JP3666851B2 - 熱分析装置、熱分析測定方法及びガスフローユニット - Google Patents

熱分析装置、熱分析測定方法及びガスフローユニット Download PDF

Info

Publication number
JP3666851B2
JP3666851B2 JP2000255008A JP2000255008A JP3666851B2 JP 3666851 B2 JP3666851 B2 JP 3666851B2 JP 2000255008 A JP2000255008 A JP 2000255008A JP 2000255008 A JP2000255008 A JP 2000255008A JP 3666851 B2 JP3666851 B2 JP 3666851B2
Authority
JP
Japan
Prior art keywords
gas
opening
sample
flow rate
sample chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000255008A
Other languages
English (en)
Other versions
JP2002071603A (ja
Inventor
義博 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2000255008A priority Critical patent/JP3666851B2/ja
Publication of JP2002071603A publication Critical patent/JP2002071603A/ja
Application granted granted Critical
Publication of JP3666851B2 publication Critical patent/JP3666851B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料の温度を変化させながらその試料の性質の温度依存性を測定する熱分析装置に関する。また本発明は、その熱分析装置を用いて行われる熱分析測定方法に関する。また本発明は、その熱分析装置に好適に用いられるガスフローユニットに関する。
【0002】
【従来の技術】
熱分析装置には従来から種々のものが知られている。例えば、試料の温度を変化させながらその試料の重量の温度依存性を測定するTG(Thermogravimetry)装置や、試料と基準物質の温度を変化させながらその試料と基準物質との間の温度差の温度依存性を測定するDTA(Differential Thermal Analysis)装置や、TGとDTAの両方の機能を併せ持ったTG−DTA装置や、試料の温度を変化させながらその試料に荷重を加えてその試料の変形を測定するTMA(Thermo-mechanical Analysis)装置等が知られている。
【0003】
また、これらの装置においては、試料の酸化を防止する等のために、試料のまわりにN2 、Ar等といった不活性ガスを流しながら測定を行うことがある。このように不活性ガスを流す場合、従来は、試料を収納する試料室にガスの吸気口と排気口とをそれぞれ1個ずつ設け、吸気口から導入した不活性ガスを排気口から外部へ排出しながら測定を行っていた。
【0004】
しかしながら、この場合には、試料のまわりを流れる不活性ガスのガス流に吸引されて汚染ガスが試料へ到来し、この結果、正確な測定ができなくなるおそれがあった。この問題を解消するため、特開平3−289552号公報に開示されたように、試料を収容した試料室の内部にガスの分流を形成し、一方のガス流を試料のまわりに流し、他方のガス流を試料から離れる方向へ流すことにより、汚染ガスが試料に到来することを防止しつつ試料のまわりの酸素濃度を低減するという手法が考えられる。
【0005】
特開平3−289552号公報に開示された熱分析装置はTG装置のガス排気側に質量分析装置を付設する構造の装置であるので、試料を通った分流ガスを質量分析装置に導く第1ガス導出口にはオリフィスが設けられ、もう一方の分流ガスを外部へ導く第2ガス導出口はオリフィスのない開放状態となっている。今、特開平3−289552号公報に開示されたようなガス分流方法を一般的なTG装置等、すなわち、質量分析装置等といった付属設備が接続されない構造のTG装置等に適用しようとすると、通常であれば、次の2通りの方法が考えられる。
【0006】
1つは、第1ガス導出口及び第2ガス導出口の2つのガス排出口の両方をオリフィスのない開放状態に設定してガスを分流させるという方法である。しかしながらこの方法では、導入されたガスは第1ガス導出口又は第2ガス導出口のうちの流れ易い方へ流れてしまい、希望するガス分流を形成することができず、よって、試料のまわりの酸素濃度を希望する程度まで低減することができないという問題がある。
【0007】
考えられるガス分流方法の他の1つは、特開平3−289552号公報に開示された技術のように、試料を通過したガスを外部へ導く第1ガス導出口にオリフィスを設け、そのオリフィスの調節によってガス流の流量調整を行うことにより、希望のガス分流を形成することである。しかしながら、この方法では、オリフィスの調整に起因して試料室の内部気圧が変動、例えば気圧上昇し、その結果、信頼性の高い測定ができなくなるという問題が発生する。
【0008】
【発明が解決しようとする課題】
本発明は、上記の問題点に鑑みて成されたものであって、熱分析装置の試料室の内部にガス分流を形成することにより試料のまわりを低酸素濃度に設定して測定を行う熱分析装置において、試料室の内部に内圧変動が発生することを防止して、信頼性の高い測定を行うことができるようにすることを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明に係る熱分析装置は、試料が配置される試料室と、該試料室に通じる第1開口と、前記試料室へガスを供給するガス供給口とを有する熱分析装置において、前記試料が配置される位置に関して前記第1開口の反対側に設けられた第2開口と、該第2開口に接続されたガス搬送手段とを有し、前記ガス供給口は前記試料に関して前記第1開口の反対側に配置されると共に前記試料と前記第2開口との間に配置され、前記第1開口は外部に対して開放状態であることを特徴とする。
【0010】
この構成の熱分析装置によれば、ガス供給口から導入したガスを第1開口と第2開口とに分けて流すことにより、試料室の内部にガス分流を形成できる。そして、第1開口を通して流れるガス分流により試料を低酸素濃度の環境に置くことができ、一方、第2開口を通して流れるガス分流により汚染ガスが試料へ近づくことを防止する。
【0011】
このとき、試料室内に形成されるガス分流はオリフィスの調整によるものでなくガス搬送手段によるガスの吸引によるものであり、さらに第1開口はオリフィスの無い開放状態に設定されているので、試料室内は常に外部気圧と同じ一定の気圧に安定に維持されるので、極めて安定した再現性の高い測定結果を得ることができる。
【0012】
上記構成において、試料室内へ供給されるガスは不活性ガス、例えば、N2 、Ar等とすることができる。また、熱分析装置としては、TG装置、DTA装置、TG−DTA装置、TMA装置等が考えられる。
【0013】
一般に、真空ポンプと呼ばれるガス搬送手段はそのガス搬送容量が数l(リットル)/min(分)〜60l/min程度、望ましくは40l/min〜50l/min程度である。本発明で用いるガス搬送手段は上記のような大容量の真空ポンプではなくて、より小容量のガス搬送手段であることが望ましい。具体的には、500ml(ミリリットル)/min〜1000ml/minのガス搬送容量を有するガス搬送手段であるこが望ましい。
【0014】
このように小容量のガス搬送手段を用いるのは、試料室内に静かなガス分流を形成し、しかも試料室内の内圧を安定に維持することを目標とする場合には、ガス搬送手段を徒に大容量にすることなく、必要最低限の容量に抑える方が望ましいからである。このような小容量のガス搬送手段は脈動を生じ難いので、静かで安定したガス流を形成することに関して好適である。
【0015】
また、上記構成の熱分析装置において、前記ガス搬送手段の上流側には流量制御手段を設けることが望ましい。こうすれば、試料室内のガス流を適正な流れに調整できる。また、上記構成の熱分析装置において、ガス供給口の上流側には流量制御手段を設けることが望ましい。こうすれば、試料室内のガス流を適正な流れに調整できる。さらに、ガス搬送手段の上流側及びガス供給口の上流側の両方にガス搬送手段を設けることもできる。こうすれば、試料室内のガスの分流状態をより一層精密に調整することができる。
【0016】
また、上記構成の熱分析装置において、前記ガス搬送手段の上流側に配設される第1流量制御手段及び前記ガス供給口の上流側に配設される第2流量制御手段は、外部から操作可能なバルブと、流量を外部から認識可能に表示する流量表示部とを含んで構成されることが望ましい。こうすれば、外部からの操作により、試料室内に適正なガス分流を形成することが可能となる。
【0017】
ところで、ガスの流量計には、一般に、大きく分けて体積流量計と質量流量計がある。体積流量計は流量計各部を大気に開放した状態、すなわち流量計内部に圧力がかからない状態で使用されるものであり、例えば、フロート式流量計、石ケン膜流量計、湿式ガスメータ等が知られている。また、質量流量計はガスの流量を重さで検知するものであり、ガスが圧縮されたりして密度が変化した状態でも同じ状態を定義することができるものである。この質量流量計はマスフローメータと呼ばれることもあり、例えば、電磁流量計、超音波流量計、熱式流量計等が知られている。
【0018】
本発明で用いる流量制御手段の流量表示部は、体積流量計、質量流量計、その他任意の構造の流量計を用いて構成できるが、例えば具体的には、上端が広く下端が狭いテーパ管と、そのテーパ管の内部に収納された移動子とによって流量を表示する構造とすることができる。そしてその場合には、前記第1流量制御手段に関しては、前記テーパ管の下端側が前記第2開口に接続され、前記バルブが前記テーパ管の上端側に設けられ、該バルブに前記ガス搬送手段が接続されることが望ましい。また、前記第2流量制御手段に関しては、前記バルブが前記テーパ管の下端側に設けられ、該バルブにガス源が接続され、前記テーパ管の上端側が前記ガス供給口に接続されることが望ましい。
【0019】
この構成によれば、第1流量制御手段及び第2流量制御手段の両方とも、試料室すなわち大気圧開放側に接続されるのはバルブと反対側のポートとなる。つまり、流量表示部として機能するテーパ管はバルブの高圧側ではなくて大気圧開放側に配置されることになり、それ故、テーパ管を用いた流量表示を安定して正確に行うことが可能となる。
【0020】
次に、上記構成の熱分析装置において、前記ガス搬送手段は2つのガス搬送系を持ち、1つのガス搬送系は前記第1流量制御手段から吸気して外部へ排気を行い、他の1つのガス搬送系は大気から吸気して前記ガス供給口へ排気を行い、さらに、前記ガス搬送手段の2つのガス搬送系は外部からの操作によって切り換え可能であることが望ましい。
【0021】
第1流量制御手段から吸気して外部へ排気を行う上記1つのガス搬送系を用いれば、第1流量制御手段に接続された第2開口を通して試料室内のガスを吸引することにより、試料室内に適切なガス分流を形成することができる。一方、大気から吸気して試料室のガス供給口へ排気を行う上記他の1つのガス搬送系を用いれば、大気の空気をガス供給口を通して試料室内へ強制的に送り込むことができる。
【0022】
大気から吸気して試料室のガス供給口へ排気を行う上記のガス搬送系を用いれば、例えば、空気雰囲気での熱分析測定や、いわゆる試料部の焼き飛ばし処理を行うことができる。空気雰囲気での熱分析測定とは、試料のまわりに空気を流しながらその試料に対して熱分析測定を行う測定手法である。また、焼き飛ばし処理というのは、試料室の壁等に付着したカーボン等を酸化した上で空気流によって外部へ吹き飛ばすことにより試料室内を清浄する処理のことである。
【0023】
なお、熱分析装置において試料室には何等かの付属室が付設されることが多い。例えば、TG−DTA装置であれば、試料室に付属室としての天秤室が付設される。また、TG装置その他の装置において、何等かの機構を格納した付属室が試料室に付設されることもある。このように試料室に空間的につながる付属室を有する熱分析装置においては、前記第2開口を該付属室に設けることが望ましい。こうすれば、付属室内の汚染ガスを効率良く第2開口へ導くことができ、それにより、汚染ガスが試料へ近づくことを確実に防止できる。付属室として天秤室を備えた熱分析装置において第2開口をその付属室すなわち天秤室に設ければ、天秤室内の汚染ガスを確実に試料室の外部へ排出できる。
【0024】
次に、本発明に係る熱分析測定方法は、試料が配置される試料室と、該試料室に通じる第1開口と、前記試料室へガスを供給するガス供給口と、前記試料が配置される位置に関して前記第1開口の反対側に設けられた第2開口と、該第2開口に接続されたガス搬送手段とを有し、前記第1開口は外部に対して開放状態である熱分析装置を用いた熱分析測定方法において、前記ガス供給口へガスを供給しながら供給されたそのガスの50%以上、望ましくは供給されたガスの大部分、より望ましくは供給されたガスの約80%を前記ガス搬送手段によって前記第2開口から吸引して外部へ搬送する第1ガス搬送工程と、前記第1ガス搬送工程の後に前記ガス供給口へガスを供給しながら供給されたそのガスの50%以下、望ましくは供給されたガスの少量部分、より望ましくは供給されたガスの数十%、より望ましくは供給されたガスの約20%を前記ガス搬送手段によって前記第2開口から吸引して外部へ搬送する第2ガス搬送工程とを有することを特徴とする。
【0025】
この熱分析測定方法によれば、第1ガス搬送工程において汚染ガスの多くを第2開口から外部へ確実に排出でき、そしてそれに引き続く第2ガス搬送工程においては第2開口へ向かうガス流を抑えてその抑えた分のガスを第1開口すなわち試料へ供給することにより、より多くの新鮮なガスを試料へ供給して試料のまわりの酸素濃度を低減することができる。
【0026】
次に、本発明に係るガスフローユニットは、試料室に通じるガス供給口及び同じく試料室に通じる第2開口の2つの開口を備えた熱分析装置に組み付けられることにより、上述した構成の熱分析装置を簡単に構成することができるガスフローユニットである。具体的には、本発明に係るガスフローユニットは、外部に開口する吸気口と、前記吸気口に接続されていて該吸気口を通して流れるガスの流量を調節できる第1流量制御手段と、該第1流量制御手段に接続されていて該第1流量制御手段を通してガスを搬送するガス搬送手段と、該ガス搬送手段に接続されていて外部に開口する排気口と、ガスを取り込むガス取込み口と、該ガス取込み口に接続されていて該ガス取込み口を通して流れるガスの流量を調節できる第2流量制御手段と、該第2流量制御手段に接続されていて外部に開口するガス供給口とを有することを特徴とする。
【0027】
このガスフローユニットによれば、前記吸気口を熱分析装置の第2開口に接続し、前記ガス供給口を熱分析装置のガス供給口へ接続することにより、本願請求項1に係る熱分析装置を簡単に構成することができる。そしてこのようにして構成される熱分析装置により、極めて安定した内部圧力の下に低酸素濃度下での熱分析測定ができることは前述の通りである。
【0028】
上記構成のガスフローユニットにおいて、前記第1流量制御手段及び前記第2流量制御手段は外部から操作可能なバルブと、流量を外部から認識可能に表示する流量表示部とを有することが望ましい。こうすれば、本ガスフローユニットを熱分析装置に付設した場合に、外部からの操作により、試料室内に適正なガス分流を形成することが可能となる。
【0029】
また、上記の流量表示部は、体積流量計、質量流量計、その他の構造の流量計を用いて構成できるが、例えば具体的には、上端が広く下端が狭いテーパ管と、そのテーパ管の内部に収納された移動子とによって流量を表示する構造とすることができる。そしてその場合には、前記第1流量制御手段に関しては、前記テーパ管の下端側が前記第2開口に接続され、前記バルブが前記テーパ管の上端側に設けられ、該バルブに前記ガス搬送手段が接続されることが望ましい。また、前記第2流量制御手段に関しては、前記バルブが前記テーパ管の下端側に設けられ、該バルブにガス源が接続され、前記テーパ管の上端側が前記ガス供給口に接続されることが望ましい。
【0030】
この構成によれば、第1流量制御手段及び第2流量制御手段の両方とも、試料室すなわち大気圧開放側に接続されるのはバルブと反対側のポートとなる。つまり、流量表示部として機能するテーパ管はバルブの高圧側ではなくて大気圧開放側に配置されることになり、それ故、テーパ管を用いた流量表示を安定して正確に行うことが可能となる。なお、流量表示部を質量流量計を用いて構成することもでき、この場合には、試料室に対する質量流量計の接続形態はかなり自由に設定できる。
【0031】
次に、上記構成のガスフローユニットにおいては、外部に開口するエアー取出口をさらに設け、前記ガス搬送手段は2つのガス搬送系を有し、1つのガス搬送系は前記第1流量制御手段から吸気して前記排気口へ排気を行い、他の1つのガス搬送系は大気から吸気して前記エアー取出口へ排気を行い、前記ガス搬送手段の2つのガス搬送系は外部からの操作によって切り換え可能であることが望ましい。
【0032】
第1流量制御手段から吸気して前記排気口へ排気を行う上記1つのガス搬送系を用いれば、第1流量制御手段に接続された試料室側の第2開口を通して試料室内のガスを吸引することにより、試料室内に適切なガス分流を形成することができる。一方、前記エアー取出口を試料室側のガス供給口に接続した上で、大気から吸気して前記エアー取出口へ排気を行う上記他の1つのガス搬送系を用いれば、大気の空気をガス供給口を通して試料室内へ強制的に送り込むことができる。これにより、試料を空気フロー中に置いた状態でのその試料に対する熱分析測定や、いわゆる試料部の焼き飛ばし処理を行うことができる。
【0033】
【発明の実施の形態】
以下、本発明をTG−DTA装置に適用した場合を例に挙げて説明する。図1は本発明に係る熱分析装置、熱分析測定方法及びガスフローユニットのそれぞれの一実施形態を示す側面断面図である。
【0034】
ここに示す熱分析装置1は、試料室2と、付属室としての天秤室3と、天秤室3を介して試料室2へ接続されたガスフローユニット4とを有する。天秤室3の中には一対の天秤機構6a及び6bが設けられ、それらの天秤機構6a及び6bから延びる天秤棒7a及び7bの先端に設けられた試料皿8a及び8bが試料室2の内部に配置される。試料皿8a及び8bの一方、例えば試料皿8aには測定対象である試料Sが収容され、他方、例えば試料皿8bには熱的に安定した物質である基準物質Rが収容される。
【0035】
試料皿8a及び8bの周囲には保護管9を介してヒータ11が設けられる。このヒータ11には温度コントローラ12が接続される。温度コントローラ12は所定のプログラムに従ってヒータ11へ通電を行い、これによりヒータ11が所定の変化状態で発熱する。保護管9は、例えば、試料S等から出るガスによってヒータ11が損傷することを防止する。
【0036】
保護管9はその先端に開口9aを有し、その開口9aは試料室2の先端に形成された第1開口O1に連通する。また、天秤室3につながる部分の試料室2の壁にはガス供給口13が設けられる。
【0037】
試料皿8a及び8bに関して第1開口O1の反対側に位置する天秤室3の端部壁3aには第2開口O2及びガス経由口14が設けられる。ガス経由口14は天秤室3の内部又はその外部に配置される中継管16によってガス供給口13につながっている。この構成により、ガス供給口13は、試料皿8a及び8bよりも第1開口O1から離れた位置であって、第2開口O2よりも試料皿8a及び8bに近い位置において試料室2の内部へガスを供給する。
【0038】
なお、本実施形態では試料室2に付属室である天秤室3が付設されるので、その天秤室3に第2開口O2を設けたが、天秤室3等といった付属室を用いることなく試料室2だけによって熱分析装置が構成される場合には、試料室2に第2開口2が設けられることになる。
【0039】
天秤室3に格納された天秤機構6a及び6bにはTG測定部17が接続される。このTG測定部17は試料Sと基準物質Rとの間に発生する相対的な重量変化を測定するものであり、その作用が達成される限りにおいて任意の構造を採用できる。
【0040】
試料皿8a及び8bの近くには測温点Pa及びPbが設定され、それらの測温点Pa及びPbにDTA測定部18が接続される。このDTA測定部18は試料Sと基準物質Rとの間に発生する温度差を測定することにより試料Sの熱的変化を測定するものであり、その作用が達成される限りにおいて任意の構造を採用できる。
【0041】
ガスフローユニット4は、図2に示すように、外部に開口する吸気口21と、その吸気口21に接続された第1流量制御手段としての第1フローメータ22と、その第1フローメータ22に接続されたガス搬送手段としてのガス搬送ポンプ23と、そのガス搬送ポンプ23に接続されていて外部に開口する排気口24と、ガスを取り込むガス取込み口26と、そのガス取込み口26に接続された第2流量制御手段としての第2フローメータ27と、この第2フローメータ27に接続されていて外部へ開口するガス供給口28とを有する。符号37は交流電源38から電力の供給を受けるための電気接続端子である。
【0042】
ガス搬送ポンプ23は2つのガス搬送系29a及び29bを有しており、これらのガス搬送系は操作スイッチ31の切換えスイッチ48の操作によっていずれか1つを選択できるようになっている。第1フローメータ22の排気ポート32は第1ガス搬送系29aの吸気ポート33aに接続され、排気口24は第1ガス搬送系29aの排気ポート34aに接続される。ガス搬送ポンプ23の第2ガス搬送系29bの吸気ポート33bは外部すなわち大気に開放され、その排気ポート34bは外部に開口するエアー取出口36に接続されている。
【0043】
ガス搬送ポンプ23は、第1ガス搬送系29aが選択されている場合には、第1フローメータ22を通して空気を吸引し、排気口24を通して空気を外部へ排出する。また、第2ガス搬送系29bが選択されている場合には、吸気ポート33bから大気の空気が吸引され、その空気がエアー取出口36から外部へ排出される。なお、ガス搬送ポンプ23は、そのガス搬送容量が500ml/min〜1000ml/min程度のものが使われる。
【0044】
一般に、対象空間を真空にするために用いられる、いわゆる真空ポンプは数l/min〜50l/min程度のガス搬送容量を有するものであり、このことから察すると、本実施形態で用いるガス搬送ポンプ23はガス搬送容量が小さい小型のポンプであるということができる。
【0045】
第1フローメータ22及び第2フローメータ27は、外部からツマミ41a,41bによって操作可能なニードルバルブ42a,42bと、ガス流量を外部へ表示する流量表示部43a,43bとを有する。流量表示部43a,43bは、上端が広く下端が狭いテーパ管44の中に移動子46を入れることによって構成される。テーパ管44の表面には目盛りが設けられ、移動子46がテーパ管44を流れるガスの流れに従って移動するとき、その移動子46の位置をテーパ管44の目盛りで読み取ることにより、テーパ管44を流れるガスの流量を知ることができる。
【0046】
図3はガスフローユニット4の外観を示しているが、図示の通り、第1フローメータ22及び第2フローメータ27はガスフローユニット4の前面パネル4aに設けられ、それらのツマミ41a,41bが外部から操作可能になっている。また、テーパ管44の目盛りが外部から視覚によって確認できるようになっている。なお、符号31は操作スイッチであって、具体的には、電源をオン/オフする電源スイッチ47、ガス搬送ポンプ23のガス搬送系を第1ガス搬送系29aと第2ガス搬送系29bとの間で切り換えるガス搬送系切換えスイッチ48が含まれる。
【0047】
以下、上記構成より成る本実施形態の熱分析装置の動作を説明する。まず、測定を始める前に、図1において、試料室2の内部を熱分析測定に適した低酸素濃度に設定するための測定前処理を以下のようにして行う。ガスフローユニット4の吸気口21と天秤室3の第2開口O2とを連結管49を使って又は直接に接続する。また、ガスフローユニット4のガス供給口28と天秤室3のガス経由口14とを連結管51を使って又は直接に接続する。また、ガス取込み口26に連結管52を用いてガス源としてのガスボンベ53を接続する。このガスボンベ53の中には不活性ガス、例えば、N2 ,Ar等が格納されている。
【0048】
次に、図2において、操作スイッチ31の電源スイッチ47をオンにしてガス搬送ポンプ23を始動し、さらに、ガス搬送系切換えスイッチ48を第1ガス搬送系29aすなわち通常ガスフロー系にセットする。また、ガスボンベ53を開口してガスを供給できる状態にセットし、さらに、図2において第2フローメータ27のツマミ41bを調節してガスを所定量、例えば1l流す。また同時に、第1フローメータ22のツマミ41aを調節してガスを所定量、例えば800ml流す。
【0049】
以上により、図1の試料室2及び天秤室3に関しては、試料Sと第2開口O2との間に位置するガス供給口13から、例えば1lの不活性ガスが供給され、その1lの不活性ガスのうち、例えば800mlが第2開口O2を通してガスフローユニット4へ導かれ、さらにガス搬送ポンプ23によって排気口24から外部へ排気される。一方、残りの200mlが図1の第1開口O1を通して外部へ排気される。第1開口O1は外部へ開放されているので、試料室2は常に外気圧と同じ、通常は、大気圧すなわち1気圧に維持される。
【0050】
なお、上記のガス搬送量、すなわち800ml及び200mlの各数値はあくまでも一例であり、実際の測定においては試料室の容積、その他の条件に応じて種々の値が設定される。
【0051】
以上のように、供給された例えば1lの不活性ガスを試料Sから離れる方向へ例えば800ml流し、試料Sを通過させて第1開口O1へ例えば200ml流すという不活性ガスの分流処理を、例えば約20分から約30分程度継続して行う。これにより、比較的容積の大きい天秤室3に存在する汚染ガスを試料Sの方へ流すことなく外部へ確実に排出できる。なお、約20分から約30分程度という時間はあくまでも一例であり、実際の測定においては必要に応じてその他の適切な時間を設定できる。
【0052】
次に、図2において第1フローメータ22のツマミ41aを調節して該フローメータを流れるガスの流量を、上記の例えば800mlから例えば200mlへと切り換える。これにより、図1の試料室2及び天秤室3に関するガスの分流を、試料Sから離れる第2開口O2へ例えば200ml、そして試料Sを通過させて第1開口O1へ例えば800ml流す。なお、800ml及び200mlというガス搬送量はあくまでも一例であり、実際の測定においては試料室の容積、その他の条件に応じて種々の値が設定される。
【0053】
この分流状態を例えば約30分から約40分継続させると、試料室2内の酸素濃度は、例えば数十ppm以下に安定する。この酸素濃度は酸素濃度計等によって計測できる。この残留酸素濃度は、単に1つのガス供給口から不活性ガスを供給して単に1つのガス排出口から不活性ガスを外部へ排出する構造の従来の装置に比べて、10倍から20倍程度低い値である。なお、不活性ガスとしてN2 を用いればそのN2 の濃度は数十ppm程度以下である。また、不活性ガスとしてArを用いればそのArの濃度はN2 の場合よりもやや多い濃度である。なお、上記の約30分から約40分程度という時間はあくまでも一例であり、実際の測定においては必要に応じてその他の適切な時間を設定できる。
【0054】
試料室2内の酸素濃度が安定すると、それ以降、温度コントローラ12によってヒータ11の発熱量を調節して試料S及び基準物質Rの温度を調節しながら、DTA測定部18及びTG測定部17によって熱分析測定を行うことができる。具体的には、ヒータ11によって試料S及び基準物質Rの温度を所定のプログラムに従って変化させながら、DTA測定部18によって試料Sと基準物質Rとの温度差を検出することにより、試料Sに生じ熱的変化を検出する。一方、温度変化する基準物質Rの重量変化と同じく温度変化する試料Sの重量変化をTG測定部17によって測定することにより、温度変化によって試料Sに生じる重量変化をTG測定部17によって検出する。
【0055】
以上のような測定中、不活性ガスは第1開口O1方向へ800mlのように多量に流れ、第2開口O2方向への流れは200mlのように少量に抑えられる。このように測定中に多量の不活性ガスを第1開口O1方向へ流すことにより、試料Sのまわりに常に新鮮なガスを供給することができる。
【0056】
本実施形態では、ガス経由口14から入れた不活性ガスをガス供給口13、すなわち試料室2と天秤室3との境、すなわち電気炉部と天秤室3との境、すなわち試料Sと第2開口O2との間から導入し、排気口24から排出されるガス量と第2開口O2から排出されるガス量とをバランスさせるためにガス搬送ポンプ23を使用し、天秤室3に存在する残留酸素を電気炉部にある試料室2へ入れないようにした。そして、測定中、第1開口O1は常に外部、すなわち大気へ開放されているので、試料室2の内圧は変動の無い安定状態に維持され、このため、非常に再現性の高いすなわち信頼性の高い熱分析測定結果を得ることができる。
【0057】
以上のような熱分析測定が繰り返して行われると試料室2内の保護管9の内部が汚れてくる。従って、適時にクリーニング処理が必要となり、その場合には以下のようにして、いわゆる焼き飛ばし処理を行う。
【0058】
すなわち、まず図1において、ガス経由口14から連結管51を取り外して不活性ガスの供給系を解除する。そして、エアー取出口36すなわち図2のガス搬送ポンプ23の第2ガス搬送系29bの排気ポート34bをガス経由口14へ接続する。そして、図2のガス搬送系切換えスイッチ48を第2ガス搬送系29b側へ切換え、そしてガス搬送ポンプ23を作動してその第2ガス搬送系29bの吸気ポート33bから外部空気を取り込み、それをエアー取出口36を介して図1のガス供給口13を通して試料室2へ送り込む。送り込まれた空気は保護管9の内部を流れて第1開口O1を通って外部へ排気される。以上のようにして保護管9内を流れる空気により、例えば保護管9の内部に付着したカーボン等が酸化され、さらに外部へ吹き飛ばされ、これにより保護管9の内部がクリーニングされる。
【0059】
なお、試料を空気フロー雰囲気に置いた状態で熱分析測定を行う場合も、第2ガス搬送系29bを用いて上記と同様の手順で測定を行うことができる。
【0060】
以上に説明した本実施形態では、図2及び図3に示すように、第1フローメータ22及び第2フローメータ27の1気圧開放側、すなわち天秤室3に接続される側がニードルバルブ42a及び42bの反対側のポートに接続されているので、テーパ管44及び移動子46より成る流量表示部43a及び43bの流量表示が正確になる。なお、これらのフローメータとは別に、質量流量に基づいて表示を行う質量流量計を用いて正確な表示を実現することもできる。
【0061】
またガス搬送ポンプ23は、その搬送容量が500ml/min〜1000ml/minという小容量のものを使用しており、いわゆる真空ポンプのような大容量のポンプを用いる必要が無いので、ガスフローユニット4は極めて簡単且つ小型且つ安価に作成できる。なお、ガス搬送ポンプはなるべく脈動の少ないもの、できれば脈動の無いものが望ましい。試料室2内に安定したガス分流を形成するためである。また、真空ポンプのような大容量のポンプを使用して適正な分流を実現できる場合には、そのようなポンプを使用しても良いことは、もちろんである。
【0062】
また、本実施形態では、ガスフローユニット4が1個のユニットになっていて、それを試料室2又は天秤室3に取り付けるだけで、試料室2内を低酸素濃度に設定することができるようになり、非常に便利である。
【0063】
また、試料室2内に形成される不活性ガスの分流の状態を、第1フローメータ22及び第2フローメータ27による流量調整によって自由に設定できるので、本実施形態のガスフローユニット4は種々の熱分析装置に対して適用することができる。すなわち、汎用性が非常に高い。
【0064】
以上、好ましい実施形態を挙げて本発明を説明したが、本発明はその実施形態に限定されるものでなく、請求の範囲に記載した発明の範囲内で種々に改変できる。
【0065】
例えば、上記実施形態ではTG−DTA装置に本発明を適用したが、本発明は試料のまわりにガス分流を形成する必要があるその他の任意の熱分析装置、例えば、TG装置、DTA装置、TMA装置等に対しても適用できる。また、付属室としては天秤室以外の任意の部屋を付属させることができる。
【0066】
【発明の効果】
以上の説明のように、本発明に係る熱分析装置及び熱分析測定方法によれば、ガス供給口から導入したガスを第1開口と第2開口とに分けて流すことにより、試料室の内部でガス分流を形成できる。そして、第1開口を通して流れるガス分流により試料を低酸素濃度の環境に置くことができ、一方、第2開口を通して流れるガス分流により汚染ガスが試料へ近づくことを防止できる。
【0067】
このとき、試料室内に形成されるガス分流はオリフィスの調整によるものでなくガス搬送手段によるガスの吸引によるものであり、さらに第1開口はオリフィスの無い開放状態に設定されているので、試料室内は常に外部気圧と同じ一定の気圧に安定に維持され、これにより、極めて安定した再現性の高い測定結果を得ることができる。
【0068】
また、本発明に係るガスフローユニットによれば、これをガス供給口及び第2開口を供えた任意の構成の熱分析装置に接続することにより、希望する望ましいガス分流を簡単に試料室内に形成することができる。また、ガスフローユニットはそれが1個の単体機器であるので、持ち運びすることもでき、非常に便利である。
【図面の簡単な説明】
【図1】本発明に係る熱分析装置の一実施形態を示す正面断面図である。
【図2】図1の主要機器であるガスフローユニットの内部構造を示す図である。
【図3】図2に示すガスフローユニットの外観斜視図である。
【符号の説明】
1 熱分析装置
2 試料室
3 天秤室(付属室)
4 ガスフローユニット
6a,6b 天秤機構
8a,8b 試料皿
9 保護管
11 ヒータ
13 ガス供給口
14 ガス経由口
16 中継管
21 吸気口
22 第1フローメータ(第1流量制御手段)
23 ガス搬送ポンプ(ガス搬送手段)
24 排気口
26 ガス取込み口
27 第2フローメータ(第2流量制御手段)
28 ガス供給口
29a,29b ガス搬送系
36 エアー取出口
41a,41b ツマミ
42a,42b ニードルバルブ
43a,43b 流量表示部
44 テーパ管
46 移動子
O1 第1開口
O2 第2開口
Pa,Pb 測温点
R 基準物質
S 試料

Claims (4)

  1. 試料が配置される試料室と、該試料室に通じる第1開口と、前記試料室へガスを供給するガス供給口とを有する熱分析装置において、
    前記試料が配置される位置に関して前記第1開口の反対側に設けられた第2開口と、該第2開口に接続されたガス搬送手段とを有し、
    前記ガス供給口は前記試料に関して前記第1開口の反対側に配置されると共に前記試料と前記第2開口との間に配置され、
    前記第1開口は外部に対して開放状態である
    ことを特徴とする熱分析装置。
  2. 試料が配置される試料室と、該試料室に通じる第1開口と、前記試料室へガスを供給するガス供給口とを有する熱分析装置において、
    前記試料が配置される位置に関して前記第1開口の反対側に設けられた第2開口と、
    該第2開口に接続されたガス搬送手段と、
    該ガス搬送手段の上流側に配置された流量制御手段とを有し、
    前記第1開口は外部に対して開放状態であり、
    前記ガス搬送手段は2つのガス搬送系を有し、1つのガス搬送系は前記流量制御手段から吸気して外部へ排気を行い、他の1つのガス搬送系は大気から吸気して前記ガス供給口へ排気を行い、
    前記ガス搬送手段の2つのガス搬送系は外部からの操作によって切り換え可能である
    ことを特徴とする熱分析装置。
  3. 試料が配置される試料室と、該試料室に通じる第1開口と、前記試料室へガスを供給するガス供給口と、前記試料が配置される位置に関して前記第1開口の反対側に設けられた第2開口と、該第2開口に接続されたガス搬送手段とを有し、前記第1開口は外部に対して開放状態である熱分析装置を用いた熱分析測定方法において、
    前記ガス供給口へガスを供給しながら供給されたガスの50%以上を前記ガス搬送手段によって前記第2開口から吸引して外部へ搬送する第1ガス搬送工程と、
    前記第1ガス搬送工程の後に、前記ガス供給口へガスを供給しながら供給されたガスの50%以下を前記ガス搬送手段によって前記第2開口から吸引して外部へ搬送する第2ガス搬送工程と
    を有することを特徴とする熱分析測定方法。
  4. 外部に開口する吸気口と、
    前記吸気口に接続されていて該吸気口を通して流れるガスの流量を調節できる第1流量制御手段と、
    該第1流量制御手段に接続されていて該第1流量制御手段を通してガスを搬送するガス搬送手段と、
    該ガス搬送手段に接続されていて外部に開口する排気口と、
    ガスを取り込むガス取込み口と、
    該ガス取込み口に接続されていて該ガス取込み口を通して流れるガスの流量を調節できる第2流量制御手段と、
    該第2流量制御手段に接続されていて外部に開口するガス供給口と
    を有することを特徴とするガスフローユニット。
JP2000255008A 2000-08-25 2000-08-25 熱分析装置、熱分析測定方法及びガスフローユニット Expired - Lifetime JP3666851B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000255008A JP3666851B2 (ja) 2000-08-25 2000-08-25 熱分析装置、熱分析測定方法及びガスフローユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255008A JP3666851B2 (ja) 2000-08-25 2000-08-25 熱分析装置、熱分析測定方法及びガスフローユニット

Publications (2)

Publication Number Publication Date
JP2002071603A JP2002071603A (ja) 2002-03-12
JP3666851B2 true JP3666851B2 (ja) 2005-06-29

Family

ID=18743870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255008A Expired - Lifetime JP3666851B2 (ja) 2000-08-25 2000-08-25 熱分析装置、熱分析測定方法及びガスフローユニット

Country Status (1)

Country Link
JP (1) JP3666851B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567414B2 (ja) * 2003-10-31 2010-10-20 エスアイアイ・ナノテクノロジー株式会社 熱機械的測定装置、熱重量測定装置及び熱分析装置
JP2008082861A (ja) * 2006-09-27 2008-04-10 Rigaku Corp 熱分析装置
DE102009024055A1 (de) * 2009-06-05 2010-12-09 Netzsch-Gerätebau GmbH Thermoanalysevorrichtung und Thermoanalyseverfahren
JP5698076B2 (ja) * 2011-06-20 2015-04-08 東洋炭素株式会社 炭素材料の酸化消耗性試験装置及び試験方法
CN104237058A (zh) * 2014-09-23 2014-12-24 中国科学技术大学 一种热重分子束质谱联用装置
CN115435856B (zh) * 2021-05-17 2024-05-28 上海烟草集团有限责任公司 一种皂膜控制装置及皂膜流量计

Also Published As

Publication number Publication date
JP2002071603A (ja) 2002-03-12

Similar Documents

Publication Publication Date Title
JP5337802B2 (ja) 吸込み式漏れ検出器
US7062954B2 (en) Leak detector
US7237562B2 (en) Substrate processing apparatus and control method of inert gas concentration
JP3666851B2 (ja) 熱分析装置、熱分析測定方法及びガスフローユニット
JP2014059322A (ja) 気密性を検査するための方法及び装置
KR20010031332A (ko) 압력식 유량제어장치에 있어서의 막힘 검출방법 및 그검출장치
TW522228B (en) Vacuum sensor
JP4779807B2 (ja) Icp発光分光分析装置
JPH11309212A (ja) 調量装置
EP0757241A2 (en) Particle sampling system for gas supply system
US8453524B2 (en) Solution feeding device
US4348887A (en) Apparatus for determining the effects of dilution and/or diffusion on the gaseous components of a gas flow
CN108318374A (zh) 口罩静态呼吸阻力测试系统及其工作方法
CN219104927U (zh) 一种呼气一氧化氮检测仪
JP3779908B2 (ja) 排ガス測定装置及び排ガスサンプリング装置
JP2661631B2 (ja) 臨界ノズルの簡易校正装置及びその方法
JP2009121846A (ja) 試料送液ポンプおよび送液ポンプを用いたicp発光分析装置
JP3421198B2 (ja) 基板の熱処理装置
JP2006066312A (ja) Icp分析用試料導入装置及び方法
KR100266136B1 (ko) 에칭속도 측정방법 및 에칭속도 측정장치
KR102438237B1 (ko) 액체 소스 공급 시스템 및 이를 이용한 액체 소스 공급 방법
JP4688967B1 (ja) 呼気アルコール測定器
JPH08145892A (ja) Icp発光分析装置
JPH11230871A (ja) 排気ガス希釈サンプリング装置
JP2000065819A (ja) ガス測定装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Ref document number: 3666851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250