JP3669022B2 - Substrate glass composition and plasma display substrate using the same - Google Patents

Substrate glass composition and plasma display substrate using the same Download PDF

Info

Publication number
JP3669022B2
JP3669022B2 JP26448695A JP26448695A JP3669022B2 JP 3669022 B2 JP3669022 B2 JP 3669022B2 JP 26448695 A JP26448695 A JP 26448695A JP 26448695 A JP26448695 A JP 26448695A JP 3669022 B2 JP3669022 B2 JP 3669022B2
Authority
JP
Japan
Prior art keywords
glass
weight
temperature
thermal expansion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26448695A
Other languages
Japanese (ja)
Other versions
JPH08165138A (en
Inventor
敬 前田
泰昌 中尾
英樹 櫛谷
節郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP26448695A priority Critical patent/JP3669022B2/en
Priority claimed from EP95116500A external-priority patent/EP0769481B1/en
Publication of JPH08165138A publication Critical patent/JPH08165138A/en
Application granted granted Critical
Publication of JP3669022B2 publication Critical patent/JP3669022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フラットディスプレイ、特にプラズマディスプレイ(PDP)用基板ガラスとして有用で、フロート法成形による大板の製造に好適な基板用ガラス組成物に関する。
【0002】
【従来の技術】
PDPは、一般的に、基板ガラス上に金属電極、絶縁ペースト、リブペースト等を550〜600℃程度の最高温度で焼成した後、対向板をフリットシールすることにより製造される。従来、このための基板ガラスとしては、建築用あるいは自動車用として広く用いられるソーダライムシリカガラスが一般的に用いられてきた。
【0003】
しかし、ソーダライムシリカガラスのガラス転移点は530〜550℃であるため、上記の最高温度で熱処理を受けると、基板が変形する、あるいは基板ガラスの寸法が著しく変化するため、対向板との電極位置合わせを精度良く実現しがたい等の課題があった。このような課題は、パネルの大きさが例えば呼称40インチのような大型なものになるとより顕著になり、耐熱性のより高い基板用ガラスが必要となる。
【0004】
現在、ソーダライムシリカガラスよりも耐熱性に優れ、ディスプレイ用ガラスとして広く使われている基板ガラスに、例えば特開平4−325434(米国特許明細書5348916号)に代表される液晶用の無アルカリガラスがある。しかし、これらのガラスの熱膨張係数は35〜50×10-7-1の範囲にあり、ソーダライムシリカガラスの熱膨張係数80〜90×10-7-1よりもはるかに小さい。このため液晶用の無アルカリガラスをPDPに使用するためには各種のフリット・ペースト材料を基板ガラスの熱膨張率に合致したものを使用しなければならず、上記の温度範囲でそれらを選定することは非常に困難である。
【0005】
一方、特開平3−40933には、熱膨張係数がソーダライムシリカガラスのそれと同程度で、600℃での熱変形が小さいガラス組成物が開示されている。しかし、ここに示されている組成物は、次のいずれかの点で充分に満足できるものでなかった。
【0006】
(1)ガラス転移点が600℃以下であるため、熱処理によるガラスの収縮量が呼称40インチのような大きなパネルに対しては充分に小さくない。
(2)CaOの含有量が6%以上であるため失透温度が高く、品質、生産性に優れたフロート法による成形が困難である。
【0007】
【発明が解決しようとする課題】
本発明の目的は、上記欠点を解決し、ソーダライムシリカガラスと同様の熱膨張係数を有し、大型PDPの製造に適するよう、高いガラス転移点を有し、フロート法成形に適した基板用ガラス組成物を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、重量%表示で実質的に、
SiO 52〜62%、
Al 5〜12%、
MgO 0〜 4%、
CaO 3〜 5.5%、
SrO 6〜 9%、
BaO 0〜13%、
MgO+CaO+SrO+BaO 17〜27%、
LiO+NaO+KO 7〜14%、
ZrO 0.2〜 6%、
SO 0〜 0.6%、
からなり、
ガラス転移点が600℃以上であり、
失透温度が、粘度が10 ポイズとなる温度よりも低く、
熱膨張係数が75〜95×10 −7 −1 の範囲にある基板用ガラス組成物である。
【0009】
フロート法成形は粘度が104 ポイズ程度で行われるため、失透温度が104 ポイズに相当する温度より低いガラスでないとフロート法による成形が実質的に困難になる。
【0010】
本発明による組成の限定理由は以下の通りである。
【0011】
SiO2 : ガラスの骨格を形成する成分で、その含有量が52重量%未満では、ガラスの耐熱性が悪くなる。他方、62重量%超では熱膨張係数が低下する。SiO2 は54〜60重量%の範囲がより好ましい。
【0012】
Al23 :ガラス転移点を上げ、耐熱性を向上させる効果があり、その含有量が5重量%未満ではこの効果があらわれず、他方、12重量%超ではガラスの熱膨張係数が低くなりすぎる。Al23 は6〜11重量%の範囲がより好ましい。
【0013】
MgO:必須成分ではないが、含有することによりガラスの転移点の向上と熱膨張係数の増大がはかれる。しかし、その含有量が、4重量%超では失透が生成しやすくなる。
【0014】
CaO:ガラスの転移点の向上と熱膨張係数の増大の作用がある。その含有量が3重量%未満ではガラスの熱膨張係数が小さくなりすぎる。他方、5.5重量%超では失透温度がフロート法の成形温度より高くなり、フロート法の成形が困難になる。
【0015】
SrO:CaOと同様にガラスの転移点の向上と熱膨張係数の増大の作用がある。その含有量が6重量%未満ではガラスの熱膨張係数が小さくなりすぎる。他方、9重量%超では失透温度がフロート法の成形温度より高くなり、フロート法の成形が困難になる。
【0016】
BaO:MgOと同様に、必須成分ではないが、含有することによりガラスの転移点の向上と熱膨張係数の増大がはかれる。しかし、その含有量が、13重量%超では失透が生成しやすくなる。
【0017】
MgO+CaO+SrO+BaO:これらの合量が17重量%未満ではガラスの耐熱性が低下し、熱膨張係数が小さくなりすぎる。他方、27重量%超では失透温度が高くなりすぎる。MgO+CaO+SrO+BaOは18〜25重量%の範囲がより好ましい。
【0018】
Li2 O、Na2 O、K2 O:ガラスの熱膨張係数を大きくするために少なくとも一種は必須である。これらの合量が7重量%未満ではガラスの熱膨張係数が小さすぎる。他方、合量が14重量%超ではガラスの耐熱性が低下する。Li2 O+Na2 O+K2 Oは8〜13重量%の範囲がより好ましい。
【0019】
このなかでK2 Oはガラスの熱膨張係数を大きくするため、4重量%以上含まれることが好ましい。一方、これらの成分は過度に添加するとガラスの耐熱性低下の傾向が大きい。かかる観点から、Na2 Oは0〜6重量%、K2 Oは4〜12重量%、Li2 Oは0〜1重量%の範囲とすることがより好ましい。
【0020】
ZrO2 : ガラスの耐熱性及び化学的耐久性の向上のために使用する。0.2重量%未満では添加の効果がなく、好ましくは0.5重量%以上添加する。一方で、その含有量が6重量%超ではガラスの失透温度が高くなりすぎる。
【0021】
SO3 :必須成分ではないが、通常清澄剤として用いられる。しかし、その含有量が0.6重量%超では製造時にガラスが再沸するなどしてガラス中に気泡が残存する。
【0022】
かくして、本発明においてより望ましいガラス組成の一例は、重量%表示で実質的に以下の如くなる。
SiO2 54〜60%、
Al23 6〜11%、
MgO 0〜 4%、
CaO 3〜 5.5%、
SrO 6〜 9%、
BaO 0〜13%、
MgO+CaO+SrO+BaO 18〜25%、
Li2 O 0〜 1%、
Na2 O 0〜 6%、
2 O 4〜12%、
Li2 O+Na2 O+K2 O 8〜13%、
ZrO2 0.5〜 6%、
SO3 0〜 0.6%。
【0023】
本発明によるガラスは上記成分以外にガラスの溶解性、清澄性、成形性を改善するため、As23 、Sb23 、P25 、F、Clを合量で2重量%以下添加できる。また、ガラスの化学的耐久性の向上のため、La23 、TiO2 、SnO2 、ZnOを合量で5重量%以下添加できる。さらに、Fe23 、CoO、NiO、Nd23 等の着色剤を添加してガラスの色調を調整できる。この着色剤の含有量は合量で1重量%以下が好ましい。
【0024】
さらに、溶解性を向上するためにB23 を添加できる。ただし、過度の添加は、熱膨張係数を低下させるので1.5重量%未満とすることが好ましい。
【0025】
かくして得られるガラスのガラス転移点は600℃以上、好ましくは、610℃以上である。また、本発明で得られるガラスの失透温度は、粘度が104 ポイズとなる温度よりも低い。その差は好ましくは40℃以上である。さらに本発明で得られるガラスの熱膨張係数は75〜95×10-7-1の範囲、好ましくは80〜90×10-7-1の範囲にある。
【0026】
本発明のガラスは、プラズマディスプレイ用基板として好適である。その分光透過率は425〜475nm、510〜560nm、600〜650nmの範囲でそれぞれ85%以上となっていることが好ましい。
【0027】
本発明のガラスは、例えば次のような方法で製造できる。すなわち、通常使用される各成分の原料を目標成分になるように調合し、これを溶解炉に連続的に投入し、1500〜1600℃に加熱して溶融する。この溶融ガラスをフロート法により所定の板厚に成形し、徐冷後切断することによって、透明なガラス基板を得る。
【0028】
【実施例】
例1〜10(表1)に実施例を、例11〜18(表2)に比較例を示す。
各成分の原料を目標組成になるように調合し、白金坩堝を用いて、1500〜1600℃の温度で4時間加熱し溶解した。溶解にあたっては、白金スターラーを挿入し2時間撹拌しガラスの均質化を行った。次いで溶解ガラスを流し出し、板状に成形後徐冷した。
【0029】
こうして得られたガラスについて、組成(表1、表2の上段部、単位:重量%)、熱膨脹係数、ガラス転移点、粘性温度及び失透温度を測定し、表の各欄に示した。熱膨脹係数はα欄に単位:10-7-1で示し、ガラス転移温度はTg 欄に単位:℃で示し、失透温度はC欄に単位:℃で示した。粘性温度は、粘度が102 ポイズに相当する温度をA欄に単位:℃で示し、粘度が104 ポイズに相当する温度をB欄に単位:℃で示した。
【0030】
ガラス転移点は、次のようにして求めた。ガラスを徐冷点の温度で30分間保持した後、60℃/分の速度で冷却し徐冷した。次いでこの徐冷したガラスについて、示差式熱膨張計を使用し室温から屈伏点まで温度に対する熱膨張率の曲線を求めた。この曲線の最初に屈曲する点の前後で接線を引き、接線の交点に対応する温度をガラス転移点とした。
【0031】
表1より明らかなように、本発明によるガラス組成物の熱膨張係数は、80〜90×10-7-1の範囲にあり、従来のソーダライムシリカガラスのそれと全く同等である。また、ガラス転移点はいずれも610℃以上であり、大型PDPの製造においてガラスが収縮してしまう等の問題がない。さらに、失透温度は、フロート法の成形粘度である104 ポイズに相当する温度よりも40℃以上低く、フロート法による大板の製造に好適であることがわかる。
【0032】
一方、表2には比較例として、特開平3−40933に開示されているガラス組成物について同様の測定を行った結果を示す。比較例のうち、例13及び例14のガラスはガラス転移点が600℃以下であるため、耐熱性が不充分で、大型のPDPの製造においてはガラス収縮の問題が起こることが予想される。
【0033】
また、例11〜12、15〜18のガラスは、いずれも失透温度が104 ポイズに相当する温度よりも高いため、フロート法による成形では失透が生じる恐れがある。
【0034】
【表1】

Figure 0003669022
【0035】
【表2】
Figure 0003669022
【0036】
【発明の効果】
本発明によるガラスは、フロート法による成形ができ、また、ガラス転移点が高く、かつソーダライムシリカガラスと同等の熱膨脹係数を有しているので、プラズマディスプレイ用基板等、かかる特性を要求する用途に好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass composition for a substrate that is useful as a substrate glass for a flat display, particularly a plasma display (PDP), and that is suitable for production of a large plate by float forming.
[0002]
[Prior art]
In general, a PDP is manufactured by baking a metal electrode, an insulating paste, a rib paste, or the like on a substrate glass at a maximum temperature of about 550 to 600 ° C., and then frit-sealing a counter plate. Conventionally, as the substrate glass for this purpose, soda lime silica glass, which is widely used for construction or automobiles, has been generally used.
[0003]
However, since the glass transition point of soda lime silica glass is 530 to 550 ° C., when subjected to the heat treatment at the above-mentioned maximum temperature, the substrate is deformed, or the dimensions of the substrate glass are remarkably changed. There was a problem that it was difficult to achieve accurate alignment. Such a problem becomes more prominent when the size of the panel is large, for example, 40 inches, and a glass for a substrate having higher heat resistance is required.
[0004]
As a substrate glass that is superior in heat resistance to soda lime silica glass and is widely used as a display glass, an alkali-free glass for liquid crystal represented by, for example, JP-A-4-325434 (US Pat. No. 5,348,916). There is. However, the thermal expansion coefficient of these glasses is in the range of 35~50 × 10 -7-1, much smaller than the thermal expansion coefficient of 80~90 × 10 -7-1 soda-lime-silica glass. For this reason, in order to use non-alkali glass for liquid crystal for PDP, various frit paste materials that match the thermal expansion coefficient of the substrate glass must be used, and they are selected within the above temperature range. It is very difficult.
[0005]
On the other hand, Japanese Patent Laid-Open No. 3-40933 discloses a glass composition having a thermal expansion coefficient comparable to that of soda lime silica glass and having a small thermal deformation at 600 ° C. However, the composition shown here is not fully satisfactory in any of the following points.
[0006]
(1) Since the glass transition point is 600 ° C. or lower, the shrinkage amount of the glass due to heat treatment is not sufficiently small for a large panel having a nominal size of 40 inches.
(2) Since the content of CaO is 6% or more, the devitrification temperature is high, and it is difficult to form by the float method excellent in quality and productivity.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned drawbacks, have a thermal expansion coefficient similar to that of soda lime silica glass, have a high glass transition point, and be suitable for float process molding so as to be suitable for production of a large PDP. It is to provide a glass composition.
[0008]
[Means for Solving the Problems]
The present invention substantially represents the weight percentage,
SiO 2 52~62%,
Al 2 O 3 5-12%,
MgO 0-4%,
CaO 3 to 5.5%,
SrO 6-9%,
BaO 0-13%,
MgO + CaO + SrO + BaO 17-27%,
Li 2 O + Na 2 O + K 2 O 7-14%,
ZrO 2 0.2-6%,
SO 3 0~ 0.6%,
Tona is,
The glass transition point is 600 ° C. or higher,
The devitrification temperature is lower than the temperature at which the viscosity becomes 10 4 poise,
Thermal expansion coefficient of the glass composition for a substrate area by the near of 75~95 × 10 -7 -1.
[0009]
Float molding is performed at a viscosity of about 10 4 poise, and therefore, molding by the float method is substantially difficult unless the glass has a devitrification temperature lower than a temperature corresponding to 10 4 poise.
[0010]
The reasons for limiting the composition according to the present invention are as follows.
[0011]
SiO 2 : A component that forms a glass skeleton. If the content is less than 52% by weight, the heat resistance of the glass deteriorates. On the other hand, if it exceeds 62% by weight, the thermal expansion coefficient decreases. SiO 2 is more preferably in the range of 54 to 60% by weight.
[0012]
Al 2 O 3 : has the effect of increasing the glass transition point and improving the heat resistance. If the content is less than 5% by weight, this effect does not appear. On the other hand, if it exceeds 12% by weight, the thermal expansion coefficient of the glass decreases. Too much. Al 2 O 3 is more preferably in the range of 6 to 11% by weight.
[0013]
MgO: Although not an essential component, inclusion thereof improves the glass transition point and increases the thermal expansion coefficient. However, if the content exceeds 4% by weight, devitrification tends to occur.
[0014]
CaO: Has the effect of improving the glass transition point and increasing the thermal expansion coefficient. If the content is less than 3% by weight, the thermal expansion coefficient of the glass becomes too small. On the other hand, if it exceeds 5.5% by weight, the devitrification temperature becomes higher than the molding temperature of the float process, which makes it difficult to mold the float process.
[0015]
Similar to SrO: CaO, it has the effect of improving the glass transition point and increasing the thermal expansion coefficient. If the content is less than 6% by weight, the thermal expansion coefficient of the glass becomes too small. On the other hand, if it exceeds 9% by weight, the devitrification temperature becomes higher than the molding temperature of the float process, and the float process is difficult to mold.
[0016]
Similar to BaO: MgO, it is not an essential component, but inclusion thereof improves the glass transition point and increases the thermal expansion coefficient. However, if the content exceeds 13% by weight, devitrification tends to occur.
[0017]
MgO + CaO + SrO + BaO: If the total amount is less than 17% by weight, the heat resistance of the glass is lowered and the thermal expansion coefficient is too small. On the other hand, if it exceeds 27% by weight, the devitrification temperature becomes too high. MgO + CaO + SrO + BaO is more preferably in the range of 18 to 25% by weight.
[0018]
Li 2 O, Na 2 O, K 2 O: At least one kind is essential for increasing the thermal expansion coefficient of glass. If the total amount is less than 7% by weight, the thermal expansion coefficient of the glass is too small. On the other hand, if the total amount exceeds 14% by weight, the heat resistance of the glass decreases. Li 2 O + Na 2 O + K 2 O is more preferably in the range of 8 to 13% by weight.
[0019]
Among these, K 2 O is preferably contained in an amount of 4% by weight or more in order to increase the thermal expansion coefficient of the glass. On the other hand, when these components are added excessively, the glass tends to be reduced in heat resistance. From this viewpoint, Na 2 O is more preferably 0 to 6% by weight, K 2 O is preferably 4 to 12% by weight, and Li 2 O is more preferably 0 to 1% by weight.
[0020]
ZrO 2 : Used for improving the heat resistance and chemical durability of glass. If it is less than 0.2% by weight, there is no effect of addition, preferably 0.5% by weight or more is added. On the other hand, if the content exceeds 6% by weight, the devitrification temperature of the glass becomes too high.
[0021]
SO 3 : Although not an essential component, it is usually used as a fining agent. However, if its content exceeds 0.6% by weight, bubbles remain in the glass due to, for example, re-boiling of the glass during production.
[0022]
Thus, an example of a more desirable glass composition in the present invention is substantially as follows in terms of% by weight.
SiO 2 54~60%,
Al 2 O 3 6-11%,
MgO 0-4%,
CaO 3 to 5.5%,
SrO 6-9%,
BaO 0-13%,
MgO + CaO + SrO + BaO 18-25%,
Li 2 O 0-1%,
Na 2 O 0-6%,
K 2 O 4-12%,
Li 2 O + Na 2 O + K 2 O 8-13%,
ZrO 2 0.5-6%,
SO 3 0~ 0.6%.
[0023]
In addition to the above components, the glass according to the present invention improves As 2 O 3 , Sb 2 O 3 , P 2 O 5 , F, and Cl in a total amount of 2% by weight or less in order to improve the solubility, clarity and moldability of the glass. Can be added. Further, in order to improve the chemical durability of the glass, La 2 O 3 , TiO 2 , SnO 2 and ZnO can be added in a total amount of 5% by weight or less. Furthermore, the color tone of the glass can be adjusted by adding a colorant such as Fe 2 O 3 , CoO, NiO, or Nd 2 O 3 . The total content of the colorant is preferably 1% by weight or less.
[0024]
Furthermore, B 2 O 3 can be added to improve solubility. However, excessive addition reduces the thermal expansion coefficient, so it is preferable to make it less than 1.5% by weight.
[0025]
The glass transition point of the glass thus obtained is 600 ° C. or higher, preferably 610 ° C. or higher. The devitrification temperature of the glass obtained in the present invention is lower than the temperature at which the viscosity becomes 10 4 poise. The difference is preferably 40 ° C. or higher. Furthermore, the thermal expansion coefficient of the glass obtained by the present invention is in the range of 75 to 95 × 10 −7 ° C.− 1 , preferably in the range of 80 to 90 × 10 −7 ° C. −1 .
[0026]
The glass of the present invention is suitable as a substrate for plasma display. The spectral transmittance is preferably 85% or more in the range of 425 to 475 nm, 510 to 560 nm, and 600 to 650 nm.
[0027]
The glass of the present invention can be produced, for example, by the following method. That is, the raw material of each component normally used is mixed so that it may become a target component, this is continuously thrown into a melting furnace, and it heats to 1500-1600 degreeC and fuse | melts. The molten glass is formed into a predetermined plate thickness by a float method, and is cooled and then cut to obtain a transparent glass substrate.
[0028]
【Example】
Examples are shown in Examples 1 to 10 (Table 1), and Comparative Examples are shown in Examples 11 to 18 (Table 2).
The raw material of each component was prepared so that it might become a target composition, and it melt | dissolved by heating at the temperature of 1500-1600 degreeC for 4 hours using the platinum crucible. In melting, a platinum stirrer was inserted and stirred for 2 hours to homogenize the glass. Next, the molten glass was poured out, formed into a plate shape, and then slowly cooled.
[0029]
About the glass obtained in this way, the composition (the upper part of Table 1 and Table 2, unit: wt%), the coefficient of thermal expansion, the glass transition point, the viscosity temperature and the devitrification temperature were measured and shown in each column of the table. The coefficient of thermal expansion is indicated in the column α by the unit: 10 −7 ° C. −1 , the glass transition temperature is indicated in the T g column by the unit: ° C., and the devitrification temperature is indicated in the C column by the unit: ° C. As for the viscosity temperature, the temperature corresponding to a viscosity of 10 2 poise is indicated in the column A in units of ° C, and the temperature corresponding to a viscosity of 10 4 poise is indicated in the column B in units of ° C.
[0030]
The glass transition point was determined as follows. The glass was held at the temperature of the annealing point for 30 minutes, and then cooled and slowly cooled at a rate of 60 ° C./min. Next, for this slowly cooled glass, a differential thermal dilatometer was used to obtain a curve of thermal expansion coefficient with respect to temperature from room temperature to the yield point. A tangent line was drawn before and after the first bending point of this curve, and the temperature corresponding to the intersection of the tangent lines was taken as the glass transition point.
[0031]
As is clear from Table 1, the thermal expansion coefficient of the glass composition according to the present invention is in the range of 80 to 90 × 10 −7 ° C. −1 , which is completely equivalent to that of the conventional soda lime silica glass. Further, the glass transition points are all 610 ° C. or higher, and there is no problem that the glass shrinks in the production of a large PDP. Furthermore, the devitrification temperature is lower by 40 ° C. or more than the temperature corresponding to 10 4 poise, which is the molding viscosity of the float process, and it can be seen that it is suitable for the production of large plates by the float process.
[0032]
On the other hand, as a comparative example, Table 2 shows the result of the same measurement performed on the glass composition disclosed in JP-A-3-40933. Among the comparative examples, the glass of Examples 13 and 14 has a glass transition point of 600 ° C. or lower, so that the heat resistance is insufficient, and it is expected that a problem of glass shrinkage will occur in the production of a large PDP.
[0033]
In addition, since the glasses of Examples 11 to 12 and 15 to 18 have a devitrification temperature higher than a temperature corresponding to 10 4 poise, devitrification may occur in molding by the float process.
[0034]
[Table 1]
Figure 0003669022
[0035]
[Table 2]
Figure 0003669022
[0036]
【The invention's effect】
The glass according to the present invention can be formed by a float process, has a high glass transition point, and has a thermal expansion coefficient equivalent to that of soda lime silica glass. It is suitable for.

Claims (6)

重量%表示で実質的に、
SiO 52〜62%、
Al 5〜12%、
MgO 0〜 4%、
CaO 3〜 5.5%、
SrO 6〜 9%、
BaO 0〜13%、
MgO+CaO+SrO+BaO 17〜27%、
LiO+NaO+KO 7〜14%、
ZrO 0.2〜 6%、
SO 0〜 0.6%、
からなり、
ガラス転移点が600℃以上であり、
失透温度が、粘度が10 ポイズとなる温度よりも低く、
熱膨張係数が75〜95×10 −7 −1 の範囲にある基板用ガラス組成物。
Substantially in weight% display,
SiO 2 52~62%,
Al 2 O 3 5-12%,
MgO 0-4%,
CaO 3 to 5.5%,
SrO 6-9%,
BaO 0-13%,
MgO + CaO + SrO + BaO 17-27%,
Li 2 O + Na 2 O + K 2 O 7-14%,
ZrO 2 0.2-6%,
SO 3 0~ 0.6%,
Tona is,
The glass transition point is 600 ° C. or higher,
The devitrification temperature is lower than the temperature at which the viscosity becomes 10 4 poise,
Thermal expansion coefficient of 75 to 95 × 10 -7 ° C. range near Ru glass composition for substrates of -1.
重量%表示で実質的に、
SiO 54〜60%、
Al 6〜11%、
MgO 0〜 4%、
CaO 3〜 5.5%、
SrO 6〜 9%、
BaO 0〜13%、
MgO+CaO+SrO+BaO 18〜25%、
LiO 0〜 1%、
NaO 0〜 6%、
O 4〜12%、
LiO+NaO+KO 8〜13%、
ZrO 0.5〜 6%、
SO 0〜 0.6%、
からなる請求項1に記載の基板用ガラス組成物。
Substantially in weight% display,
SiO 2 54~60%,
Al 2 O 3 6-11%,
MgO 0-4%,
CaO 3 to 5.5%,
SrO 6-9%,
BaO 0-13%,
MgO + CaO + SrO + BaO 18-25%,
Li 2 O 0-1%,
Na 2 O 0-6%,
K 2 O 4~12%,
Li 2 O + Na 2 O + K 2 O 8~13%,
ZrO 2 0.5-6%,
SO 3 0~ 0.6%,
The glass composition for a substrate according to claim 1 , comprising:
ガラス転移点が610℃以上である請求項1または2に記載の基板用ガラス組成物。The glass composition for substrates according to claim 1 or 2 whose glass transition point is 610 ° C or more. 失透温度が、粘度が10ポイズとなる温度より40℃以上低いことを特徴とする請求項1〜3のいずれかに記載の基板用ガラス組成物。Liquidus temperature, the glass composition for substrates according to claim 1 having a viscosity and wherein the 40 ° C. than the lower Ikoto than the temperature becomes 10 4 poise. 熱膨張係数が80〜90×10−7−1の範囲にある請求項1〜4のいずれかに記載の基板用ガラス組成物。The glass composition for substrates according to any one of claims 1 to 4, wherein the coefficient of thermal expansion is in the range of 80 to 90 x 10-7 ° C- 1 . 請求項1〜5のいずれかに記載の基板用ガラス組成物を用いたプラズマディスプレイ用基板。The board | substrate for plasma displays using the glass composition for substrates in any one of Claims 1-5 .
JP26448695A 1994-10-14 1995-10-12 Substrate glass composition and plasma display substrate using the same Expired - Fee Related JP3669022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26448695A JP3669022B2 (en) 1994-10-14 1995-10-12 Substrate glass composition and plasma display substrate using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6-249781 1994-10-14
JP24978194 1994-10-14
JP26448695A JP3669022B2 (en) 1994-10-14 1995-10-12 Substrate glass composition and plasma display substrate using the same
EP95116500A EP0769481B1 (en) 1994-10-14 1995-10-19 Glass composition for a substrate, and substrate for plasma display made thereof

Publications (2)

Publication Number Publication Date
JPH08165138A JPH08165138A (en) 1996-06-25
JP3669022B2 true JP3669022B2 (en) 2005-07-06

Family

ID=27236611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26448695A Expired - Fee Related JP3669022B2 (en) 1994-10-14 1995-10-12 Substrate glass composition and plasma display substrate using the same

Country Status (1)

Country Link
JP (1) JP3669022B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854153A (en) * 1997-01-09 1998-12-29 Corning Incorporated Glasses for display panels
FR2758550B1 (en) * 1997-01-17 1999-02-12 Saint Gobain Vitrage SILICO-SODO-CALCIUM GLASS COMPOSITIONS AND THEIR APPLICATIONS
KR100431728B1 (en) * 1997-11-03 2004-09-08 삼성코닝 주식회사 Substrate glass composition for plasma image display panel, improving contrast and having high deformation point and low expansibility
WO1999026269A1 (en) * 1997-11-17 1999-05-27 Nippon Electric Glass Co., Ltd. Plasma display substrate glass
US5854152A (en) * 1997-12-10 1998-12-29 Corning Incorporated Glasses for display panels
JP2002117778A (en) * 2000-10-10 2002-04-19 Toray Ind Inc Substrate for display, member for display and display
JP4692915B2 (en) * 2002-05-29 2011-06-01 日本電気硝子株式会社 Front glass substrate for plasma display devices.
JP2005089286A (en) * 2003-08-12 2005-04-07 Nippon Electric Glass Co Ltd Glass base plate for flat panel display device
JP2005207887A (en) * 2004-01-22 2005-08-04 Dkk Toa Corp Electrode support member and electrochemical sensor
EP1961710A4 (en) * 2005-12-07 2009-12-09 Nippon Electric Glass Co Outer container for external electrode fluorescent lamp
KR101133481B1 (en) 2006-05-10 2012-06-05 아사히 가라스 가부시키가이샤 Float glass for display substrate and process for producing the same
JP5046176B2 (en) * 2006-05-18 2012-10-10 日本電気硝子株式会社 Glass for flat image display device, glass substrate using the same, and manufacturing method thereof
KR101231520B1 (en) 2007-10-25 2013-02-07 아사히 가라스 가부시키가이샤 Glass composition for substrate and method for producing the same
CN101959819A (en) 2008-02-27 2011-01-26 旭硝子株式会社 Glass composition for substrate
JP5671041B2 (en) * 2009-09-25 2015-02-18 ショット アクチエンゲゼルシャフトSchott AG Aluminosilicate glass with high heat resistance and low working temperature
JP5255611B2 (en) * 2010-09-17 2013-08-07 Hoya株式会社 GLASS SUBSTRATE FOR DISPLAY, PROCESS FOR PRODUCING THE SAME AND DISPLAY USING THE SAME
JP5915891B2 (en) * 2011-05-10 2016-05-11 日本電気硝子株式会社 Glass
JP5002067B2 (en) * 2011-07-01 2012-08-15 Hoya株式会社 GLASS SUBSTRATE FOR PORTABLE LIQUID CRYSTAL DISPLAY, ITS MANUFACTURING METHOD, AND PORTABLE LIQUID CRYSTAL DISPLAY USING THE SAME
JP5502937B2 (en) * 2012-06-11 2014-05-28 Hoya株式会社 GLASS SUBSTRATE FOR DISPLAY, PROCESS FOR PRODUCING THE SAME AND DISPLAY USING THE SAME
JP5831850B2 (en) * 2013-09-13 2015-12-09 日本電気硝子株式会社 Glass substrate for solar cell

Also Published As

Publication number Publication date
JPH08165138A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
JP3669022B2 (en) Substrate glass composition and plasma display substrate using the same
EP0769481B1 (en) Glass composition for a substrate, and substrate for plasma display made thereof
US5858897A (en) Glass composition for a substrate
KR100474779B1 (en) Substrate Glass Composition
KR101133481B1 (en) Float glass for display substrate and process for producing the same
JP5573157B2 (en) GLASS COMPOSITION FOR SUBSTRATE AND METHOD FOR PRODUCING PLATE GLASS
CN101142147B (en) High strain-point glass composition for substrate
JP3666054B2 (en) Substrate glass
JPH10152339A (en) Heat-resistant class composition
JP3731281B2 (en) Substrate glass composition
JP3800443B2 (en) Non-alkali glass substrate for display and method for producing the same
JPH10114538A (en) Alkali-free glass and its production
JP2000128572A (en) Borosilicate glass and its production
JP4045662B2 (en) Heat resistant glass composition and plasma display panel using the same
JP3460298B2 (en) Glass composition for substrates
JP2001180967A (en) Manufacturing method of glass composition
JP4169013B2 (en) Substrate glass composition
JP4183697B2 (en) Manufacturing method of substrate glass for display devices
JP3770670B2 (en) Substrate glass for display devices
JP4288657B2 (en) Glass substrate for flat panel display
JPH0446908B2 (en)
JPH11322358A (en) Heat resistant glass composition
JP2002047030A (en) Heat resisting glass
JP2002293567A (en) Glass substrate for flat panel display
JPH07172863A (en) Fireproof plate glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees