JP4045662B2 - Heat resistant glass composition and plasma display panel using the same - Google Patents

Heat resistant glass composition and plasma display panel using the same Download PDF

Info

Publication number
JP4045662B2
JP4045662B2 JP23697198A JP23697198A JP4045662B2 JP 4045662 B2 JP4045662 B2 JP 4045662B2 JP 23697198 A JP23697198 A JP 23697198A JP 23697198 A JP23697198 A JP 23697198A JP 4045662 B2 JP4045662 B2 JP 4045662B2
Authority
JP
Japan
Prior art keywords
weight
glass
temperature
transition point
degreec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23697198A
Other languages
Japanese (ja)
Other versions
JP2000072472A (en
Inventor
昭浩 小山
哲朗 吉井
弘之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP23697198A priority Critical patent/JP4045662B2/en
Publication of JP2000072472A publication Critical patent/JP2000072472A/en
Application granted granted Critical
Publication of JP4045662B2 publication Critical patent/JP4045662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築用の窓ガラスとして用いられるソーダライムシリカ組成のガラスと同程度の膨張率と、そのガラスが有する転移点より高い転移点を有する耐熱性のガラス組成物に関し、液晶ディスプレイパネル、エレクトロルミネッセンスディスプレイパネル、プラズマディスプレイパネル(以下PDPという)、フィールドエミッションディスプレイパネルおよび蛍光表示管等の表示装置等のガラス基板、特にPDP用の基板として好適に用いられるガラス組成物に関する。
【0002】
【従来の技術】
表示装置に用いられるガラス基板の組成は、表示装置の形式に応じて種々の組成物が開示されている。PDPは大面積で直視型の壁掛けハイビジョンTV用表示装置として注目されており、PDP用のガラス基板は、従来一般建築用のソーダライムシリカ組成のガラス板が用いられてきた。PDPの製造工程では、ガラス基板上への電極の焼き付け、誘電体の形成、隔壁の形成および蛍光体の形成等を行う工程で、500〜600℃の範囲の高温の熱処理がなされる。
【0003】
これらの熱処理工程で発生するガラス基板の熱収縮は、次工程で表示のパターンを合わせる際、また表側のガラス基板と裏側のガラス基板とを張り合わせる際の位置ずれの原因となる。このため、大型もしくは高精細のPDPを製造するには、ガラス基板の熱収縮率の値、およびそのばらつきを管理することが必要である。さらに上記の熱処理には、絶縁ペースト、シーリングフリット等が用いられるので、ガラス基板はこれらと熱膨張率がマッチングすることが要求される。このため、ガラス基板の50〜350℃の平均熱膨張率は、75〜95×10-7/℃程度、好ましくは80〜90×10-7/℃が要求される。熱処理によるガラスの寸法の収縮を小さくするには、転移点の高いガラスを使用する必要がある。
【0004】
液晶表示装置に用いられる無アルカリガラス基板は、高い転移点を有するが膨張率が小さいため、PDPの用途には適さない。一方、従来用いられてきた上記ソーダライムシリカ組成のガラスは、大面積のガラス板を大量安価に製造できるフロート法(溶解ガラスを錫浴上に流し込んで板状に成形する方法)で製造されており、膨張率の値はPDP用の要求を満たすが、転移点は550℃程度であり、500〜600℃の熱処理を行うと大きな熱収縮を生じ、大型もしくは高精細のPDPには必ずしも適しているとは言えない。ガラス転移点がPDP製造時の熱処理温度よりも50℃以上高いことは、熱変形が起こりにくいからである。
【0005】
上記の問題点を解決するために、特開平9−255355号公報、特開平9−255356号公報、特開平9−301732号公報および特開平9−301733号公報には、転移点が660℃以上で膨張率がPDPの用途に適したガラス組成物が開示されている。
【0006】
特開平9−255355号公報や特開平9−255356号公報に開示されているガラスは、SiO2が少なくアルカリ土類酸化物が多いため、失透温度が作業温度よりもかなり高くフロート法による成形が難しく、かつ、比重が3.0を越えているためPDP用基板としては実用的ではない。また、特開平9−301732号公報や特開平9−301733号公報に開示のガラスは比重が軽く、失透温度は転移点より低いものの、溶融温度が1700℃に近く、作業温度が1200℃以上であるため、フロート法で溶融、成形するのは困難である。
【0007】
【発明が解決しようとする課題】
本発明は、上記のガラス組成物が有する問題点を解決するために得られたものであり、フロート法による溶融、成形に適しかつ、とりわけPDP用に適した耐熱性と膨張率を有するガラス組成物を得ることを課題とする。
【0008】
【課題を解決するための手段】
請求項1は、重量%で表示して下記の組成であり、
SiO2:50〜54.9
Al23:10.5〜18
ZrO2:1〜6
23:0〜3
Li2O:0〜1
Na2O:0〜10
2O:0〜15
MgO:0〜8
CaO:4〜8
SrO:0〜4
BaO:3〜12
TiO2:0〜3
ZnO:0〜2
SO3+Sb23:0〜1
SiO2+Al23+ZrO2:70.1以上
Li2O+NaaO+K2O:6〜19
MgO+CaO+SrO+BaO:10〜19
かつ、50〜350℃の平均膨張率が75〜95×10-7/℃、転移点が650℃以上である耐熱性ガラス組成物である。
【0009】
請求項2は、請求項1において、ガラスの溶融温度が1600℃以下、失透温度が1135℃以下、失透温度が作業温度よりも低いことを特徴とする。
【0010】
請求項3は、請求項1または2において、重量%で表示して下記の組成であり、
SiO2:52.5〜54.5
Al23:11.0〜15
ZrO2:2.5〜5.5
23:0〜2
Li2O:0〜0.5
Na2O:4〜7
2O:4〜10
MgO:0〜6
CaO:4〜7
SrO:0〜4
BaO:4〜9
TiO2:0〜1
ZnO:0〜1
SO3+Sb23:0〜1
SiO2+Al23+ZrO2:70.5以上
Li2O+Na2O+K2O:9〜15
MgO+CaO+SrO+BaO:12〜19
かつ、50〜350℃の平均膨張率が80〜90×10-7/℃、転移点が660℃以上であることを特徴とする。
【0011】
請求項4は、請求項1〜3のいずれかにおいて、比重を2.75以下としたことを特徴としている。
【0012】
【発明の実施の形態】
本発明における組成限定理由は以下の通りである。
SiO2
SiO2はガラスのネットワークフォーマーである。50重量%未満ではガラスの転移点が低くなる。一方、55重量%以上では熔解性が悪くなりフロート法での成形が困難になる。従って50〜54.9重量%、さらには52.5〜54.5重量%の範囲が好適に用いられる。
【0013】
Al23
Al23はガラスの転移点を上げるのに有効な成分である。10.5重量%未満ではガラスの転移点が低下し、一方18重量%を越えると失透が起こりやすくなる。従って10.5〜18重量%、さらには11〜15重量%の範囲が好適に用いられる。
【0014】
ZrO2
ZrO2はAl23と同様にガラスの転移点を上げるのに有効な成分である。
また、Al23に比べて失透の発生を抑える作用がある。1重量%未満ではガラスの転移点の向上の効果が見られず、一方6重量%を越えると溶融ガラス中に未溶解成分として残存する。従って1〜6重量%、さらには2.5〜5.5重量%の範囲が好適に用いられる。
【0015】
SiO2+Al23+ZrO2
SiO2+Al23+ZrO2の含有量を70.1重量%以上とすることにより耐候性の向上をはかる。さらには70.5重量%以上とするのが好ましい。
【0016】
23
23は必須成分ではないが、熔解性向上に有効である。しかし、5重量%を越えると熱膨張率が小さくなる。従って0〜5重量%、さらには0〜2重量%が好適に用いられる。
【0017】
Li2O:
Li2Oは必須成分ではないが熔解性向上に有効である。しかし、1重量%を越えるとガラスの転移点が低下しすぎてしまう。また、Al23との相互作用で失透が起こりやすくなる。従って0〜1重量%、さらには0〜0.5重量%の範囲が好適に用いられる。
【0018】
Na2O:
Na2Oは必須成分ではないが熔解性向上に有効なだけでなく、膨張率を増加させるのにも有効である。さらにK2Oとの相互作用によりガラスの体積抵抗を向上させる。また、Li2Oとは異なりAl23との相互作用により失透を起こし易くすることはない。しかし、10重量%を越えると転移点が低下しすぎる。従って0〜10重量%、さらには4〜7重量%の範囲が好適に用いられる。
【0019】
2O:
2OはNa2Oと同様に必須成分ではないが熔解性向上に有効なだけでなく、膨張率を増加させるのにも有効である。さらにNa2Oとの相互作用によりガラスの体積抵抗を向上させる。また、Li2Oとは異なり、Al23との相互作用により失透を起こし易くすることはない。しかし、15重量%を越えると転移点が低下しすぎる。従って0〜15重量%、さらには4〜10重量%の範囲が好適に用いられる。
【0020】
Li2O+Na2O+K2O:
Li2O+Na2O+K2Oは熔解性に関係し、その合計量は特に膨張率を増加させることと関係する。合計量が6重量%未満では、膨張率が小さくなり、失透が起こりやすくなる。一方19重量%を越えると転移点が低下するか、もしくは失透が起こりやすくなる。従って6〜19重量%、さらには9〜15重量%の範囲が好適に用いられる。
【0021】
MgO:
MgOは必須成分ではないが熔解性向上に有効であるばかりでなく、転移点を上げるのに有効である。しかし、8重量%を越えると失透が起こりやすくなる。従って0〜8重量%、さらには0〜6重量%の範囲が好適に用いられる。
【0022】
CaO:
CaOはMgOと同様に熔解性向上に有効であるばかりでなく、転移点を上げるのに有効である。4重量%未満ではその効果が十分ではない。一方、8重量%を越えると失透が起こりやすくなる。従って4〜8重量%、さらには4〜7重量%の範囲が好適に用いられる。
【0023】
SrO:
SrOは必須成分ではないが熔解性向上に有効であるばかりでなく、転移点を上げるのに有効である。しかし、4重量%を越えると失透が起こりやすくなるとともに比重が大きくなる。従って0〜4重量%の範囲が好適に用いられる。
【0024】
BaO:
BaOは熔解性向上に有効である。しかし、3重量%未満ではその効果は十分ではない。一方、12重量%を越えると比重が大きくなる。従って0〜12重量%、さらには4〜9重量%の範囲が好適に用いられる。
【0025】
MgO+CaO+SrO+BaO:
MgO+CaO+SrO+BaOはガラスの熔解性向上と関係する。合計量で10重量%未満では所望の熔解性が得られない。一方、19重量%を越えると失透し易くなる。従って10〜19重量%、さらには12〜19重量%の範囲が好適に用いられる。
【0026】
TiO2
TiO2は必須成分ではないが化学的耐久性向上に効果がある。3重量%を越えるとガラスが着色するので好ましくない。従って0〜3重量%、さらには0〜1重量%の範囲が好適に用いられる。
【0027】
ZnO:
ZnOは必須成分ではないが熔解性向上に有効である。しかし、2重量%を越えると、揮発が大きくガラス溶融炉の寿命を短くする。従って0〜2重量%、さらには0〜1重量%の範囲が好適に用いられる。
【0028】
SO3+Sb23
SO3+Sb23は必須成分ではないが清澄剤として用いられる。使用量としては1重量%以下が好ましい。
【0029】
本発明においては、ガラスの透過率を調整し、PDPの表示コントラストを上げるために、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Ru、Ce等の酸化物を着色成分として添加しても良い。
【0030】
PDPを製造するときに用いるシーリングフリット等の膨張率とマッチングさせるために、50〜350℃の平均膨張率が75〜95×10-7/℃であることが必要である。さらには80〜90×10-7/℃の範囲が好ましい。またPDPの製造工程中の熱処理での熱収縮を許容範囲以下におさえるために、転移点は650℃以上が必要であり、660℃以上が好ましい。
【0031】
次に、本発明を実施例と比較例により説明する。
実施例
ガラス成分を表1の目標組成となるようにガラス原料を調合した。このとき清澄剤としてボウ硝を用いた。調合したバッチをルツボに投入し、1600℃で4時間溶融した後流し出して冷却した。このようにして得られたガラス試料の溶融温度(粘度102ポアズの温度)、作業温度(粘度104ポアズの温度)、失透温度、膨張率、転移点を測定した。
【0032】
溶融温度および作業温度の測定は以下のようにした。70ccの白金ルツボにガラスを入れて1600℃で溶融して測定サンプルとした。このサンプルを試料引き下げ式高温粘度測定装置にセットして、試料の溶融ガラス中に白金球をつるし、容器ごと試料を引き下げるときに白金球にかかる粘性抵抗を荷重として測定し、各温度での粘度を求めた。900〜1600℃の温度範囲で温度と粘度の関係を測定した。
【0033】
失透温度の測定は以下のようにした。ガラスを粉砕して2830μmのフルイを通り1000μmのフルイ上に留まったガラス粒25gを計り取り、幅12mm、長さ200mm、深さ9mmの白金製ボートに上記ガラス粒を敷き詰め、ボートの長さ方向に適当な温度勾配を持つように温度設定された炉内で2時間保持する。炉から取り出した白金ボートを自然放冷させた後に、白金ボート上のガラスを50倍の望遠鏡を用いて観察し、失透が発生している最高温度を持って失透温度とした。
【0034】
膨張率の測定は以下のようにした。直径5mm、高さ15mmの円柱状のロッドを作製し、25℃からガラスの降伏点まで、温度とガラスの伸びの関係を測定し、50℃から350℃の間の膨張率を測定した。
【0035】
転移点の測定は以下のようにした。膨張率測定時の膨張曲線の最初の屈曲点の前後で接線を引き、2本の接線の交点に相当する温度を転移点とした。
【0036】
各特性の測定結果を表1に示した。表1から分かるように、実施例1〜実施例6のガラス組成物はいずれも、溶融温度は1600℃未満であり、作業温度(Tw)と失透温度(Tl)との関係は、Tw−Tl≧15℃である。また、ガラスの転移点は660℃以上であり、50〜350℃の平均膨張率は80〜90×10-7/℃であった。すなわちこれらのガラス組成は、PDPの製造時に用いるシーリングフリット等の膨張率とのマッチングがよく、PDP等の表示装置のガラス基板として適していることが判明した。
【0037】
なお、表1および表2の略号は以下の通りである。
N.W.F(ネットワークフォーマー)=SiO2+Al23+ZrO2
2O=Li2O+Na2O+K2
R’O=MgO+CaO+SrO+BaO
【0038】
【表1】

Figure 0004045662
【0039】
【表2】
Figure 0004045662
【0040】
比較例
表2に示した比較例1〜比較例4のガラス組成物を実施例と同様の方法で作製し、得られたガラス試料の溶融温度、作業温度、失透温度、転移点、熱膨張率を測定した。各特性は実施例と同じ方法で測定した。比較例1および比較例2のガラスは、それぞれ特開平9−255355号公報および特開平9−255356号公報に開示されている組成であり、作業温度に対して失透温度が200℃以上も高く、失透しやすいガラスであり、フロート法で溶融、成形することが困難なガラスであることが分かった。また、比重が3.0を越えており、軽量化が要求されるPDP用のガラスとして好ましくないことが分かった。
【0041】
一方比較例3および比較例4のガラスは、それぞれ特開平9−301732号公報および特開平9−301733号公報に開示されている組成で、作業温度に対して失透温度が低く比重も小さいものの、溶融温度が1700℃近くで、作業温度が1200℃以上のためフロート法の溶解窯では溶融が困難である。
【0042】
【発明の効果】
本発明のガラス組成物は転移点が高いので、PDP用のガラス基板として用いたとき、PDP製造工程で受ける熱処理によって生じるガラスの熱収縮量を小さく抑制できる。このため大型あるいは高精細のPDPの製造に必要なガラスの寸法の熱安定性を確保できる。また本発明のガラス組成物からなるガラス基板は、膨張率の値が所定範囲内であるため、PDPの製造にすでに用いられてるガラスフリット等の部材との熱的マッチングがよく、気密等で信頼性のあるPDPを製造できる。
【0043】
さらに、本発明のガラス組成物は、溶融温度、失透温度、作業温度が所定範囲に選ばれているので、フロート法で失透物生成などの溶融欠点を生ずることなく溶融でき、それを板状に成形することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant glass composition having an expansion coefficient comparable to that of a glass of soda lime silica composition used as a window glass for construction, and a transition point higher than the transition point of the glass, a liquid crystal display panel, The present invention relates to a glass composition that is suitably used as a glass substrate for a display device such as an electroluminescence display panel, a plasma display panel (hereinafter referred to as PDP), a field emission display panel, and a fluorescent display tube, particularly as a substrate for PDP.
[0002]
[Prior art]
As the composition of the glass substrate used in the display device, various compositions are disclosed depending on the type of the display device. PDP has attracted attention as a large-area, direct-view type wall-mounted high-definition TV display device, and a glass plate of soda lime silica composition for general construction has been used as a glass substrate for PDP. In the PDP manufacturing process, high-temperature heat treatment in the range of 500 to 600 ° C. is performed in a process of baking electrodes on a glass substrate, forming a dielectric, forming barrier ribs, and forming phosphors.
[0003]
The thermal contraction of the glass substrate generated in these heat treatment steps causes a positional shift when the display pattern is matched in the next step, and when the front side glass substrate and the back side glass substrate are pasted together. For this reason, in order to manufacture a large-sized or high-definition PDP, it is necessary to manage the thermal shrinkage value of the glass substrate and its variation. Furthermore, since an insulating paste, a sealing frit, or the like is used for the above heat treatment, the glass substrate is required to have a thermal expansion coefficient matching with these. For this reason, the average thermal expansion coefficient at 50 to 350 ° C. of the glass substrate is required to be about 75 to 95 × 10 −7 / ° C., preferably 80 to 90 × 10 −7 / ° C. In order to reduce the shrinkage of the glass dimensions due to the heat treatment, it is necessary to use a glass having a high transition point.
[0004]
An alkali-free glass substrate used for a liquid crystal display device has a high transition point but a low expansion coefficient, and is not suitable for PDP applications. On the other hand, the glass of the soda lime silica composition that has been conventionally used is manufactured by a float method (a method in which molten glass is poured into a tin bath and formed into a plate shape) that can manufacture a large area glass plate at a low cost in large quantities. The expansion coefficient satisfies the requirements for PDP, but the transition point is about 550 ° C., and heat treatment at 500 to 600 ° C. causes large thermal shrinkage and is not always suitable for large or high definition PDP. I can't say. This is because the glass transition point is higher by 50 ° C. or more than the heat treatment temperature at the time of manufacturing the PDP, because thermal deformation hardly occurs.
[0005]
In order to solve the above problems, JP-A-9-255355, JP-A-9-255356, JP-A-9-301732, and JP-A-9-301733 have a transition point of 660 ° C. or higher. In addition, a glass composition having an expansion coefficient suitable for applications of PDP is disclosed.
[0006]
Since the glass disclosed in JP-A-9-255355 and JP-A-9-255356 has a small amount of SiO 2 and a large amount of alkaline earth oxide, the devitrification temperature is considerably higher than the working temperature and is formed by the float process. Is difficult and the specific gravity exceeds 3.0, it is not practical as a substrate for PDP. Further, the glass disclosed in JP-A-9-301732 and JP-A-9-301733 has a low specific gravity and a devitrification temperature lower than the transition point, but the melting temperature is close to 1700 ° C and the working temperature is 1200 ° C or higher. Therefore, it is difficult to melt and mold by the float process.
[0007]
[Problems to be solved by the invention]
The present invention has been obtained in order to solve the problems of the glass composition described above, and is suitable for melting and forming by the float process, and particularly has a heat resistance and an expansion coefficient suitable for PDP. The task is to get things.
[0008]
[Means for Solving the Problems]
Claim 1 has the following composition expressed in weight%:
SiO 2: 50~54.9
Al 2 O 3 : 10.5-18
ZrO 2 : 1 to 6
B 2 O 3 : 0 to 3
Li 2 O: 0 to 1
Na 2 O: 0 to 10
K 2 O: 0~15
MgO: 0-8
CaO: 4-8
SrO: 0-4
BaO: 3-12
TiO 2 : 0 to 3
ZnO: 0 to 2
SO 3 + Sb 2 O 3 : 0 to 1
SiO 2 + Al 2 O 3 + ZrO 2 : 70.1 or more Li 2 O + Na a O + K 2 O: 6 to 19
MgO + CaO + SrO + BaO: 10-19
And it is a heat resistant glass composition whose average expansion coefficient of 50-350 degreeC is 75-95 * 10 < -7 > / degreeC, and a transition point is 650 degreeC or more.
[0009]
A second aspect is characterized in that, in the first aspect, the melting temperature of the glass is 1600 ° C. or lower, the devitrification temperature is 1135 ° C. or lower, and the devitrification temperature is lower than the working temperature.
[0010]
Claim 3 is the following composition expressed in weight% in claim 1 or 2,
SiO 2: 52.5~54.5
Al 2 O 3 : 11.0-15
ZrO 2 : 2.5 to 5.5
B 2 O 3 : 0 to 2
Li 2 O: 0 to 0.5
Na 2 O: 4~7
K 2 O: 4 to 10
MgO: 0-6
CaO: 4-7
SrO: 0-4
BaO: 4-9
TiO 2 : 0 to 1
ZnO: 0 to 1
SO 3 + Sb 2 O 3 : 0 to 1
SiO 2 + Al 2 O 3 + ZrO 2 : 70.5 or more Li 2 O + Na 2 O + K 2 O: 9 to 15
MgO + CaO + SrO + BaO: 12-19
And the average expansion coefficient of 50-350 degreeC is 80-90 * 10 < -7 > / degreeC, and a transition point is 660 degreeC or more, It is characterized by the above-mentioned.
[0011]
A fourth aspect is characterized in that in any one of the first to third aspects, the specific gravity is 2.75 or less.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the composition in the present invention are as follows.
SiO 2 :
SiO 2 is a glass network former. If it is less than 50% by weight, the glass transition point becomes low. On the other hand, if it is 55% by weight or more, the meltability becomes poor and it becomes difficult to form by the float process. Therefore, the range of 50 to 54.9% by weight, and further 52.5 to 54.5% by weight is preferably used.
[0013]
Al 2 O 3 :
Al 2 O 3 is an effective component for raising the glass transition point. If it is less than 10.5% by weight, the glass transition point is lowered, whereas if it exceeds 18% by weight, devitrification tends to occur. Therefore, the range of 10.5 to 18% by weight, and further 11 to 15% by weight is preferably used.
[0014]
ZrO 2 :
ZrO 2 is an effective component for raising the transition point of glass like Al 2 O 3 .
Further, an effect of suppressing the occurrence of devitrification as compared with Al 2 O 3. If it is less than 1% by weight, the effect of improving the glass transition point is not observed, whereas if it exceeds 6% by weight, it remains as an undissolved component in the molten glass. Accordingly, a range of 1 to 6% by weight, and further 2.5 to 5.5% by weight is preferably used.
[0015]
SiO 2 + Al 2 O 3 + ZrO 2 :
The weather resistance is improved by setting the content of SiO 2 + Al 2 O 3 + ZrO 2 to 70.1% by weight or more. Furthermore, it is preferable to set it as 70.5 weight% or more.
[0016]
B 2 O 3 :
B 2 O 3 is not an essential component, but is effective for improving meltability. However, if it exceeds 5% by weight, the coefficient of thermal expansion becomes small. Therefore, 0 to 5% by weight, and further 0 to 2% by weight is preferably used.
[0017]
Li 2 O:
Li 2 O is not an essential component but is effective in improving meltability. However, if it exceeds 1% by weight, the transition point of the glass is too low. Further, devitrification is likely to occur due to the interaction with Al 2 O 3 . Therefore, the range of 0 to 1% by weight, and further 0 to 0.5% by weight is preferably used.
[0018]
Na 2 O:
Na 2 O is not an essential component but is effective not only for improving the meltability but also for increasing the expansion coefficient. Furthermore, the volume resistance of glass is improved by interaction with K 2 O. Further, unlike Li 2 O, devitrification is not easily caused by interaction with Al 2 O 3 . However, if it exceeds 10% by weight, the transition point is too low. Therefore, the range of 0 to 10% by weight, and further 4 to 7% by weight is preferably used.
[0019]
K 2 O:
Like Na 2 O, K 2 O is not an essential component but is effective not only for improving the meltability but also for increasing the expansion coefficient. Furthermore, the volume resistance of glass is improved by interaction with Na 2 O. Further, unlike Li 2 O, devitrification is not easily caused by interaction with Al 2 O 3 . However, if it exceeds 15% by weight, the transition point is too low. Accordingly, the range of 0 to 15% by weight, and further 4 to 10% by weight is preferably used.
[0020]
Li 2 O + Na 2 O + K 2 O:
Li 2 O + Na 2 O + K 2 O is related to meltability, and the total amount is particularly related to increasing the expansion rate. When the total amount is less than 6% by weight, the expansion coefficient becomes small, and devitrification easily occurs. On the other hand, if it exceeds 19% by weight, the transition point is lowered or devitrification tends to occur. Therefore, the range of 6 to 19% by weight, further 9 to 15% by weight is preferably used.
[0021]
MgO:
MgO is not an essential component but is effective not only for improving the meltability but also for raising the transition point. However, when it exceeds 8% by weight, devitrification tends to occur. Therefore, a range of 0 to 8% by weight, and further 0 to 6% by weight is preferably used.
[0022]
CaO:
Like MgO, CaO is not only effective for improving meltability, but also effective for raising the transition point. If it is less than 4% by weight, the effect is not sufficient. On the other hand, if it exceeds 8% by weight, devitrification tends to occur. Therefore, the range of 4 to 8% by weight, further 4 to 7% by weight is preferably used.
[0023]
SrO:
Although SrO is not an essential component, it is effective not only for improving the meltability but also for raising the transition point. However, if it exceeds 4% by weight, devitrification tends to occur and the specific gravity increases. Therefore, the range of 0 to 4% by weight is preferably used.
[0024]
BaO:
BaO is effective for improving the meltability. However, the effect is not sufficient if it is less than 3% by weight. On the other hand, if it exceeds 12% by weight, the specific gravity increases. Therefore, the range of 0 to 12% by weight, and further 4 to 9% by weight is preferably used.
[0025]
MgO + CaO + SrO + BaO:
MgO + CaO + SrO + BaO is related to the improvement of meltability of glass. If the total amount is less than 10% by weight, desired meltability cannot be obtained. On the other hand, when it exceeds 19% by weight, devitrification tends to occur. Therefore, the range of 10 to 19% by weight, and further 12 to 19% by weight is preferably used.
[0026]
TiO 2 :
TiO 2 is not an essential component but is effective in improving chemical durability. If it exceeds 3% by weight, the glass is colored, which is not preferable. Therefore, a range of 0 to 3% by weight, and further 0 to 1% by weight is preferably used.
[0027]
ZnO:
ZnO is not an essential component but is effective for improving the meltability. However, if it exceeds 2% by weight, the volatilization is large and the life of the glass melting furnace is shortened. Accordingly, a range of 0 to 2% by weight, and further 0 to 1% by weight is preferably used.
[0028]
SO 3 + Sb 2 O 3 :
SO 3 + Sb 2 O 3 is not an essential component but is used as a fining agent. The amount used is preferably 1% by weight or less.
[0029]
In the present invention, oxides such as V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, and Ce are added as coloring components in order to adjust the transmittance of glass and increase the display contrast of PDP. You may do it.
[0030]
In order to match the expansion coefficient of a sealing frit or the like used when manufacturing a PDP, the average expansion coefficient of 50 to 350 ° C. needs to be 75 to 95 × 10 −7 / ° C. Furthermore, the range of 80-90 * 10 < -7 > / (degreeC) is preferable. Further, in order to keep the heat shrinkage in the heat treatment during the manufacturing process of the PDP below an allowable range, the transition point is required to be 650 ° C. or higher, and preferably 660 ° C. or higher.
[0031]
Next, the present invention will be described with reference to examples and comparative examples.
The glass raw material was prepared so that the glass component of the example had the target composition shown in Table 1. At this time, bow glass was used as a fining agent. The prepared batch was put into a crucible, melted at 1600 ° C. for 4 hours, then poured out and cooled. The melting temperature (viscosity of 10 2 poise), working temperature (viscosity of 10 4 poise), devitrification temperature, expansion coefficient, and transition point of the glass sample thus obtained were measured.
[0032]
Melting temperature and working temperature were measured as follows. A glass was put into a 70 cc platinum crucible and melted at 1600 ° C. to obtain a measurement sample. Set this sample in a sample pull-down high-temperature viscosity measuring device, hang a platinum ball in the molten glass of the sample, measure the viscosity resistance applied to the platinum ball when pulling down the sample with the container as a load, and measure the viscosity at each temperature. Asked. The relationship between temperature and viscosity was measured in the temperature range of 900 to 1600 ° C.
[0033]
The devitrification temperature was measured as follows. The glass particles are crushed and 25 g of glass particles passing through a 2830 μm sieve and remaining on a 1000 μm sieve are measured, and the glass particles are spread on a platinum boat having a width of 12 mm, a length of 200 mm, and a depth of 9 mm. And hold for 2 hours in a furnace set at a temperature so as to have an appropriate temperature gradient. After allowing the platinum boat taken out of the furnace to cool naturally, the glass on the platinum boat was observed using a 50 × telescope, and the devitrification temperature was set to the maximum temperature at which devitrification occurred.
[0034]
The expansion coefficient was measured as follows. A cylindrical rod having a diameter of 5 mm and a height of 15 mm was produced, the relationship between temperature and glass elongation was measured from 25 ° C. to the yield point of the glass, and the expansion coefficient between 50 ° C. and 350 ° C. was measured.
[0035]
The transition point was measured as follows. A tangent line was drawn before and after the first bending point of the expansion curve at the time of expansion coefficient measurement, and the temperature corresponding to the intersection of the two tangent lines was taken as the transition point.
[0036]
The measurement results of each characteristic are shown in Table 1. As can be seen from Table 1, the glass compositions of Examples 1 to 6 all have a melting temperature of less than 1600 ° C., and the relationship between the working temperature (Tw) and the devitrification temperature (Tl) is Tw− Tl ≧ 15 ° C. Moreover, the transition point of glass was 660 degreeC or more, and the average expansion coefficient of 50-350 degreeC was 80-90 * 10 < -7 > / degreeC. That is, these glass compositions have a good matching with the expansion coefficient of the sealing frit used at the time of manufacturing the PDP, and have been found to be suitable as a glass substrate for a display device such as a PDP.
[0037]
In addition, the symbol of Table 1 and Table 2 is as follows.
N.W.F (network former) = SiO 2 + Al 2 O 3 + ZrO 2
R 2 O = Li 2 O + Na 2 O + K 2 O
R′O = MgO + CaO + SrO + BaO
[0038]
[Table 1]
Figure 0004045662
[0039]
[Table 2]
Figure 0004045662
[0040]
Comparative Examples Glass compositions of Comparative Examples 1 to 4 shown in Table 2 were prepared in the same manner as in the Examples, and the melting temperature, working temperature, devitrification temperature, transition point, and thermal expansion of the obtained glass samples. The rate was measured. Each characteristic was measured by the same method as the Example. The glasses of Comparative Example 1 and Comparative Example 2 have compositions disclosed in JP-A-9-255355 and JP-A-9-255356, respectively, and the devitrification temperature is as high as 200 ° C. or more with respect to the working temperature. It was found that the glass is easily devitrified and is difficult to melt and mold by the float process. Moreover, it was found that the specific gravity exceeds 3.0, which is not preferable as a glass for PDP that requires a reduction in weight.
[0041]
On the other hand, the glasses of Comparative Example 3 and Comparative Example 4 have compositions disclosed in JP-A-9-301732 and JP-A-9-301733, respectively, and have low devitrification temperature and low specific gravity with respect to the working temperature. Since the melting temperature is close to 1700 ° C. and the working temperature is 1200 ° C. or higher, melting is difficult in the melting furnace of the float method.
[0042]
【The invention's effect】
Since the glass composition of the present invention has a high transition point, when it is used as a glass substrate for PDP, the amount of heat shrinkage of the glass caused by the heat treatment received in the PDP manufacturing process can be suppressed to be small. For this reason, the thermal stability of the dimension of glass required for manufacture of a large sized or high definition PDP is securable. In addition, since the glass substrate made of the glass composition of the present invention has a value of expansion coefficient within a predetermined range, it has good thermal matching with a member such as a glass frit already used in the manufacture of PDP, and is airtight and reliable. A compatible PDP can be manufactured.
[0043]
Furthermore, since the melting temperature, devitrification temperature, and working temperature are selected within the predetermined range, the glass composition of the present invention can be melted without causing melting defects such as devitrification by the float process. Can be formed into a shape.

Claims (5)

重量%で表示して下記の組成であり、
SiO2:50〜54.9
Al23:10.5〜18
ZrO2:1〜6
23:0〜3
Li2O:0〜1
Na2O:0〜10
2O:0〜15
MgO:0〜8
CaO:4〜8
SrO:0〜4
BaO:3〜12
TiO2:0〜3
ZnO:0〜2
SO3+Sb23:0〜1
SiO2+Al23+ZrO2:70.1以上
Li2O+NaaO+K2O:6〜19
MgO+CaO+SrO+BaO:10〜19
かつ、50〜350℃の平均膨張率が75〜95×10-7/℃、転移点が650℃以上である耐熱性ガラス組成物。
The following composition expressed in weight%,
SiO 2: 50~54.9
Al 2 O 3 : 10.5-18
ZrO 2 : 1 to 6
B 2 O 3 : 0 to 3
Li 2 O: 0 to 1
Na 2 O: 0 to 10
K 2 O: 0~15
MgO: 0-8
CaO: 4-8
SrO: 0-4
BaO: 3-12
TiO 2 : 0 to 3
ZnO: 0 to 2
SO 3 + Sb 2 O 3 : 0 to 1
SiO 2 + Al 2 O 3 + ZrO 2 : 70.1 or more Li 2 O + Na a O + K 2 O: 6 to 19
MgO + CaO + SrO + BaO: 10-19
And the heat resistant glass composition whose average expansion coefficient of 50-350 degreeC is 75-95 * 10 < -7 > / degreeC, and a transition point is 650 degreeC or more.
溶融温度が1600℃以下、失透温度が1135℃以下、失透温度が作業温度よりも低いことを特徴とする請求項1に記載の耐熱性ガラス組成物。2. The heat-resistant glass composition according to claim 1, wherein the melting temperature is 1600 ° C. or lower, the devitrification temperature is 1135 ° C. or lower, and the devitrification temperature is lower than the working temperature. 重量%で表示して下記の組成であり、
SiO2:52.5〜54.5
Al23:11.0〜15
ZrO2:2.5〜5.5
23:0〜2
Li2O:0〜0.5
Na2O:4〜7
2O:4〜10
MgO:0〜6
CaO:4〜7
SrO:0〜4
BaO:4〜9
TiO2:0〜1
ZnO:0〜1
SO3+Sb23:0〜1
SiO2+Al23+ZrO2:70.5以上
Li2O+Na2O+K2O:9〜15
MgO+CaO+SrO+BaO:12〜19
かつ、50〜350℃の平均膨張率が80〜90×10-7/℃、転移点が660℃以上であることを特徴とする請求項1または2に記載の耐熱性ガラス組成物。
The following composition expressed in weight%,
SiO 2: 52.5~54.5
Al 2 O 3 : 11.0-15
ZrO 2 : 2.5 to 5.5
B 2 O 3 : 0 to 2
Li 2 O: 0 to 0.5
Na 2 O: 4~7
K 2 O: 4 to 10
MgO: 0-6
CaO: 4-7
SrO: 0-4
BaO: 4-9
TiO 2 : 0 to 1
ZnO: 0 to 1
SO 3 + Sb 2 O 3 : 0 to 1
SiO 2 + Al 2 O 3 + ZrO 2 : 70.5 or more Li 2 O + Na 2 O + K 2 O: 9 to 15
MgO + CaO + SrO + BaO: 12-19
And the average expansion coefficient of 50-350 degreeC is 80-90 * 10 < -7 > / degreeC, and a transition point is 660 degreeC or more, The heat resistant glass composition of Claim 1 or 2 characterized by the above-mentioned.
比重を2.75以下としたことを特徴とする請求項1〜3のいずれかに記載の耐熱性ガラス組成物。The heat resistant glass composition according to any one of claims 1 to 3, wherein the specific gravity is 2.75 or less. 請求項1〜4のいずれかに記載の耐熱性ガラス組成物からなる基板を有するプラズマディスプレイパネル。The plasma display panel which has a board | substrate which consists of a heat resistant glass composition in any one of Claims 1-4.
JP23697198A 1998-08-24 1998-08-24 Heat resistant glass composition and plasma display panel using the same Expired - Lifetime JP4045662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23697198A JP4045662B2 (en) 1998-08-24 1998-08-24 Heat resistant glass composition and plasma display panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23697198A JP4045662B2 (en) 1998-08-24 1998-08-24 Heat resistant glass composition and plasma display panel using the same

Publications (2)

Publication Number Publication Date
JP2000072472A JP2000072472A (en) 2000-03-07
JP4045662B2 true JP4045662B2 (en) 2008-02-13

Family

ID=17008487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23697198A Expired - Lifetime JP4045662B2 (en) 1998-08-24 1998-08-24 Heat resistant glass composition and plasma display panel using the same

Country Status (1)

Country Link
JP (1) JP4045662B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112942A (en) * 2001-10-03 2003-04-18 Nippon Electric Glass Co Ltd Glass substrate for field emission type display
WO2004008424A1 (en) * 2002-07-16 2004-01-22 Tdk Corporation Flat panel display substrate and thin film el element
JP2006030486A (en) * 2004-07-14 2006-02-02 Osaka Tokushu Glass Kk Reflecting mirror
KR100750990B1 (en) 2005-06-22 2007-08-22 주식회사 케이씨씨 High Strain-point Glass composition for substrate
KR100794200B1 (en) * 2005-12-16 2008-01-11 한상교 A manufacturing method of unrefined rice wine
JP4946310B2 (en) * 2006-09-25 2012-06-06 セントラル硝子株式会社 Substrate glass for display devices
KR100846283B1 (en) 2007-03-07 2008-07-16 샌트랄 글래스 컴퍼니 리미티드 A substrate glass for a flat panel display device
DE202009018722U1 (en) 2008-02-26 2012-11-21 Corning Inc. Refining agent for silicate glasses
JP5915891B2 (en) * 2011-05-10 2016-05-11 日本電気硝子株式会社 Glass
WO2015076208A1 (en) * 2013-11-19 2015-05-28 旭硝子株式会社 Glass sheet
CN105923995A (en) * 2016-04-26 2016-09-07 东莞市银通玻璃有限公司 Ultrathin toughened glass and preparation method thereof
CN115745398B (en) * 2022-11-30 2024-07-26 成都光明光电股份有限公司 Glass composition

Also Published As

Publication number Publication date
JP2000072472A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
KR100472804B1 (en) Heat Resistant Glass Composition
US5854153A (en) Glasses for display panels
US5459109A (en) Substrate glasses for plasma displays
US6162750A (en) Substrate glass and plasma display made by using the same
JP3669022B2 (en) Substrate glass composition and plasma display substrate using the same
JP4045662B2 (en) Heat resistant glass composition and plasma display panel using the same
JP2008540314A (en) High-deformation point glass composition for substrates
JP4692915B2 (en) Front glass substrate for plasma display devices.
JP4686858B2 (en) Glass substrate for flat panel display
JPH11310430A (en) Glass composition for substrate board
JP3460298B2 (en) Glass composition for substrates
JPH11240735A (en) Glass composition for use as substrate
JP3741526B2 (en) Substrate glass for display devices
EP0853070A1 (en) Substrate glass and plasma display made by using the same
JPH11322358A (en) Heat resistant glass composition
JP3897209B2 (en) Glass for exhaust pipe
JPH11310432A (en) Glass composition for substrate board
JP3770670B2 (en) Substrate glass for display devices
JP4183697B2 (en) Manufacturing method of substrate glass for display devices
JPH11310431A (en) Glass composition for substrate board
KR100238117B1 (en) Substrate glasses for plasma display panel
JPH11310429A (en) Glass composition for substrate board
EP0850891B1 (en) Substrate glass and plasma display made by using the same
JP4756428B2 (en) Glass substrate for flat panel display
JP2001060439A (en) Front glass substrate for plasma display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term