JP2004011479A - Internal combustion engine using heavy fuel oil - Google Patents

Internal combustion engine using heavy fuel oil Download PDF

Info

Publication number
JP2004011479A
JP2004011479A JP2002163713A JP2002163713A JP2004011479A JP 2004011479 A JP2004011479 A JP 2004011479A JP 2002163713 A JP2002163713 A JP 2002163713A JP 2002163713 A JP2002163713 A JP 2002163713A JP 2004011479 A JP2004011479 A JP 2004011479A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
heavy oil
metal
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002163713A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hokari
穂刈 信幸
Hirokazu Takahashi
高橋 宏和
Shinichi Inage
稲毛 真一
Akinori Hayashi
林  明典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002163713A priority Critical patent/JP2004011479A/en
Publication of JP2004011479A publication Critical patent/JP2004011479A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce oxidized metals in exhaust gas and prevent the corrosion of equipment due to metal fused salt by supplying to a diesel engine a heavy oil from which metals are removed using high-temperature and high-pressure water. <P>SOLUTION: An oil reformer consisting of a reactor for desorption reacting metals with the mixture and reaction of supercritical water, heavy oil and oxidant and a trapper for removing the metals after desorption from a liquid with a trapping agent is installed on the upstream side of a fuel supply system for the diesel engine. The high-temperature and high-pressure water and the oxidant are used for the desorption of the metals from the heavy oil and trapping them with the trapping agent. The heavy oil from which the metals are removed is supplied to the diesel engine, thus reducing the oxidized metals in the exhaust gas and preventing the corrosion of the equipment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、石油精製プロセスに関し、特に重質油の脱金属技術に関する。
【0002】
【従来の技術】
船舶などに用いるディーゼルエンジンは、燃料としてA重油、あるいは船舶種によってはC重油あるいはさらに重質な油燃料を使用し、自動車用ディーゼルエンジンに用いる軽油燃料と比べて、燃料中に多様な金属を含んだ燃料を使用する。重油は軽油に比べ安価なため、燃料コスト、すなわち輸送コストが低減できるため、大出力の船舶用ディーゼルには適した燃料である。
【0003】
図2は従来の重油燃料によるディーゼルエンジンの系統を示している。重油3は、自動車用ディーゼルエンジンの軽油よりも重質な重油であり、これをディーゼルエンジン13に噴射するには液化、あるいは気化が必要となる場合がある。そのため、燃料を加熱する加熱器19が取りつけられている場合がある。加熱された燃料20は、ディーゼルエンジン13に噴射され、空気12と混合,圧縮,爆発させることにより、動力を取り出す。エンジン13から排出された排ガス
14は、排ガス冷却器15によって降温され、冷却排ガス18として、煙突などから排出される。
【0004】
一方、重油には前記のように多種の金属類が含まれており、例えば硫黄は、燃焼排ガス中に硫黄酸化物として排出される。これまで、発電設備,自動車などには排出ガス中の硫黄酸化物に規制がかけられていたが、船舶については厳しい規制はなかった。しかし、近年、船舶についても排出ガス規制の動きが出ており、法制化の可能性が高まっている。このような硫黄規制に対しては、C重油を直接脱硫した、低S重油が商品化されており、低S重油への燃料切り替えで対応することも可能である。しかしながら、燃料切り替えは燃料価格を引き上げ、大量の燃料を使用する船舶では、輸送コストの増大に繋がる。また、重油を使用する際、硫黄のほか、バナジウム,ニッケル,ナトリウム,カリウムなどの金属類は、排出ガスによる大気汚染のほかに、機器腐食の原因ともなっている。これらの金属は、燃焼時に溶融塩を生成し、500℃以上の温度で液化,機器材料に付着し高温腐食を引き起こす。すなわち、エンジン排気バルブから、ガス冷却,煙突など排出口にいたる過程で材料腐食を招き、機器の寿命短縮,信頼性の低下を招くこととなる。
【0005】
【発明が解決しようとする課題】
本発明の目的は、水熱処理技術を用いて、重油中のバナジウム等の金属を除去する方法を提供することにある。本発明の方法を採ることにより、ディーゼルエンジン内の燃焼において、大気汚染、あるいは機器腐食性溶融塩の原因となる、重油中の金属類を、燃料供給前に除去し、汚染防止と機器寿命延長を同時に実現するものである。
【0006】
【課題を解決するための手段】
本発明では、超臨界水と重油を混合し、超臨界水の有機物溶媒としての特性と、加水分解剤としての特徴を利用し、重質油中の除去対象物質を、重質油中の環状炭化水素分子あるいはポルフィリン構造中より脱離させる反応を起こす脱金属方法および装置を提供する。このとき、金属除去反応を進行させるため、酸化剤を添加することが特徴である。
【0007】
重油中の金属、例えばバナジウムは、図3に例示するように、酸化バナジウムを中心とするポルフィリン形態、あるいは環状有機分子鎖のなかに存在する
(Fish,R. H.,Komlenic,J. J.,Anal. Chem.1984,56(3),p510−517)。高温,高圧水は有機分子を溶媒中に分散させ、かつ加水分解作用により有機分子鎖を分解する作用がある。しかし、高温,高圧水のみの作用では、有機分子中の金属化合物を分解する作用は得られない。類似の有機化合物の分解方法として、有機硫黄を、アルカリ金属を添加した超臨界水により分解する手法が知られているが、バナジウム等の金属はアルカリ添加によっても分解されることは無い。
【0008】
我々は、高温,高圧水と重質油を混合し、ここに酸化剤を添加することにより、バナジウム等の金属が有機分子中から分解,除去される反応が進行することを確認した。図4は、重質油,水,過酸化水素水を、高温,高圧状態で反応させたときの、バナジウム除去率を示したものである。温度の上昇とともにバナジウム除去率は向上する。この反応は図5に示したように、(1)有機炭化水素の部分酸化と、(2)COと水のシフト反応による水素発生、(3)COの有機分子中酸素への攻撃、(4)水素分子、および水の有機分子鎖開裂作用、(5)酸化剤によるバナジウム酸化作用、等が同時進行するものと考えられる。この反応により、有機分子中のバナジウムは分解除去され、酸化バナジウム分子として遊離する。
【0009】
さらに、上記の反応により分解した酸化バナジウム等の金属を、吸着,反応により原料油中から除去する。金属を吸着する方法としては、請求項3に記載のように、活性炭などによる物理吸着、あるいは触媒製造などにも用いられる無機化合物による化学吸着がある。また、酸化金属、例えば酸化バナジウムや酸化ニッケル,ナトリウム,カリウムは、カルシウム,鉄などの金属と複合酸化物を生成するため、これらの金属を重質油中から金属を除去する捕捉材として使用することができる。さらに、原料油の一部より精製できる固形炭素(コーク)に金属を捕捉する方法も可能である。この捕捉剤の使用により、除去対象物質を捕捉し、固体の形で系外に排出することが可能になる。系外に取り出した捕捉材を処理することにより金属を単離し再生使用することも可能になる効果も得られる。
【0010】
本発明はまた、上記した手段において、反応に使用する高温高圧水を、ディーゼルエンジンの排熱によって生成することを特徴とする。これにより、高温高圧水を生成するエネルギーを外部より新たに与える必要が無くなり、エンジンの効率を高めることができる。
【0011】
本発明は、前記した改質装置を有するディーゼルエンジンを搭載した船舶をも提供する。これにより、排出ガス中への金属酸化物の放出を抑制すると共に、長寿命のエンジンを実現しながら、従来の安価な重油を使用でき、輸送コストを低減できる船舶を提供できる。
【0012】
【発明の実施の形態】
以下、添付図を用いて本発明の実施の形態を説明する。なお、本実施例は発明の具体的構成の一例を示しており、本発明全体が本実施例に限定されるものではない。
【0013】
図1は本発明を適用したディーゼルエンジンの一形態を示した。ディーゼルエンジン13の燃料供給系統には油改質工程が設置されている。油改質工程の反応器1の入口には、高温高圧水2と酸化剤4と金属を含有する重油3を取り入れる供給部が設置される。超臨界水の溶媒作用により水と重質油,酸化剤が混合した液体が反応器1内で脱金属反応を起こす。高温高圧水2と重油3と酸化剤4との混合は、単純合流のほか、旋回流形成、あるいは対向流による衝突を利用して、混合を促進する方法も有効である。反応器1では図5に示した反応により、重質油中のバナジウム等の金属が有機分子中から脱離する反応が進行する。脱離反応を進行させるためには、反応器1出口までに、系が必要な温度,圧力条件になっていることが必要であり、本実施例のように予め高温高圧水を供給する構成の他にも、水と重質油を反応器1に供給した後に加熱することで、昇温,昇圧させる構成も取り得る。反応器1で脱金属改質された燃料と脱離した金属を含有する改質中間油5は、金属を分離するために設置された捕捉器6に送られる。図1に示された、反応器1と捕捉器6をつなぐ連結管が省略され、反応器1と捕捉器6が連続した構成も、もちろん取り得る。捕捉器6中には金属を捕捉する捕捉剤7が充填され、流通する液体中に含有されたバナジウム等の金属を、吸着あるいは反応により捕捉する。捕捉器6に捕捉剤7を滞留させる方法としては、目皿状の固定材により捕捉剤7を固定層として留まらせる方法の他に、捕捉剤を粒状とし、粒径を液体の線速度以上の終端速度をもつ大きさにすることで、流動層として留まらせる方法も取り得る。また、捕捉剤を成形して、板状あるいはハニカム状とし、隙間を液体が流通する方法も取り得る。捕捉剤7は、除去対象物質の捕捉を連続した結果、捕捉能力が飽和にいたるが、このような使用済み捕捉剤を排捕捉剤9として取り出す系統、あるいは新捕捉剤8を補給する系統が設けられた構成も取り得る。また、捕捉器6を複数配置し、順次使用する捕捉器を切り替え、あるいは一定時間毎に捕捉器の一部を停止する運転も可能であり、燃料流通を停止した捕捉器中の捕捉剤を交換する構成と運転方法も取り得る。捕捉器6で金属を除去された油は、捕捉剤、他の粒子を取り除く固液分離器10を通過し、改質油11として搬送される。金属を取り除いた油を、ディーゼルエンジン13に供給し、燃焼させ動力を取り出す工程は、図2に示した従来のディーゼルエンジンと同様である。改質油11は、高温高圧水の溶媒効果により水油が分子レベルで混合した後であり、温度・圧力を下げても、良く混合されたエマルジョン状態となっている。そのため、エンジン入口に、改質油を減圧,冷却する工程を取りつけ、水油エマルジョンとしてエンジンに供給する構成も取りうる。その際、水油を分離する分離器を設置し、油のみをエンジンに供給してももちろん良い。一方、高温高圧水の熱エネルギーをエンジンで回収するため、減圧,冷却工程を設置しない、図1に示す系統も、エンジンの効率向上には有効である。エンジンの排ガス14は、汚染物質の金属が除去されているため、そのまま排出しても良い。また、図に示すように熱交換器15にポンプ17によって水16を供給し、高温高圧水2を排ガス14の熱より生成すれば、系統全体の熱効率を向上させることが可能となる。
【0014】
【発明の効果】
本発明によれば、重油燃料を使用するディーゼルエンジンの燃料から、大気汚染物質であり、かつ機器腐食原因である、金属類を除去することができる。重油からの金属除去に要する、高温高圧水は、エンジン排ガスから熱を取り出すことで生成可能であり、外部からエネルギーを新たに加えることなく、燃料中の金属を除去可能となる。このディーゼルエンジンを船舶などに搭載すれば、従来の安価な重油をそのまま使用しながら、排ガスの規制への対応と、機器の長寿命化が可能となる。従来の輸送コストを上昇させずに環境負荷を低減し、船舶の信頼性を高めることができる。
【図面の簡単な説明】
【図1】本発明のディーゼルエンジンの一実施形態を示す概略図。
【図2】従来のディーゼルエンジンの概略図。
【図3】重質油中のバナジウム化合物形態の一例を示す図。
【図4】重質油中バナジウム除去反応実験の結果の一例を示す図。
【図5】重質油中のバナジウム除去反応機構予想図。
【符号の説明】
1…反応器、2…高温高圧水、3…重油、4…酸化剤、5…改質中間油、6…捕捉器、7…捕捉剤、8…新捕捉剤、9…排捕捉剤、10…改質油、12…空気、13…ディーゼルエンジン、14…エンジン排ガス、15…排ガス熱交換器、16…水、17…水ポンプ、18…冷却排ガス、19…燃料加熱器、20…加熱燃料。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a petroleum refining process, and more particularly to a technique for demetallizing heavy oil.
[0002]
[Prior art]
Diesel engines used in ships use heavy fuel oil A as fuel, or heavy fuel oil C or more heavy oil fuel depending on the type of ship. Compared with light oil fuel used in diesel engines for automobiles, various metals are used in fuel. Use included fuel. Since heavy oil is cheaper than light oil, the fuel cost, that is, the transportation cost can be reduced, so that it is a suitable fuel for high-output marine diesel.
[0003]
FIG. 2 shows a conventional diesel engine system using heavy oil fuel. The heavy oil 3 is a heavy oil that is heavier than light oil of a diesel engine for automobiles, and liquefaction or vaporization may be required to inject it into the diesel engine 13. Therefore, a heater 19 for heating the fuel may be provided. The heated fuel 20 is injected into the diesel engine 13 and mixes with the air 12, compresses and explodes to extract power. The temperature of the exhaust gas 14 discharged from the engine 13 is lowered by an exhaust gas cooler 15, and the exhaust gas 14 is discharged as a cooled exhaust gas 18 from a chimney or the like.
[0004]
On the other hand, heavy oil contains various metals as described above, and for example, sulfur is emitted as sulfur oxide in combustion exhaust gas. Heretofore, power generation facilities, automobiles, and the like have been restricted on sulfur oxides in exhaust gas, but there have been no strict regulations on ships. However, in recent years, there has been a move toward emission regulations for ships, and the possibility of legislation is increasing. For such sulfur regulations, low-S heavy oil obtained by directly desulfurizing C-heavy oil has been commercialized, and it is possible to respond by switching fuel to low-S heavy oil. However, fuel switching raises fuel prices and, in ships that use large amounts of fuel, increases transportation costs. In addition, when using heavy oil, metals such as vanadium, nickel, sodium, and potassium, in addition to sulfur, cause equipment pollution as well as air pollution caused by exhaust gas. These metals form molten salts during combustion, liquefy at a temperature of 500 ° C. or higher, adhere to equipment materials, and cause high-temperature corrosion. That is, material corrosion is caused in the process from the engine exhaust valve to the exhaust port such as the gas cooling and the chimney, so that the life of the device is shortened and the reliability is reduced.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for removing metals such as vanadium in heavy oil using a hydrothermal treatment technique. By employing the method of the present invention, during combustion in a diesel engine, metals in heavy oil, which cause air pollution or equipment corrosive molten salts, are removed before fuel supply, thereby preventing pollution and extending equipment life. At the same time.
[0006]
[Means for Solving the Problems]
In the present invention, supercritical water and heavy oil are mixed, and by utilizing the characteristics of supercritical water as an organic solvent and the characteristics of a hydrolyzing agent, the substance to be removed in heavy oil is converted into a cyclic substance in heavy oil. Provided are a demetalization method and apparatus for causing a reaction to be eliminated from a hydrocarbon molecule or a porphyrin structure. At this time, an oxidizing agent is added to advance the metal removal reaction.
[0007]
Metals in heavy oil, such as vanadium, exist in a porphyrin form centered on vanadium oxide or in a cyclic organic molecular chain, as exemplified in FIG. 3 (Fish, RH, Komlenic, JJ. Chem., 1984, 56 (3), p510-517). High-temperature, high-pressure water has the effect of dispersing organic molecules in a solvent and decomposing organic molecular chains by hydrolysis. However, the action of only high-temperature and high-pressure water cannot obtain the action of decomposing metal compounds in organic molecules. As a similar organic compound decomposing method, a method of decomposing organic sulfur with supercritical water to which an alkali metal has been added is known, but metals such as vanadium are not decomposed by the addition of alkali.
[0008]
We have confirmed that by mixing high-temperature, high-pressure water and heavy oil and adding an oxidizing agent thereto, a reaction in which metals such as vanadium are decomposed and removed from organic molecules proceeds. FIG. 4 shows the vanadium removal rate when heavy oil, water, and hydrogen peroxide are reacted at high temperature and high pressure. The vanadium removal rate increases with increasing temperature. As shown in FIG. 5, this reaction includes (1) partial oxidation of organic hydrocarbons, (2) hydrogen generation by a shift reaction between CO and water, (3) attack of CO on oxygen in organic molecules, and (4) It is considered that the action of ()) the cleavage of the organic molecule chain of hydrogen molecules and water, and (5) the action of vanadium oxidation by an oxidizing agent, etc. proceed simultaneously. By this reaction, vanadium in the organic molecule is decomposed and removed, and is released as a vanadium oxide molecule.
[0009]
Further, metals such as vanadium oxide decomposed by the above reaction are removed from the raw oil by adsorption and reaction. As a method for adsorbing a metal, there is physical adsorption using activated carbon or the like, or chemical adsorption using an inorganic compound used for the production of a catalyst. Metal oxides, for example, vanadium oxide, nickel oxide, sodium, and potassium, generate composite oxides with metals such as calcium and iron. Therefore, these metals are used as scavengers for removing metals from heavy oil. be able to. Further, a method of capturing metal on solid carbon (coke) that can be purified from a part of the feedstock oil is also possible. By using this trapping agent, the substance to be removed can be trapped and discharged out of the system in a solid form. By treating the trapping material taken out of the system, an effect is also obtained in which the metal can be isolated and reused.
[0010]
The present invention is also characterized in that, in the above means, high-temperature and high-pressure water used for the reaction is generated by exhaust heat of a diesel engine. Accordingly, it is not necessary to newly supply the energy for generating the high-temperature and high-pressure water from outside, and the efficiency of the engine can be improved.
[0011]
The present invention also provides a ship equipped with a diesel engine having the above-described reformer. Thus, it is possible to provide a ship that can suppress the release of metal oxides into exhaust gas, realize a long-life engine, use conventional inexpensive heavy oil, and reduce transportation costs.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The present embodiment shows an example of a specific configuration of the present invention, and the present invention is not limited to the present embodiment.
[0013]
FIG. 1 shows an embodiment of a diesel engine to which the present invention is applied. An oil reforming process is installed in the fuel supply system of the diesel engine 13. At the inlet of the reactor 1 in the oil reforming step, a supply unit for taking in the high-temperature and high-pressure water 2, the oxidizing agent 4, and the heavy oil 3 containing metal is installed. Due to the solvent action of the supercritical water, a liquid in which water, heavy oil and an oxidizing agent are mixed causes a demetalization reaction in the reactor 1. The method of mixing the high-temperature and high-pressure water 2, the heavy oil 3, and the oxidizing agent 4 is not limited to a simple confluence, but a method of promoting the mixing by utilizing a swirling flow or collision by a counter flow is also effective. In the reactor 1, by the reaction shown in FIG. 5, a reaction in which metal such as vanadium in heavy oil is eliminated from organic molecules proceeds. In order for the elimination reaction to proceed, it is necessary for the system to be at the required temperature and pressure conditions by the outlet of the reactor 1, and a high-temperature and high-pressure water is previously supplied as in this embodiment. In addition, a configuration in which the temperature and pressure are increased by heating after supplying water and heavy oil to the reactor 1 may be adopted. The reformed intermediate oil 5 containing the fuel demetallized and reformed in the reactor 1 and the metal desorbed is sent to a trap 6 installed for separating the metal. The connecting pipe for connecting the reactor 1 and the trap 6 shown in FIG. 1 is omitted, and the reactor 1 and the trap 6 may be continuously connected. The trap 6 is filled with a trapping agent 7 for trapping metals, and traps metals such as vanadium contained in the flowing liquid by adsorption or reaction. As a method for retaining the capturing agent 7 in the capturing device 6, in addition to a method in which the capturing agent 7 is retained as a fixed layer by a perforated fixing material, the capturing agent is made granular, and the particle diameter is equal to or greater than the linear velocity of the liquid. By setting the size to have a terminal velocity, a method of retaining the fluidized bed can be adopted. In addition, a method in which a trapping agent is formed into a plate shape or a honeycomb shape and a liquid flows through the gap may be employed. As for the capturing agent 7, the capturing capability is saturated as a result of continuous capturing of the substance to be removed, but a system for taking out such used capturing agent as a waste capturing agent 9 or a system for replenishing a new capturing agent 8 is provided. It is possible to take a configuration that has been set. It is also possible to arrange a plurality of traps 6 and switch the traps to be used sequentially, or to stop a part of the traps at regular intervals, thereby replacing the trapping agent in the traps in which the fuel flow is stopped. The configuration and operation method can be adopted. The oil from which the metal has been removed by the trap 6 passes through a solid-liquid separator 10 that removes the trapping agent and other particles, and is transported as a reformed oil 11. The step of supplying the oil from which the metal has been removed to the diesel engine 13 and burning it to extract power is the same as the conventional diesel engine shown in FIG. The reformed oil 11 is after the water oil has been mixed at the molecular level by the solvent effect of high-temperature and high-pressure water, and is in a well-mixed emulsion state even when the temperature and pressure are lowered. Therefore, a configuration may be adopted in which a step of decompressing and cooling the reformed oil is provided at the engine inlet and supplied to the engine as a water-oil emulsion. At that time, a separator for separating water and oil may be installed and only oil may be supplied to the engine. On the other hand, the system shown in FIG. 1 in which the heat energy of the high-temperature and high-pressure water is recovered by the engine and the decompression and cooling steps are not installed is also effective for improving the efficiency of the engine. The exhaust gas 14 of the engine may be discharged as it is because the pollutant metal has been removed. Further, as shown in the figure, if water 16 is supplied to the heat exchanger 15 by the pump 17 and the high-temperature and high-pressure water 2 is generated from the heat of the exhaust gas 14, the thermal efficiency of the entire system can be improved.
[0014]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the air pollutant and the metals which are the cause of apparatus corrosion can be removed from the fuel of the diesel engine using a heavy oil fuel. The high-temperature and high-pressure water required for removing metals from heavy oil can be generated by extracting heat from engine exhaust gas, and the metals in the fuel can be removed without newly adding external energy. If this diesel engine is mounted on a ship or the like, it becomes possible to comply with exhaust gas regulations and extend the life of the equipment while using conventional inexpensive heavy oil as it is. It is possible to reduce the environmental load and increase the reliability of the ship without increasing the conventional transportation cost.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a diesel engine of the present invention.
FIG. 2 is a schematic diagram of a conventional diesel engine.
FIG. 3 is a diagram showing an example of a vanadium compound form in heavy oil.
FIG. 4 is a diagram showing an example of the result of a vanadium removal reaction experiment in heavy oil.
FIG. 5 is a diagram showing an expected reaction mechanism for removing vanadium from heavy oil.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... High temperature and high pressure water, 3 ... Heavy oil, 4 ... Oxidizing agent, 5 ... Modified intermediate oil, 6 ... Capturing device, 7 ... Capturing agent, 8 ... New capturing agent, 9 ... Exhaust capturing agent, 10 ... reformed oil, 12 ... air, 13 ... diesel engine, 14 ... engine exhaust gas, 15 ... exhaust gas heat exchanger, 16 ... water, 17 ... water pump, 18 ... cooling exhaust gas, 19 ... fuel heater, 20 ... heating fuel .

Claims (5)

A重油あるいはC重油等の重油を燃料に使用する内燃機関において、燃料供給系統に、重油と、超臨界水または亜臨界水と、酸化剤を混合して、該重油中に含まれている金属を遊離する反応器と、次いで遊離した金属を捕捉剤と接触させて、該金属を捕捉,除去する捕捉器とを有する改質装置を、備えたことを特徴とする内燃機関。BACKGROUND ART In an internal combustion engine that uses heavy oil such as heavy fuel oil A or heavy fuel oil C as a fuel, a fuel supply system is mixed with heavy oil, supercritical water or subcritical water, and an oxidizing agent to form a metal contained in the heavy oil. An internal combustion engine comprising: a reformer having a reactor for liberating a metal and a capturing device for bringing the released metal into contact with a capturing agent to capture and remove the metal. 請求項1に記載の内燃機関において、重油と混合する超臨界水、あるいは亜臨界水を、内燃機関排出ガスの熱を回収する排熱回収器によって生成することを特徴とする内燃機関。The internal combustion engine according to claim 1, wherein supercritical water or subcritical water mixed with heavy oil is generated by an exhaust heat recovery device that recovers heat of exhaust gas from the internal combustion engine. 請求項1に記載の内燃機関において、捕捉剤として鉄または鉄化合物,カルシウムまたはカルシウム化合物、または活性炭、または、固体炭素、または、アルミニウム酸化物または珪素酸化物を含有する化合物、または金属および金属酸化物を使用し、該捕捉剤と、重油中のバナジウム,ナトリウム,カリウム,硫黄,ニッケルのうち少なくとも1種の金属を化合させ、捕捉することを特徴とする内燃機関。2. The internal combustion engine according to claim 1, wherein iron or iron compound, calcium or calcium compound, activated carbon, or solid carbon, or a compound containing aluminum oxide or silicon oxide, or metal and metal oxide is used as a scavenger. An internal combustion engine characterized by using a substance and combining and trapping the scavenger with at least one metal selected from vanadium, sodium, potassium, sulfur and nickel in heavy oil. 請求項1から3のいずれかに記載の内燃機関において、該内燃機関がディーゼルエンジンであることを特徴とする内燃機関。The internal combustion engine according to any one of claims 1 to 3, wherein the internal combustion engine is a diesel engine. 請求項1から4のいずれかに記載の内燃機関を搭載し、動力に用いることを特徴とする船舶。A marine vessel equipped with the internal combustion engine according to any one of claims 1 to 4, and used for power.
JP2002163713A 2002-06-05 2002-06-05 Internal combustion engine using heavy fuel oil Pending JP2004011479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163713A JP2004011479A (en) 2002-06-05 2002-06-05 Internal combustion engine using heavy fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163713A JP2004011479A (en) 2002-06-05 2002-06-05 Internal combustion engine using heavy fuel oil

Publications (1)

Publication Number Publication Date
JP2004011479A true JP2004011479A (en) 2004-01-15

Family

ID=30432060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163713A Pending JP2004011479A (en) 2002-06-05 2002-06-05 Internal combustion engine using heavy fuel oil

Country Status (1)

Country Link
JP (1) JP2004011479A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346420B1 (en) * 2012-09-25 2013-11-20 洋 角田 Marine C heavy oil reformer and marine C heavy oil reformer manufacturing method
JPWO2013118298A1 (en) * 2012-02-10 2015-05-11 株式会社愛康 Working fluid supply device and fluid supply system
CN104962311A (en) * 2015-06-09 2015-10-07 天津科技大学 Method for desulfurizing diesel oil through oxidizing by using oxygen
JP2023536675A (en) * 2021-07-05 2023-08-29 ローカーボン・カンパニー・リミテッド Desulfurization agent mixing system for harbor fuel oil
JP2023537653A (en) * 2021-07-05 2023-09-05 ローカーボン・カンパニー・リミテッド Method for emulsifying fuel oil and desulfurizing agent for sulfur oxide reduction

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013118298A1 (en) * 2012-02-10 2015-05-11 株式会社愛康 Working fluid supply device and fluid supply system
JP5346420B1 (en) * 2012-09-25 2013-11-20 洋 角田 Marine C heavy oil reformer and marine C heavy oil reformer manufacturing method
CN104962311A (en) * 2015-06-09 2015-10-07 天津科技大学 Method for desulfurizing diesel oil through oxidizing by using oxygen
JP2023536675A (en) * 2021-07-05 2023-08-29 ローカーボン・カンパニー・リミテッド Desulfurization agent mixing system for harbor fuel oil
JP2023537653A (en) * 2021-07-05 2023-09-05 ローカーボン・カンパニー・リミテッド Method for emulsifying fuel oil and desulfurizing agent for sulfur oxide reduction
JP7438371B2 (en) 2021-07-05 2024-02-26 ローカーボン・カンパニー・リミテッド Port fuel oil desulfurization agent mixing system

Similar Documents

Publication Publication Date Title
JP3724438B2 (en) Method and apparatus for treating heavy oil with supercritical water, and power generation system equipped with heavy oil treatment apparatus
US7435330B2 (en) Heavy oil reforming method, an apparatus therefor, and gas turbine power generation system
CN101175904B (en) Exhaust aftertreatment system and method of use for lean burn internal combustion engines
JP6208773B2 (en) SOx and NOx removal method and purification apparatus from exhaust gas
JP3669340B2 (en) Oil refining method and refiner, and power plant
JP2011122593A (en) Method for treating pollutant contained in exhaust gas of internal combustion engine, and pollutant treatment system using the same
Kuwahara et al. Pilot-scale aftertreatment using nonthermal plasma reduction of adsorbed NO x in marine diesel-engine exhaust gas
CN101543684A (en) Process for treating oxidized exhaust gas
KR20070038446A (en) Intermittent application of syngas to nox trap and/or diesel engine
JP5033848B2 (en) Ship exhaust gas purification device and exhaust gas purification method
JP5954123B2 (en) Exhaust gas purification system
US7033547B1 (en) Exhaust gas treating apparatus and vehicle equipped with the apparatus
JP2004011479A (en) Internal combustion engine using heavy fuel oil
CN110898606B (en) Method for treating catalytic cracking regenerated flue gas
CN111617596B (en) Method for treating gas containing VOCs
JP4289334B2 (en) Method and apparatus for processing heavy oil with supercritical water, and power generation system equipped with heavy oil processing apparatus
EP2387448B1 (en) Novel method for recovering co2 from the regeneration fumes of a catalytic cracking unit
KR20170104587A (en) Exhaust gas post-treatment method and exhaust gas post-treatment system
JP2004169043A (en) Method and apparatus for treating heavy oil with supercritical water and electric power generating system equipped with the device for treating heavy oil
JP2003286491A (en) Method and apparatus for reforming heavy oil
Bromberg et al. Plasmatron fuel converter-catalyst systems for aftertreatment of diesel vehicle emissions
CN114364866A (en) Exhaust gas aftertreatment
CN114375367A (en) Device and method for exhaust gas aftertreatment and use thereof
JP2006102597A (en) Method for regenerating sulfur-poisoned catalyst
KR20220013219A (en) Apparatus for reducing air pollutant