしてもよい。   In the above embodiment, water and air necessary for regeneration are added in a pulsed manner to the process of performing the fuel reforming reaction without stopping the supply of the reaction gas necessary for the fuel reforming reaction. In the middle of the reforming reaction, the regeneration process is performed, and the continuous process of returning to the reforming reaction immediately after the completion of the regeneration is performed. However, the present invention is not limited to this. You can also do it. For example, in addition to the gas supply pipe 20 for supplying the reaction gas, a supply pipe for supplying water or water vapor necessary for regeneration or water and air (especially oxygen) is further provided so as to communicate with the catalyst. After stopping the supply of the reaction gas for quality, the operation of supplying water etc. directly on the catalyst and regenerating it may be repeated.

また、再生は既述のように、燃料の改質反応で生成される水素濃度の低下量を監視しながら行なう以外に、定期的にあるいは必要に応じて行なうようにすることもできる。   Further, as described above, the regeneration can be performed periodically or as necessary, in addition to monitoring the amount of decrease in the hydrogen concentration generated by the fuel reforming reaction.

燃料改質反応を行なう上記の実施形態以外に、ガソリンエンジンやディーゼルエンジン等の内燃機関から排出された排出ガスを浄化する浄化触媒(例えば、HC及びCOの酸化とNOxを窒素及び酸素に変える還元とを行なう三元触媒)を用い、排出ガス中に含まれる水蒸気濃度よりも高濃度の水蒸気を浄化触媒に供給することによって再生する実施形態の場合も上記の実施形態と同様にして行なうことができる。 In addition to the above-described embodiment in which the fuel reforming reaction is performed, a purification catalyst for purifying exhaust gas discharged from an internal combustion engine such as a gasoline engine or a diesel engine (for example, oxidizing HC and CO and changing NO x to nitrogen and oxygen) In the case of an embodiment in which regeneration is performed by using a three-way catalyst that performs reduction and supplying a water vapor having a concentration higher than the water vapor concentration contained in the exhaust gas to the purification catalyst, the same operation as in the above embodiment should be performed. Can do.

具体的には、例えば図1と同様に、ガソリンエンジンやディーゼルエンジンなどの内燃機関と一端で接続された排気管(20)のガス挿通方向下流側の内部に三元触媒(10)を有し、内燃機関から排出された排出ガスを排気管(20)内を挿通して三元触媒(10)により排出ガス中の有機成分[NOx等]を浄化するように構成されている場合に、排気管に設けられた三元触媒のガス挿通方向上流側に、図1と同様にして水及びエア(Air)を気液混合し霧状にして噴射するインジェクタ(30)を設けることによって、上記した実施形態と同様にして硫黄被毒された三元触媒の再生処理を行なうことができる。三元触媒は、例えば排気管の他端に取付けられたマフラーの内部に設けることができる。三元触媒の加熱は、図1に示す加熱器60を設けずにあるいは設けると共に、内燃機関からの排出ガスの熱(排気熱)で加熱することができる。 Specifically, as in FIG. 1, for example, a three-way catalyst (10) is provided inside the exhaust pipe (20) downstream of the exhaust pipe (20) connected at one end to an internal combustion engine such as a gasoline engine or a diesel engine. When the exhaust gas discharged from the internal combustion engine is inserted into the exhaust pipe (20) and the three-way catalyst (10) is used to purify organic components [NO x and the like] in the exhaust gas, By providing an injector (30) for gas-liquid mixing of water and air (Air) in the form of a mist in the same way as in FIG. 1, on the upstream side in the gas insertion direction of the three way catalyst provided in the exhaust pipe, The three-way catalyst poisoned with sulfur can be regenerated in the same manner as in the above embodiment. The three-way catalyst can be provided inside a muffler attached to the other end of the exhaust pipe, for example. The three-way catalyst can be heated with or without the heater 60 shown in FIG. 1 and heated with the heat of exhaust gas (exhaust heat) from the internal combustion engine.

排出ガスの浄化により硫黄被毒した三元触媒の再生処理は、前記実施形態における、燃料改質反応を行なっている場合の再生制御と同様に、エンジンを作動すると共に、排気管にパルス的に再生に必要な水及びエアを加えて再生を行なうことができる。この場合もまた、水及びエアを気液混合して供給する以外に、水のみを(霧状にして)供給したり、あるいは予め排気熱で水蒸気として供給することも可能である。
排出ガス中の水蒸気濃度は、通常10%程度であり、再生時の雰囲気中の水蒸気濃度としては20%〜40%が望ましい。
The regeneration process of the three-way catalyst poisoned with sulfur by purifying the exhaust gas is similar to the regeneration control in the case of performing the fuel reforming reaction in the above embodiment, and the engine is operated and the exhaust pipe is pulsed. Regeneration can be performed by adding water and air necessary for regeneration. In this case, in addition to supplying water and air by gas-liquid mixing, it is also possible to supply only water (in the form of a mist) or supply it as steam with exhaust heat in advance.
The water vapor concentration in the exhaust gas is usually about 10%, and the water vapor concentration in the atmosphere during regeneration is preferably 20% to 40%.

また、エンジン作動時にパルス的に水及びエア等を加えて再生を行なう以外に、例えばエンジン停止後に再生処理に切替えるようにし、例えば、内燃機関と接続された排気管とは別に、再生に必要な水もしくは水蒸気、あるいは水及びエア(特に酸素)を供給する供給管を更に三元触媒と連通するように設けて、エンジン停止後に水等を三元触媒上に直に供給して再生させるようにしてもよい。   In addition to performing regeneration by adding water, air, etc. in a pulsed manner when the engine is operating, for example, switching to regeneration processing is performed after the engine is stopped. For example, it is necessary for regeneration separately from the exhaust pipe connected to the internal combustion engine. A supply pipe for supplying water or water vapor, or water and air (especially oxygen) is further provided in communication with the three-way catalyst, and water is directly supplied onto the three-way catalyst for regeneration after the engine is stopped. May be.

また、再生は、排気管のガス挿通方向における三元触媒の更に下流側に、上記の水素センサ80に代えてNOxセンサを取付けておき、浄化後に排出された排出ガス中のNOx量を検知、監視して例えばNOx量が所定値を超えているか否かを判断し、NOx量が所定値を超えていると判断されたときに行なうようにすることができ、更には定期的にあるいは必要に応じて再生を行なうようにしてもよい。 For regeneration, a NO x sensor is attached in place of the hydrogen sensor 80 on the further downstream side of the three-way catalyst in the gas insertion direction of the exhaust pipe, and the amount of NO x in the exhaust gas discharged after purification is reduced. detection, monitoring to e.g. the amount of NO x, it is determined whether it exceeds a predetermined value, can be performed when the amount of NO x is determined to exceed a predetermined value, more regularly Alternatively, reproduction may be performed as necessary.

本発明の実施形態に係る反応装置を示す概略の断面構成図である。It is a rough section lineblock diagram showing the reaction device concerning the embodiment of the present invention. 触媒活性の低下と再生による触媒活性の回復効果とを経時的に説明するためのグラフである。It is a graph for demonstrating the fall of catalyst activity, and the recovery effect of the catalyst activity by reproduction | regeneration with time. steam濃度比(再生時steam濃度/被毒時steam濃度)と被毒回復率との関係を示すグラフである。It is a graph which shows the relationship between steam concentration ratio (steam density at the time of reproduction / steam density at the time of poisoning) and poisoning recovery rate.

符号の説明Explanation of symbols

10…アルミナ担持ロジウム触媒
20…ガス供給管
30…インジェクタ
DESCRIPTION OF SYMBOLS 10 ... Rhodium catalyst supported on alumina 20 ... Gas supply pipe 30 ... Injector

Claims (4)

硫黄被毒された被毒触媒に高温下、被毒時における雰囲気中の水蒸気濃度よりも高濃度の水蒸気を供給して前記被毒触媒を再生する硫黄被毒触媒の再生方法。   A method for regenerating a sulfur poisoning catalyst, wherein the poisoning catalyst poisoned with sulfur is supplied at a high temperature with water vapor having a concentration higher than that in the atmosphere at the time of poisoning to regenerate the poisoning catalyst. 前記被毒触媒は、燃料を水蒸気改質して水素を得る燃料改質用触媒であって、前記水蒸気改質時の反応ガス中の水蒸気濃度よりも高濃度の水蒸気を供給して再生するようにした請求項1に記載の硫黄被毒触媒の再生方法。   The poisoning catalyst is a fuel reforming catalyst that obtains hydrogen by steam reforming the fuel, and regenerates by supplying steam having a concentration higher than the steam concentration in the reaction gas during the steam reforming. The method for regenerating a sulfur poisoning catalyst according to claim 1. 前記被毒触媒は、内燃機関から排出された排出ガスを浄化する浄化触媒であって、前記排出ガス中の水蒸気濃度よりも高濃度の水蒸気を供給して再生するようにした請求項1に記載の硫黄被毒触媒の再生方法。   2. The purification catalyst according to claim 1, wherein the poisoning catalyst is a purification catalyst that purifies exhaust gas discharged from an internal combustion engine, and is regenerated by supplying water vapor having a concentration higher than the water vapor concentration in the exhaust gas. Of regenerating sulfur poisoning catalyst. 前記供給は、「被毒時温度+200℃」以上の温度下で行なうようにした請求項1〜3のいずれか1項に記載の硫黄被毒触媒の再生方法。   The method for regenerating a sulfur poisoning catalyst according to any one of claims 1 to 3, wherein the supply is performed at a temperature of "temperature at poisoning + 200 ° C" or higher.
JP2004290555A 2004-10-01 2004-10-01 Method for regenerating sulfur-poisoned catalyst Pending JP2006102597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290555A JP2006102597A (en) 2004-10-01 2004-10-01 Method for regenerating sulfur-poisoned catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290555A JP2006102597A (en) 2004-10-01 2004-10-01 Method for regenerating sulfur-poisoned catalyst

Publications (1)

Publication Number Publication Date
JP2006102597A true JP2006102597A (en) 2006-04-20

Family

ID=36372900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290555A Pending JP2006102597A (en) 2004-10-01 2004-10-01 Method for regenerating sulfur-poisoned catalyst

Country Status (1)

Country Link
JP (1) JP2006102597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104938A (en) * 2008-10-31 2010-05-13 Daicel Chem Ind Ltd Method for regenerating copper catalyst
CN104048286A (en) * 2014-06-25 2014-09-17 付红萍 Steam heat accumulator system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511382B2 (en) * 1974-08-06 1980-03-25
JP2000351606A (en) * 1999-06-08 2000-12-19 Matsushita Electric Ind Co Ltd Fuel-reforming apparatus
JP2005353348A (en) * 2004-06-09 2005-12-22 Aisin Seiki Co Ltd Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511382B2 (en) * 1974-08-06 1980-03-25
JP2000351606A (en) * 1999-06-08 2000-12-19 Matsushita Electric Ind Co Ltd Fuel-reforming apparatus
JP2005353348A (en) * 2004-06-09 2005-12-22 Aisin Seiki Co Ltd Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104938A (en) * 2008-10-31 2010-05-13 Daicel Chem Ind Ltd Method for regenerating copper catalyst
CN104048286A (en) * 2014-06-25 2014-09-17 付红萍 Steam heat accumulator system

Similar Documents

Publication Publication Date Title
JP6357234B2 (en) In particular, an exhaust gas purification method for an internal combustion engine, especially an automobile, and an apparatus using the same
KR101317411B1 (en) System of regenerating gasoline particulate filter and method thereof
KR20050057213A (en) Exhaust system for lean burn ic engines
JP2009041454A (en) Nox emission control method and nox emission control system
JP2006242020A (en) Exhaust emission control device
JP2011033018A (en) Method for eliminating nitrogen oxide in exhaust gas and exhaust device for performing the same
JP4625449B2 (en) Method and apparatus for catalytic conversion of hydrocarbons to generate hydrogen rich gas
JP2013543947A (en) Exhaust gas NOx treatment using 3 continuous SCR catalyst compartments
KR20110023158A (en) Exhaust system
AU5579600A (en) Method for removing nitrogen oxides from an oxygen-containing gas stream
JP2007100572A (en) Exhaust emission control device of internal combustion engine
JP2013245606A (en) Exhaust gas purification system
JP5582122B2 (en) Apparatus and method for exhaust purification of internal combustion engine
JP2006102597A (en) Method for regenerating sulfur-poisoned catalyst
JP2011085060A (en) Device and method for controlling exhaust emission in internal combustion engine
JP2008309043A (en) Exhaust emission control device for internal combustion engine
JP4946725B2 (en) Exhaust gas purification method and exhaust gas purification device
KR101316867B1 (en) System for purifying exhaust gas and method thereof
KR101459439B1 (en) Catalytic converter of engine for vehicle and apparatus of purifying exhaust gas provided with the same
TW201104062A (en) De-NOx, intelligent, full-featured diesel engine exhaust treatment system
US11686236B1 (en) Device for the reduction of ammonia and nitrogen oxides emissions
US11441464B2 (en) Use of ozone with LNT and MnO2 catalyst for the treatment of residual pollutant for the exhaust gas of an internal engine combustion
KR101826561B1 (en) Afterteatment system for exhaust gas and catalyst regeneration method using plasma
KR102243907B1 (en) Ir-based catalyst improved in nox reduction performance by the carbon monoxide and hydrogen gas treatment, nox reduction apparatus and reduction method improved in performance by treatment of carbon monoxide and hydrogen gas
KR101394032B1 (en) System for purifying exhaust gas and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629